JPH01282146A - High-strength magnesia sintered body and production thereof - Google Patents

High-strength magnesia sintered body and production thereof

Info

Publication number
JPH01282146A
JPH01282146A JP63111521A JP11152188A JPH01282146A JP H01282146 A JPH01282146 A JP H01282146A JP 63111521 A JP63111521 A JP 63111521A JP 11152188 A JP11152188 A JP 11152188A JP H01282146 A JPH01282146 A JP H01282146A
Authority
JP
Japan
Prior art keywords
magnesia
sintered body
primary particles
strength
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63111521A
Other languages
Japanese (ja)
Other versions
JPH0676251B2 (en
Inventor
Akio Nishida
明生 西田
Tsuneo Shimamura
島村 常夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63111521A priority Critical patent/JPH0676251B2/en
Publication of JPH01282146A publication Critical patent/JPH01282146A/en
Publication of JPH0676251B2 publication Critical patent/JPH0676251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve mechanical characteristics, corrosion resistance and heat resistance of the title sintered body having high purity and high strength by sintering a specified molded form which has been obtained by molding magnesia powder consisting of both cubic primary particles and the balance equiaxial primary particles. CONSTITUTION:Mg 7 is introduced into a retort 3 and heated with an electric furnace 6 and the generated Mg vapor is injected to a reaction chamber 4 through a nozzle 1 and a laminar flow diffusion flame having >=10cm length is formed in the oxygen atmosphere and the Mg vapor is oxidized in the flame and thereby magnesia powder (A) which consists of both 30-80wt.% cubic primary particle having 0.1-1.0mum particle diameter and the balance equiaxial primary particles having <=0.1mum particle diameter and has >=99.9% purity is obtained. Then a molded form (B) having >=50% relative density by granulating, pressurizing and molding the component A. Then a high-strength magnesia sintered body which consists of magnesia polyhedron particles of <=5mum particle diameter surrounded by a face having >=10mm radius of curvature and has <=2% porosity is produced by sintering the component B at 1600-1800 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、緻密で機械的特性、耐蝕性、耐熱性に優れ、
高温における強度低下の少ない高強度マグネシア焼結体
及びその製造法に関する。さらに詳しくは、高純度、高
融点金属の溶融用、PZTセラミックス、β−アルミナ
セラミックス等の電子及び導電性セラミックスの焼結用
、更にはY−Ba−Cu−0系等の超伝導セラミックス
の溶融用として優れた性能を有する高強度マグネシア焼
結体及びその製造法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention is dense and has excellent mechanical properties, corrosion resistance, and heat resistance.
The present invention relates to a high-strength magnesia sintered body that exhibits little strength loss at high temperatures and a method for producing the same. More specifically, for melting high-purity, high-melting point metals, for sintering electronic and conductive ceramics such as PZT ceramics and β-alumina ceramics, and for melting superconducting ceramics such as Y-Ba-Cu-0 series. The present invention relates to a high-strength magnesia sintered body that has excellent performance in applications and a method for producing the same.

(従来の技術及びその問題点) マグネシアは融点が2800°Cと高く、アルカリ金属
、酸化鉛、塩基性スラグ等に対する耐蝕性に優れている
ため、ルツボや耐火レンガなどの高温耐蝕材料として使
用されている。しかしながら、マグネシアは機械的強度
や破壊靭性に劣るため、昇温、降温の繰り返しにより、
クランクが発生したり、スポーリングを起こしたりする
など実用上の問題がある。
(Prior art and its problems) Magnesia has a high melting point of 2800°C and has excellent corrosion resistance against alkali metals, lead oxide, basic slag, etc., so it is used as a high-temperature corrosion-resistant material for crucibles, firebricks, etc. ing. However, magnesia has poor mechanical strength and fracture toughness, so repeated heating and cooling can cause
There are practical problems such as cranking and spalling.

これらの問題を改善する方法として、マグネシウム塩の
熱分解により微細で焼結性の優れたマグネシアを調製し
、これを焼結して緻密な焼結体を作る方法がある。しか
し、この方法によって得られる焼結体は、丸みを帯びた
粒子からなるため、高温で使用した場合、粒成長が進み
強度が低下するという問題がある。
As a method to improve these problems, there is a method of preparing fine magnesia with excellent sinterability by thermal decomposition of magnesium salt, and sintering this to produce a dense sintered body. However, since the sintered body obtained by this method consists of rounded particles, there is a problem in that grain growth progresses and the strength decreases when used at high temperatures.

