JPH01281670A - Nickel electrode for alkaline battery - Google Patents

Nickel electrode for alkaline battery

Info

Publication number
JPH01281670A
JPH01281670A JP63110728A JP11072888A JPH01281670A JP H01281670 A JPH01281670 A JP H01281670A JP 63110728 A JP63110728 A JP 63110728A JP 11072888 A JP11072888 A JP 11072888A JP H01281670 A JPH01281670 A JP H01281670A
Authority
JP
Japan
Prior art keywords
particles
nickel
nickel hydroxide
hydroxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63110728A
Other languages
Japanese (ja)
Other versions
JPH0565988B2 (en
Inventor
Masahiko Oshitani
政彦 押谷
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP63110728A priority Critical patent/JPH01281670A/en
Publication of JPH01281670A publication Critical patent/JPH01281670A/en
Publication of JPH0565988B2 publication Critical patent/JPH0565988B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To shorten the forming time of a conductive network of CoOOH by using nickel hydroxide made by electrifying particles of Co or beta-Co(OH)2, causing them to adhere to the particle surface of nickel hydroxide particles and solidifying them by mechanical impact forces. CONSTITUTION:Particles of Co or beta-Co(OH)2 are uniformly distributed on the surface of nickel hydroxide (Ni(OH)2) particles. In this case, seed particles of Co or beta-Co(OH)2 are made to adhere to, enter, and not come off the surface layer of mother particles of Ni(OH)2 by electrostatic force. The seed particles made to adhere by giving them impact forces for a short period of time to the extent not to destroy the particies by means of a hybridizer are made to enter the surface layer of the mother particles. The mixture ratio of the mother particles Ni(OH)2 to the seed particles CoO or beta-Co(OH)2 is made 4-12weight% of the seed particles relative to the mother particles. This shortens the forming time of a conductive network of CoOOH.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、アルカリ電池用ニッケル電極に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to nickel electrodes for alkaline batteries.

従来技術とその問題点 一般に用いられているアルカリ電池は、焼結式電極を用
い、活物質の充填工程を何回も繰返し煩雑、且つ長時間
を要し、コストが高くなる。
Prior Art and its Problems Commonly used alkaline batteries use sintered electrodes and repeat the active material filling process many times, which is complicated and takes a long time, resulting in high costs.

又、焼結基板の多孔度が実用上80%以下に制限される
ため、活物質の充填密度が低く、電極のエネルギー密度
が400mムh/cc程度の低いものしか生産できない
Furthermore, since the porosity of the sintered substrate is practically limited to 80% or less, the packing density of the active material is low, and only electrodes with low energy density of about 400 mmh/cc can be produced.

これらの欠点を改良する提案として、非焼結式!!極が
ある。特開昭61−138458号に記載されている如
く、硫酸ニアケル塩水溶液と水酸化す) IJウム水溶
液から作成された水酸化ニッケル粉末活物質に、活物質
問導電性のネットワークを形成するCoO粉末を添加し
、カルボキシメチルセルローズを水に溶解した粘調液を
加えペースト状態でm維基板に充填して作成される。こ
のニッケル電極は、焼結式に比べかなり安価でエネルギ
ー密度も500mム娠4c程度と高い。しかし、近年の
l−タプルエレクトロニクス機器の軽量化に伴い、市場
ニーズとして600”h/cc程度の高エネルギー密度
が要求されている。このニーズに対応するためには、基
板の多孔度に限界があることから水酸化ニッケル粉末そ
のものを高密度化する必要がある。
As a proposal to improve these shortcomings, we propose a non-sintered type! ! There are poles. As described in JP-A No. 61-138458, a CoO powder that forms an active conductive network is added to a nickel hydroxide powder active material prepared from an aqueous solution of nickel sulfate and an aqueous IJ solution. It is created by adding a viscous liquid made by dissolving carboxymethyl cellulose in water and filling it in a paste state into an m-fiber substrate. This nickel electrode is considerably cheaper than the sintered type and has a high energy density of about 500mm and 4c. However, as the weight of l-tuple electronics equipment has become lighter in recent years, a high energy density of around 600" h/cc is required as a market need. In order to meet this need, the porosity of the substrate has to be limited. For this reason, it is necessary to increase the density of the nickel hydroxide powder itself.