また、特開昭59−182268号公報及び”GYPS
UM &LIME” No、209.219−224(
1987)には、マグネシアにジルコニアを添加して焼
結させて、マグネシアの機械的性質を向上させる方法が
開示されている。
Also, JP-A-59-182268 and “GYPS
UM & LIME” No, 209.219-224 (
(1987) discloses a method for improving the mechanical properties of magnesia by adding zirconia to magnesia and sintering it.

しかし、この方法に従って得られるマグネシア質焼結体
はジルコニアが含まれるため、マグネシア本来の優れた
耐蝕性を発揮することができないという欠点を有する。
However, since the magnesia-based sintered body obtained according to this method contains zirconia, it has the drawback that it cannot exhibit the excellent corrosion resistance inherent to magnesia.

(問題点を解決するための技術的手段)本発明の目的は
、室温及び高温での機械的性質を改善したマグネシア焼
結体及びその製造法を提供することにある。
(Technical means for solving the problems) An object of the present invention is to provide a magnesia sintered body with improved mechanical properties at room temperature and high temperature, and a method for producing the same.

本発明の上記目的は、曲率半径10鮒以上の面で囲まれ
た粒径5μm以下のマグネシア多面体粒子からなる気孔
率2%以下のマグネシア焼結体によって達成される。
The above object of the present invention is achieved by a magnesia sintered body having a porosity of 2% or less and consisting of magnesia polyhedral particles with a grain size of 5 μm or less surrounded by surfaces with a radius of curvature of 10 or more.

焼結体では、粒径および気孔率が小さいほど機械的性質
が向上するが、本発明のマグネシア焼結体は粒径5μm
以下、気孔率2%以下と小さく、従って優れた機械的性
質が発現する。
In a sintered body, the mechanical properties are improved as the particle size and porosity are smaller, but the magnesia sintered body of the present invention has a particle size of 5 μm.
The porosity is as low as 2% or less, and therefore exhibits excellent mechanical properties.

さらに、一般に焼結体は14面体粒子からなるが、その
面の曲率半径が小さいほど、高温で使用した場合に粒成
長が大きくなり、強度が低下するが、本発明のマグネシ
ア焼結体は曲率半径10mm以上の面で囲まれた多面体
粒子からなるため、高温での粒成長による強度低下が少
ない。
Furthermore, generally, sintered bodies are made of tetradecahedral grains, and the smaller the radius of curvature of the surface, the greater the grain growth and the lower the strength when used at high temperatures, but the magnesia sintered body of the present invention has Since it is composed of polyhedral particles surrounded by planes with a radius of 10 mm or more, there is little decrease in strength due to grain growth at high temperatures.

本発明のマグネシア焼結体は、粒径0.1〜1.0μm
の立方体状の一次粒子を30〜80重景%含重量残部が
粒径0.1μm以下の等軸状の一次粒子からなる、純度
99.9%以上のマグネシア粉末を成形して得られる相
対密度50%以上の成形体を1600〜1800℃の温
度で焼結することによって得られる。
The magnesia sintered body of the present invention has a particle size of 0.1 to 1.0 μm.
Relative density obtained by molding magnesia powder with a purity of 99.9% or more, consisting of cubic primary particles with a weight content of 30 to 80% and the remainder consisting of equiaxed primary particles with a particle size of 0.1 μm or less. It is obtained by sintering 50% or more of the molded body at a temperature of 1600 to 1800°C.

本発明において、成形体の相対密度は次式で計算した値
を表す。
In the present invention, the relative density of the molded body represents a value calculated using the following formula.

上記マグネシア粉末は、マグネシウム蒸気をノズルから
酸素含有雰囲気中に噴出し、長さ10cm以上の層流拡
散火炎を形成させ、該火炎中でマグネシウム蒸気を酸化
することにより得られる。このように、長さ10cm以
上の層流拡散火炎中でマグネシウム蒸気を酸化させると
、マグネシアの核の発生した位置により粒成長に差異が
生じ、例えば、ノズル付近の火炎で発生した核は、火炎
中での滞留時間が長くなるため、粒成長が進み、粒径0
.1〜1.0μmの立方体状の一次粒子となり、−方、
火炎の先端付近で発生した核は火炎中での滞留時間が短
いため、粒成長が少なく、粒径0.1pm以下の等軸状
の一次粒子となる。
The magnesia powder is obtained by ejecting magnesium vapor from a nozzle into an oxygen-containing atmosphere, forming a laminar diffusion flame with a length of 10 cm or more, and oxidizing the magnesium vapor in the flame. In this way, when magnesium vapor is oxidized in a laminar diffusion flame with a length of 10 cm or more, differences in grain growth occur depending on the position where the magnesia nuclei are generated.For example, the nuclei generated in the flame near the nozzle are As the residence time inside becomes longer, grain growth progresses and the grain size reaches 0.
.. It becomes a cubic primary particle of 1 to 1.0 μm,
Since the nuclei generated near the tip of the flame have a short residence time in the flame, grain growth is small and they become equiaxed primary particles with a grain size of 0.1 pm or less.