高密度化における従来の水酸化ニッケル粉末の問題点は
、第1図の水酸化ニッケル粉末粒子の細孔径分布曲線の
ムに示した如く、細孔半径50Å以上の遷移孔の無秩序
な発達に起因する。
The problem with conventional nickel hydroxide powder in densification is due to the disordered development of transition pores with a pore radius of 50 Å or more, as shown in the pore size distribution curve of nickel hydroxide powder particles in Figure 1. do.

本機化ニッケル粒子は、微粒子の集合した二次粒子であ
る。
The mechanized nickel particles are secondary particles that are a collection of fine particles.

一次粒子の細孔は半径10〜20人のミクロ孔であり、
それより大きな遷移孔は一次粒子のバッキングの仕方、
即ち一次粒子の二次粒子への成長の仕方に依存するもの
である。特にその成長速度を決定するのは、ニッケルイ
オンを水酸化ニッケルへ変化をさせる浴のPH(アルカ
リ濃度)である。
The pores of the primary particles are micropores with a radius of 10 to 20 people,
Larger transition pores depend on the way the primary particles are backed.
That is, it depends on how primary particles grow into secondary particles. In particular, what determines the growth rate is the pH (alkali concentration) of the bath that converts nickel ions into nickel hydroxide.

従来法は、浴のPHを粒子レベルで制御することが困難
であるが、近年開発された鉄板のバー力ライジング処理
の水酸化ニッケルを原料として用いられる製造法は、浴
のアルカリ濃度を低い値で均一に制御することができる
。この製造法は、硝酸あるいは硫酸ニッケルを弱塩基性
のアンモニア水溶液中に溶解させ、ニッケルアンミン錯
イオンとして安定化させながら、水酸化す) IJウム
水溶液を加え、適切なPHで粒子内部に空孔が発達しな
いように、徐々に水酸化ニッケルを析出成長させるもの
である。適切な条件下で製造された水酸化ニアケル粉末
は、その1例として第1図のBに示した如く、遷移孔の
全く発達していない粒子である。この粉末の細孔構造を
変えることなく、カドミウム等を固溶状態で添加し、実
用上使用できる電池活物質が得られる。
With conventional methods, it is difficult to control the pH of the bath at the particle level, but a recently developed manufacturing method that uses nickel hydroxide as a raw material for bar rising treatment of iron plates can reduce the alkaline concentration of the bath to a low value. can be uniformly controlled. In this manufacturing method, nitric acid or nickel sulfate is dissolved in a weakly basic ammonia aqueous solution, and while being stabilized as a nickel ammine complex ion, nickel sulfate is hydroxylated.) An aqueous IJ solution is added, and pores are created inside the particles at an appropriate pH. In this method, nickel hydroxide is gradually deposited and grown to prevent the development of nickel hydroxide. Niacel hydroxide powder produced under appropriate conditions has particles with no development of transition pores, as shown in FIG. 1B, for example. By adding cadmium or the like in a solid solution state without changing the pore structure of this powder, a battery active material that can be used practically can be obtained.

しかし、この粉末とCoO添加剤とからなる電極は、6
00121ムh/cc程度の容量密度を有するが、電極
をアルカリ電解液中に1日以上浸漬放置しなければ高容
量密度が得られない。この浸漬放置により、第2図に示
した反応機構に基づいて、活物質粒子間を導電性のCo
OOH粒子で接続させるのであるが、この浸漬−放置の
時間を短縮させ、電池の生産効率を向上させることが望
まれている。
However, an electrode made of this powder and a CoO additive
Although it has a capacity density of about 0.0121 mmh/cc, a high capacity density cannot be obtained unless the electrode is immersed in an alkaline electrolyte for one day or more. This immersion allows conductive Co to flow between the active material particles based on the reaction mechanism shown in Figure 2.
The connection is made using OOH particles, and it is desired to shorten this immersion-standing time and improve battery production efficiency.

発明の目的 本発明は、ペースト式ニッケル電極におけるCo0OH
の導電性ネットワーク形成時間を短縮化した生産効率の
優れたニッケル電極を提供することを目的とする。
Purpose of the Invention The present invention provides a method for using Co0OH in paste-type nickel electrodes.
The purpose of the present invention is to provide a nickel electrode with excellent production efficiency that shortens the time required to form a conductive network.