前記マグネシア粉末は、粒径0.1〜1.0μmの立方
体状の一次粒子を30〜80重量%含み、残部が粒径0
.1μ臀以下の等軸状の一次粒子からなる。このマグネ
シア粉末を焼結させると、立方体状の粒子がその形状を
ある程度保ったままで緻密化が進むので、曲率半径10
閤以上で粒径5μm以下のマグネシア多面体粒子からな
る気孔率2%以下のマグネシア焼結体が得られる。
The magnesia powder contains 30 to 80% by weight of cubic primary particles with a particle size of 0.1 to 1.0 μm, and the remainder has a particle size of 0.
.. Consists of equiaxed primary particles with a diameter of 1μ or less. When this magnesia powder is sintered, the cubic particles maintain their shape to some extent and become denser, so the radius of curvature is 10.
A magnesia sintered body having a porosity of 2% or less, which is composed of magnesia polyhedral particles with a grain size of 5 μm or more, is obtained.

粒径0.1〜1.0μmの立方体状の一次粒子が80重
量%より多くなると、焼結の駆動力となる表面エネルギ
ーが小さくなるため、気孔率2%以下の緻密な焼結体が
得られない、また、30重量%より少ないと、曲率半径
が10a*以上の多面体粒子からなる焼結体が得られな
い。
When the amount of cubic primary particles with a particle size of 0.1 to 1.0 μm exceeds 80% by weight, the surface energy that is the driving force for sintering decreases, so a dense sintered body with a porosity of 2% or less can be obtained. Moreover, if it is less than 30% by weight, a sintered body made of polyhedral particles with a radius of curvature of 10a* or more cannot be obtained.

また、本発明で使用されるマグネシア粉末のマグネシア
含有量は99.9%以上である必要がある。
Further, the magnesia content of the magnesia powder used in the present invention needs to be 99.9% or more.

マグネシア含有量が99.9%より少ないと、焼結の際
に粒成長が進み、マグネシア焼結体中の粒子が5μmよ
り大きくなってしまう。
If the magnesia content is less than 99.9%, grain growth will proceed during sintering, and the particles in the magnesia sintered body will become larger than 5 μm.

前記マグネシア粉末は、成形して相対密度50%以上の
成形体とする必要がある。成形体の相対密度が50%よ
り小さいと、焼結の際に気孔が十分に排除されず気孔率
2%以下の緻密な焼結体が得られない。
The magnesia powder needs to be molded into a molded body having a relative density of 50% or more. If the relative density of the molded body is less than 50%, pores will not be sufficiently eliminated during sintering, and a dense sintered body with a porosity of 2% or less will not be obtained.

マグネシア粉末はそのまま成形してもよく、成形に先立
ってそれ自体公知の方法に従って造粒してもよい。
The magnesia powder may be molded as it is, or prior to molding, it may be granulated according to a method known per se.

マグネシア粉末から成形体を作製する方法については特
に制限はなく、それ自体公知の方法、例えば、−軸加工
成形、ラバープレス成形、押出成形、射出成形、鋳込成
形などの方法を適宜採用することができる。
There are no particular restrictions on the method of producing a molded body from magnesia powder, and methods known per se, such as -shaft processing molding, rubber press molding, extrusion molding, injection molding, and cast molding, may be appropriately adopted. I can do it.

次に、成形体を1600〜1800°Cの温度で焼結す
ることによって、本発明のマグネシア焼結体が得られる
Next, the magnesia sintered body of the present invention is obtained by sintering the molded body at a temperature of 1600 to 1800°C.

焼結温度が1600°C未満であると焼結の駆動力が小
さいため、気孔率2%以下の緻密な焼結体が得られない
。焼結温度が1800℃を超えると、粒成長が進み、マ
グネシア焼結体中の粒子が5μmより大きくなってしま
う。
If the sintering temperature is less than 1600°C, the driving force for sintering will be small, making it impossible to obtain a dense sintered body with a porosity of 2% or less. When the sintering temperature exceeds 1800°C, grain growth progresses and the grains in the magnesia sintered body become larger than 5 μm.

(実施例) 以下に本発明の実施例及び比較例を示す。以下において
、成形体の嵩密度は寸法と重量から求め、焼結体の嵩密
度はアルキメデス法によって測定し、それぞれ理論密度
に対する百分率で示した。焼結体の曲げ強度はJIS 
R1601に従い、焼結体から3X4X40mmの棒状
試験片を切り出し、表面をダイヤモンド砥石で研磨した
後、スパン30則、クロスヘツドスピード0.5 rr
a /分の条件で室温及び1200°Cで3点曲げ試験
を行い測定した。また、焼結体の高温での強度劣化を調
べるため、1400°C524時間加熱した後に、上記
焼結体の評価を行った。
(Example) Examples and comparative examples of the present invention are shown below. In the following, the bulk density of the molded body was determined from the dimensions and weight, and the bulk density of the sintered body was measured by the Archimedes method, and each is expressed as a percentage of the theoretical density. The bending strength of the sintered body is JIS
According to R1601, a 3 x 4 x 40 mm rod-shaped test piece was cut out from the sintered body, and the surface was polished with a diamond grindstone, followed by a span rule of 30 and a crosshead speed of 0.5 rr.
A three-point bending test was performed at room temperature and 1200°C under the conditions of α/min. In addition, in order to examine the strength deterioration of the sintered body at high temperatures, the sintered body was evaluated after being heated at 1400° C. for 524 hours.

実施例1 第1図に示す装置を用いて、マグネシア粉末を製造した
。マグネシウム蒸気噴射ノズル1の口径は9■、反応室
4の内径は180am、長さは1000■であった。
Example 1 Magnesia powder was produced using the apparatus shown in FIG. The diameter of the magnesium vapor injection nozzle 1 was 9 mm, the inner diameter of the reaction chamber 4 was 180 mm, and the length was 100 mm.

レトルト3内にマグネシウム7を入れ、電気炉6によっ
て1200°Cに加熱して、発生したマグネシウム蒸気
をマグネシウム蒸気噴射ノズル1から20m/sの流速
で反応室4へ噴射させた。同時に管2がら空気を200
1/分で導入して、マグネシウム蒸気を燃焼させて、長
さ50C11の層流拡散火炎を形成させた。生成したマ
グネシア粉末は捕集器5で捕集した。
Magnesium 7 was placed in the retort 3 and heated to 1200°C by the electric furnace 6, and the generated magnesium vapor was injected from the magnesium vapor injection nozzle 1 into the reaction chamber 4 at a flow rate of 20 m/s. At the same time, 200 liters of air is pumped through tube 2.
The magnesium vapor was combusted to form a laminar diffusion flame with a length of 50C11. The generated magnesia powder was collected by a collector 5.

得られたマグネシア粉末は、純度99.9%以上であり
、粒径0.1〜1.0μmの立方体状の一次粒子を60
重蓋%含み、残部が粒径0.1μm以下の等軸状の一次
粒子からなるものであった。得られたマグネシア粉末の
透過型電子顕微鏡(TEM)写真を第2図に示す。
The obtained magnesia powder has a purity of 99.9% or more, and contains 60 cubic primary particles with a particle size of 0.1 to 1.0 μm.
% of heavy caps, and the remainder consisted of equiaxed primary particles with a particle size of 0.1 μm or less. A transmission electron microscope (TEM) photograph of the obtained magnesia powder is shown in FIG.

このマグネシア粉末をエタノール溶媒を用いて6時間ボ
ールミルした後、エタノールを除去し、解砕して造粒粉
とした。
This magnesia powder was ball milled for 6 hours using an ethanol solvent, the ethanol was removed, and the powder was crushed to obtain a granulated powder.

二〇造粒粉50gを80X54m+sの金型に充填し、
100kg/dで一軸加圧成形した後に、1.5ton
/cdの圧力でラバープレスして成形体を得た。
20 Fill 50g of granulated powder into an 80x54m+s mold,
After uniaxial pressure molding at 100kg/d, 1.5ton
A molded body was obtained by rubber pressing at a pressure of /cd.