発明の構成 本発明は、多孔性の耐アルカリ性金属繊維基板を集電体
とし、本機化ニッケル粉末を活物質主成分とするペース
ト式ニッケル電極において、粒子表面にCoOあるいは
β−Co (OH)2粒子を帯電により付着し、機械的
衝撃力により固定化した水酸化ニッケルを用いたことを
特徴とするアルカリ電池用ニッケル電極である。
Structure of the Invention The present invention provides a paste-type nickel electrode in which a porous alkali-resistant metal fiber substrate is used as a current collector and the mechanized nickel powder is the main active material. This is a nickel electrode for alkaline batteries characterized by using nickel hydroxide in which two particles are attached by charging and fixed by mechanical impact force.

又、固定化したCoOあるいはβ−Co(OH)z粒子
は、水酸化エラナル粒子と固溶状態でなく、遊離状態に
ある上記のアルカリ電池用ニッケル電極である。
Further, the immobilized CoO or β-Co(OH)z particles are not in a solid solution state with the hydroxide elanal particles but in a free state in the above-mentioned nickel electrode for alkaline batteries.

又、水酸化コバルト量が、水酸化ニッケル量に対し、4
〜12讃−範囲にある上記のアルカリ電池用ニッケル電
極である。
Also, the amount of cobalt hydroxide is 4% relative to the amount of nickel hydroxide.
The above nickel electrode for alkaline batteries is in the range of ~12.

ペースト式ニッケル電極の反応機構は、焼結式ニッケル
電極とは黒なる。焼結式ニッケル電極は、集電体が微細
ニッケル粉末を焼結させたもので、その細孔径は10数
声mと小さいために導電性の低いオキシ水酸化ニッケル
活物質でも高い活物質利用率を得ることができる。
The reaction mechanism of the paste type nickel electrode is different from that of the sintered type nickel electrode. The sintered nickel electrode has a current collector made by sintering fine nickel powder, and its pore diameter is as small as 10-odd meters, so even nickel oxyhydroxide active material with low conductivity has a high active material utilization rate. can be obtained.

しかしながら、ペースト式ニッケル電極の場合、活物質
である数10pHlの水酸化ニアケル粉末をペースト液
状態で直接集電体に充填しなければならないから、10
0μ肩程度の大きな細孔径を必要とする。集電体と活物
質問の互層が長くなるに従い、活物質利用率が著しく低
下する。
However, in the case of paste-type nickel electrodes, the active material, nickel hydroxide powder of several tens of pHl, must be directly filled into the current collector in the form of a paste liquid.
A large pore diameter of approximately 0μ is required. As the alternating layers of the current collector and the active material interlayer become longer, the active material utilization rate decreases significantly.

これに対して、アルカリ電解液に可溶なCoOを添加し
、導電性の0oOOH粒子により接続させる。これは、
CoO→HO002−;=β−Co (OH)2反応に
より均一分散させるために、1日以上の放置期間を必要
とする。
On the other hand, soluble CoO is added to the alkaline electrolyte and connected by conductive 0oOOH particles. this is,
CoO→HO002−;=β-Co(OH)2 In order to achieve uniform dispersion by the reaction, a standing period of one day or more is required.

予め、水酸化ニアケル粒子の表面にCoOあるいはβ−
Co(OH)2粒子を均一分散させておくことにより放
置時間を短縮化する。しかし単にN1(OEり22粒子
面にこれらの粒子を分散させても、結着性が悪いためペ
ースト液作成時に容易に剥離し、均一分散性が失われる
。Ni (OH) 2の母粒子の表面にCoOあるいは
β−Co(OH)2粒子の子粒子を静電力で付着させ、
剥離しないように母粒子の表面層に食い込ませる。
CoO or β- is added to the surface of Nichel hydroxide particles in advance.
By uniformly dispersing the Co(OH)2 particles, the standing time is shortened. However, even if these particles are simply dispersed on the surface of the N1 (OE) 22 particles, they will easily peel off during paste liquid preparation due to poor binding properties, and uniform dispersion will be lost. CoO or β-Co(OH)2 child particles are attached to the surface by electrostatic force,
It digs into the surface layer of the base particle to prevent it from peeling off.

第5図にこのモデル化図を示した。Figure 5 shows this modeling diagram.

実施例 以下、本発明の詳細について一実施例により説明する。Example Hereinafter, the details of the present invention will be explained using one example.

硝酸ニッケルに少量の硝酸カドミウムを加えた水溶液に
硝酸アンモニウムを添加し、ニッケル及びカドミウムの
アンミン錯イオンを形成させる。この液を水酸化ナトリ
ウム水溶液中に滴下しながら激しく攪拌を行い、徐々に
錯イオンを分解させる。カドミウムの固溶体化した平均
粒子径20pm程度の水酸化=ツケル粒子を析出させる
。従来法の如<、PH14以上の高濃度アルカリ溶液に
すると無秩序な粒子径の水酸化ニッケル粒子が析出する
ため、PH11〜13程度の薄いアルカリ濃度として、
温度20〜90℃の範囲で徐女に析出させる。このPH
範囲内ではPHが高い程、析出する水酸化ニッケルは多
孔性を有した。本発明の粒子と従来法の粒子の粒子径分
布を第4図に示した。第4図より本発明の粒子は、従来
法の粒子に比して粒子径がより均一である。この結果は
、本発明の粒子が無秩序に析出するのではなく、粒子の
析出成長を制御できることが分かる。
Ammonium nitrate is added to an aqueous solution of nickel nitrate and a small amount of cadmium nitrate to form an ammine complex ion of nickel and cadmium. This solution is dropped into an aqueous sodium hydroxide solution while being vigorously stirred to gradually decompose the complex ions. Hydroxide particles having an average particle diameter of about 20 pm, which are made into a solid solution of cadmium, are precipitated. As with the conventional method, when using a highly concentrated alkaline solution with a pH of 14 or higher, nickel hydroxide particles with disordered particle sizes will precipitate.
Separately precipitate at a temperature in the range of 20 to 90°C. This PH
Within this range, the higher the pH, the more porous the precipitated nickel hydroxide was. FIG. 4 shows the particle size distribution of the particles of the present invention and the particles of the conventional method. FIG. 4 shows that the particles of the present invention have a more uniform particle size than the particles of the conventional method. This result shows that the particles of the present invention do not precipitate in a disordered manner, but that the precipitation growth of the particles can be controlled.

上記と同装置により原料を硫酸コバルト塩に替え、粒子
成長を0.3〜1.0μ解程度で止め、β−Co (O
H)2粒子を作成した。この粒子を200〜800℃の
高温窒素雰囲気において脱水し、結晶性の低いCoO粒
子を作成した。
Using the same equipment as above, the raw material was changed to cobalt sulfate salt, particle growth was stopped at about 0.3 to 1.0μ, and β-Co(O
H) Two particles were created. These particles were dehydrated in a high-temperature nitrogen atmosphere at 200 to 800°C to create CoO particles with low crystallinity.

次に、母粒子Ni (OH)2と子粒子CoOあるいは
β−Co (OH) 2を市販のオーダードミクスチャ
ーダイザ−(0,輩、ダイザ−)により混合した。
Next, the mother particles Ni (OH) 2 and the child particles CoO or β-Co (OH) 2 were mixed using a commercially available ordered mixture dizer (0, Hoshi, Dizer).

この時混合割合を母粒子に対して子粒子を4〜12wt
%の配合とした。粉体の帯電現象の、静電気力にて母粒
子の周囲に子粒子を付着させた。
At this time, the mixing ratio of child particles to mother particles is 4 to 12w.
%. The child particles were attached to the periphery of the mother particle using the electrostatic force of the powder charging phenomenon.

この段階では、単に母粒子の表面に子粒子が付着してい
るだけであるので、剥離しやすい。この付着した子粒子
を固定化するために、市販のハイプリダイザ−にて粒子
を破壊しない程度の短時間(約5分)衝撃を与えた。こ
れにより付着した子粒子を母粒子表面層に埋め込んだ。
At this stage, the child particles are simply attached to the surface of the mother particle, so they are easily peeled off. In order to immobilize the attached child particles, an impact was applied for a short time (about 5 minutes) using a commercially available hyperdizer so as not to destroy the particles. As a result, the attached child particles were embedded in the surface layer of the mother particle.