次にこの成形体を電気炉に入れ、1650°Cで4時間
焼結して、マグネシア焼結体を製造した。
Next, this molded body was placed in an electric furnace and sintered at 1650°C for 4 hours to produce a magnesia sintered body.

得られたマグネシア焼結体の評価結果を第1表に示す。Table 1 shows the evaluation results of the obtained magnesia sintered body.

実施例2 実施例1において、管2からの空気導入量を40012
7分に変えて、マグネシウム蒸気を燃焼させて、長さ3
0C11の層流拡散火炎を形成させて、マグネシア粉末
を製造した。
Example 2 In Example 1, the amount of air introduced from pipe 2 was set to 40012
Change to 7 minutes, burn magnesium vapor, length 3
Magnesia powder was produced by forming an 0C11 laminar diffusion flame.

得られたマグネシア粉末は、純度99.9%以上であり
、粒径0.1〜1.0μmの立方体状の一次粒子を40
重量%含み、残部が粒径0.1μm以下の等軸状の一次
粒子からなるものであった。
The obtained magnesia powder has a purity of 99.9% or more, and contains 40 cubic primary particles with a particle size of 0.1 to 1.0 μm.
% by weight, and the remainder consisted of equiaxed primary particles with a particle size of 0.1 μm or less.

この粉末を用いて、実施例1と同様にしてマグネシア焼
結体を製造した。結果を第1表に示す。
Using this powder, a magnesia sintered body was produced in the same manner as in Example 1. The results are shown in Table 1.

比較例1 100kg/cdの圧力で一軸加圧して得られた成形体
を用いた以外は実施例1と同様にしてマグネシア焼結体
を製造した。結果を第1表に示す。
Comparative Example 1 A magnesia sintered body was produced in the same manner as in Example 1, except that a molded body obtained by uniaxial pressing at a pressure of 100 kg/cd was used. The results are shown in Table 1.

比較例2 焼結温度を1500°Cに変えた以外は実施例1と同様
にしてマグネシア焼結体を製造した。結果を第1表に示
す。
Comparative Example 2 A magnesia sintered body was produced in the same manner as in Example 1 except that the sintering temperature was changed to 1500°C. The results are shown in Table 1.

比較例3 焼結温度を1900℃に変えた以外は実施例1と同様に
してマグネシア焼結体を製造した。結果を第1表に示す
Comparative Example 3 A magnesia sintered body was produced in the same manner as in Example 1 except that the sintering temperature was changed to 1900°C. The results are shown in Table 1.

比較例4 マグネシウム塩の熱分解により得られた平均粒径0.1
μmの等軸状のマグネシア粉末を用いた以外は実施例1
と同様にしてマグネシア焼結体を製造した。結果を第1
表に示す。
Comparative Example 4 Average particle size obtained by thermal decomposition of magnesium salt: 0.1
Example 1 except that μm equiaxed magnesia powder was used.
A magnesia sintered body was produced in the same manner. Results first
Shown in the table.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施する際に使用される装置の一例
を示す概略図である。 l・・・・・・マグネシウム蒸気噴射ノズル、2・・・
・・・管3・・・・・・レトルト、4・・・・・・反応
室、5・・・・・・捕集器6・・・・・・電気炉、7・
・・・・・マグネシウム第2図は、本発明の実施例1で
用いたマグネシア粉末の粒子形状を示す図面に代えるT
EM写真である。 特許出願人  宇部興産株式会社
FIG. 1 is a schematic diagram showing an example of an apparatus used in carrying out the present invention. l...Magnesium steam injection nozzle, 2...
... Tube 3 ... Retort, 4 ... Reaction chamber, 5 ... Collector 6 ... Electric furnace, 7.
・・・・・・Magnesium Figure 2 is a T instead of a drawing showing the particle shape of the magnesia powder used in Example 1 of the present invention.
This is an EM photo. Patent applicant: Ube Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)曲率半径10mm以上の面で囲まれた粒径5μm
以下のマグネシア多面体粒子からなる気孔率2%以下の
高強度マグネシア焼結体。
(1) Grain size 5 μm surrounded by a surface with a radius of curvature of 10 mm or more
A high-strength magnesia sintered body with a porosity of 2% or less, consisting of the following magnesia polyhedral particles.
(2)粒径0.1〜1.0μmの立方体状の一次粒子を
30〜80重量%含み、残部が粒径0.1μm以下の等
軸状の一次粒子からなる、純度99.9%以上のマグネ
シア粉末を成形して得られる相対密度50%以上の成形
体を1600〜1800℃の温度で焼結することを特徴
とする特許請求の範囲第1項記載の高強度マグネシア焼
結体の製造法。
(2) Contains 30 to 80% by weight of cubic primary particles with a particle size of 0.1 to 1.0 μm, and the remainder consists of equiaxed primary particles with a particle size of 0.1 μm or less, with a purity of 99.9% or more Production of a high-strength magnesia sintered body according to claim 1, characterized in that a molded body having a relative density of 50% or more obtained by molding magnesia powder is sintered at a temperature of 1600 to 1800°C. Law.
(3)マグネシア粉末がマグネシウム蒸気をノズルから
酸素含有雰囲気中に噴出し、長さ10cm以上の層流拡
散火炎を形成させ、該火炎中でマグネシウム蒸気を酸化
することにより得られることを特徴とする特許請求の範
囲第2項記載の高強度マグネシア焼結体の製造法。
(3) The magnesia powder is obtained by ejecting magnesium vapor from a nozzle into an oxygen-containing atmosphere, forming a laminar diffusion flame with a length of 10 cm or more, and oxidizing the magnesium vapor in the flame. A method for producing a high-strength magnesia sintered body according to claim 2.
JP63111521A 1988-05-10 1988-05-10 High strength magnesia sintered body and its manufacturing method Expired - Lifetime JPH0676251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63111521A JPH0676251B2 (en) 1988-05-10 1988-05-10 High strength magnesia sintered body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111521A JPH0676251B2 (en) 1988-05-10 1988-05-10 High strength magnesia sintered body and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01282146A true JPH01282146A (en) 1989-11-14
JPH0676251B2 JPH0676251B2 (en) 1994-09-28