上記により得られた活物質粉末に、1%のカルボキシメ
チルセル四−ズの溶解した粘性の水溶液を加え、よく混
練し、流動性のあるペースト液を作成した。このペース
ト液を多孔度95≦のニッケル繊維焼結基板に所定量充
填し、乾繰後ニッケル電極とした。この電極を用いて、
アルカリ電解液注入後の放置条件と活物質利用率の関係
を調べた。ニッケル電極を化成することなく、カドミウ
ム電極を対極としてlリプロピレン不織布セパレータを
介して組立てた。比重1.27の水酸化カリウム電解液
を注入し、供試電池とした。電解液注入後、電池は添加
剤であるコバルト化合物を腐食電位で溶解させ、水酸化
ニッケル粉末間を接続させるために、各種条件で放置し
た。
A viscous aqueous solution containing 1% carboxymethyl cellulose was added to the active material powder obtained above and thoroughly kneaded to prepare a fluid paste solution. A predetermined amount of this paste liquid was filled into a sintered nickel fiber substrate with a porosity of 95≦, and after drying, a nickel electrode was obtained. Using this electrode,
The relationship between the storage conditions after injection of the alkaline electrolyte and the active material utilization rate was investigated. The nickel electrode was assembled using a cadmium electrode as a counter electrode with a 1-lipropylene nonwoven fabric separator interposed therebetween, without chemical conversion. A potassium hydroxide electrolyte having a specific gravity of 1.27 was injected into the battery to prepare a test battery. After injecting the electrolyte, the batteries were left under various conditions in order to dissolve the cobalt compound as an additive at a corrosive potential and to form connections between the nickel hydroxide powders.

第5図は電解液注入後の放置時間と活物質利用率変化関
係を調べた図である。こ−で1は、000粒子を従来法
で混合したもの、Iは、β−Co(OH)2粒子を水酸
化ニッケル表面層に埋め込んだもの、l Co0粒子を
埋め込んだものである。
FIG. 5 is a diagram examining the relationship between the standing time after electrolyte injection and the change in active material utilization rate. Here, 1 is a mixture of 000 particles using a conventional method, I is a mixture of β-Co(OH)2 particles embedded in a nickel hydroxide surface layer, and 1 Co0 particles embedded in a nickel hydroxide surface layer.

本発明のニッケル電極は、短時間の放置で高い利用率を
示した。CoOが最も高い利用率である。こ〜でのCo
Oとβ−co (OH)2の利用率の差は、アルカリ電
解液への溶解性に起因し、β−(30(OH)2の場合
は、溶存酸素により酸化されて、溶零性の乏しいCo0
OHが形成されるためである。
The nickel electrode of the present invention showed a high utilization rate even after being left for a short time. CoO has the highest utilization rate. Co at this
The difference in the utilization rate of O and β-co(OH)2 is due to the solubility in alkaline electrolyte, and in the case of β-(30(OH)2, it is oxidized by dissolved oxygen and becomes soluble. Poor Co0
This is because OH is formed.

第6図に添加削正と活物質の利用率及び極板容積あたり
のエネルギー密度の関係を示した。
Figure 6 shows the relationship between additive cutting, active material utilization rate, and energy density per plate volume.

この結果より、添加剤の量を増加させると活物質利用率
も向上する。しかし添加剤そのものは導電性に寄与する
のみで、実際に放電しないため、極板エネルギー密度は
10 wt%付近が最もよい。
From this result, increasing the amount of additive also improves the active material utilization rate. However, since the additive itself only contributes to conductivity and does not actually cause discharge, the best electrode plate energy density is around 10 wt%.

発明の効果 上述した如く、本発明はペースト式ニッケル電極におけ
るCo0OHの導電性ネットワーク形成時間を短縮した
生産効率の優れたニッケル電極を提供することが出来る
ので、その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention can provide a nickel electrode with excellent production efficiency in which the time required to form a conductive network of Co0OH in a paste-type nickel electrode is shortened, and therefore its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、水酸化ニッケル粉末の細孔径分布図である。 第2図は、ペースト式ニッケル電極におけるコバルト化
合物添加剤の導電性ネットワーク形成機構のモデル化図
を示したものである。 第3図は、本発明の粒子の製造をモデル化したものであ
る。 第4図は、本機化ニッケル粉末の粒子径分布を示したも
のである。 第5図は、電解液注入後の放置時間と活物質利用率の関
係を示した図である。 第6図は、000の添加量と活物質利用率及び極板容積
あたりのエネルギー密度の関係を示した図である。
FIG. 1 is a pore size distribution diagram of nickel hydroxide powder. FIG. 2 shows a modeling diagram of the conductive network formation mechanism of a cobalt compound additive in a paste-type nickel electrode. FIG. 3 models the production of particles of the invention. FIG. 4 shows the particle size distribution of the mechanized nickel powder. FIG. 5 is a diagram showing the relationship between the standing time after electrolyte injection and the active material utilization rate. FIG. 6 is a diagram showing the relationship between the amount of 000 added, the active material utilization rate, and the energy density per electrode plate volume.