Family

ID=14563434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111521A Expired - Lifetime JPH0676251B2 (en) 1988-05-10 1988-05-10 High strength magnesia sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0676251B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144705A (en) * 1974-05-13 1975-11-20
JPS61155253A (en) * 1984-12-27 1986-07-14 旭硝子株式会社 Mgo sintered body for insulation base material and manufacture
JPS6212659A (en) * 1985-07-09 1987-01-21 旭硝子株式会社 Magnesia base ceramic sintered body for electric insulation material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50144705A (en) * 1974-05-13 1975-11-20
JPS61155253A (en) * 1984-12-27 1986-07-14 旭硝子株式会社 Mgo sintered body for insulation base material and manufacture
JPS6212659A (en) * 1985-07-09 1987-01-21 旭硝子株式会社 Magnesia base ceramic sintered body for electric insulation material

Also Published As

Publication number Publication date
JPH0676251B2 (en) 1994-09-28

Similar Documents

Publication Publication Date Title
CN109305816B (en) Method for preparing high-thermal-conductivity silicon nitride ceramic by normal-pressure sintering
JPH035374A (en) Silicon nitride-silicon carbide combined sintered body and its production
JP2004043241A (en) High purity silicon carbide sintered compact and its forming method
JPH02160669A (en) Silicon nitride-silicon carbide multiple sintered compact and production thereof
JPH01282146A (en) High-strength magnesia sintered body and production thereof
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JP3023784B1 (en) High strength, high toughness aluminum oxide sintered body and method for producing the same
JP2737323B2 (en) Method for producing silicon nitride based sintered body
JPH01188459A (en) High purity magnesia sintered body and production thereof
JP2961389B2 (en) High strength magnesia sintered body and method for producing the same
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2606851B2 (en) Manufacturing method of glass ceramics
JP2658944B2 (en) Silicon nitride-titanium nitride composite ceramics and method for producing the same
JPH01145380A (en) Production of silicon nitride sintered form
JP3109341B2 (en) MgO partially stabilized ZrO2 sintered body and method for producing the same
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2004051459A (en) Silicon nitride sintered compact and its manufacturing method
JPH0672042B2 (en) High strength magnesia sintered body and its manufacturing method
CN112500162A (en) YAG transparent ceramic and densification sintering method thereof
JP2506519B2 (en) Low-temperature low-pressure sintered silicon nitride sintered body manufacturing method
JP3752528B2 (en) Silicon nitride sintered body and method for producing the same
JPH03223155A (en) Sintered material of magnesia and its production
JPH02167857A (en) Highly tough mullite-based calcined body and production thereof
JPH03170374A (en) Sintered material of silicon nitride
Lee et al. Synthesis nanosized MgAl2O4 spinel powder with excellent sinterability