Claims (4)

【特許請求の範囲】[Claims] (1)多孔性の耐アルカリ性金属繊維基板を集電体とし
、水酸化ニッケル粉末を活物質主成分とするペースト式
ニッケル電極において、粒子表面にCoOあるいはβ−
Co(OH)_2粒子を帯電により付着し、機械的衝撃
力により固定化した水酸化ニッケルを用いたことを特徴
とするアルカリ電池用ニッケル電極。
(1) In a paste-type nickel electrode in which a porous alkali-resistant metal fiber substrate is used as a current collector and nickel hydroxide powder is the main active material, CoO or β-
A nickel electrode for alkaline batteries characterized by using nickel hydroxide to which Co(OH)_2 particles are attached by charging and fixed by mechanical impact force.
(2)固定化したCoOあるいはβ−Co(OH)_2
粒子は、水酸化ニッケル粒子と固溶状態ではなく、遊離
状態にある特許請求の範囲第1項記載のアルカリ電池用
ニッケル電極。
(2) Immobilized CoO or β-Co(OH)_2
The nickel electrode for an alkaline battery according to claim 1, wherein the particles are not in a solid solution state with the nickel hydroxide particles but in a free state.
(3)水酸化コバルト量が水酸化ニッケル量に対し、4
〜12wt%の範囲にある特許請求の範囲第1項記載の
アルカリ電池用ニッケル電極。
(3) The amount of cobalt hydroxide is 4% compared to the amount of nickel hydroxide.
The nickel electrode for alkaline batteries according to claim 1, which has a content in the range of 12 wt%.
(4)水酸化ニッケルが粒子内部の半径30Å以上の遷
移孔の発達がなく、細孔容積が0.05ml/g以下で
ある特許請求の範囲第1項記載のアルカリ電池用ニッケ
ル電極。
(4) The nickel electrode for an alkaline battery according to claim 1, wherein the nickel hydroxide does not develop transition pores with a radius of 30 Å or more inside the particles and has a pore volume of 0.05 ml/g or less.
JP63110728A 1988-05-06 1988-05-06 Nickel electrode for alkaline battery Granted JPH01281670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110728A JPH01281670A (en) 1988-05-06 1988-05-06 Nickel electrode for alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110728A JPH01281670A (en) 1988-05-06 1988-05-06 Nickel electrode for alkaline battery

Publications (2)

Publication Number Publication Date
JPH01281670A true JPH01281670A (en) 1989-11-13
JPH0565988B2 JPH0565988B2 (en) 1993-09-20

Family

ID=14542995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110728A Granted JPH01281670A (en) 1988-05-06 1988-05-06 Nickel electrode for alkaline battery

Country Status (1)

Country Link
JP (1) JPH01281670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
US6225004B1 (en) 1998-02-23 2001-05-01 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5984982A (en) * 1997-09-05 1999-11-16 Duracell Inc. Electrochemical synthesis of cobalt oxyhydroxide
US6225004B1 (en) 1998-02-23 2001-05-01 Matsushita Electric Industrial Co., Ltd. Nickel positive electrode for alkaline storage batteries and method for producing the same

Also Published As

Publication number Publication date
JPH0565988B2 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
JPH01260762A (en) Nickel electrode for alkaline battery and battery using same
JPH0777129B2 (en) Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
TWI250129B (en) Nickel hydroxide and process for its preparation
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP3617203B2 (en) Manufacturing method of nickel metal hydride secondary battery
JP3371473B2 (en) Paste positive electrode plate for alkaline storage batteries
JP3976482B2 (en) Method for producing positive electrode active material for alkaline storage battery, nickel electrode using this positive electrode active material, and alkaline storage battery using this nickel electrode
JPH01281670A (en) Nickel electrode for alkaline battery
JPH1125967A (en) Nickel electrode active material for alkaline storage battery and its manufacture
JPH03252318A (en) Production of nickel hydroxide
JP2000082463A (en) Nickel positive electrode active material for alkaline battery and its manufacture
JP3367152B2 (en) Method for producing nickel hydroxide powder coated with cobalt hydroxide
JPH0584026B2 (en)
JP2679274B2 (en) Nickel-hydrogen battery
JPH02109261A (en) Active material for nickel electrode, nickel electrode, and alkaline battery using this electrode
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH0613075A (en) Nickel electrode for alkaline storage battery
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
CN1050231C (en) Surface modified anodic active material for rechargeable alkaline battery
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JPH0917429A (en) Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery
JP3239743B2 (en) Method for producing positive electrode for alkaline storage battery
JP3384109B2 (en) Nickel plate
JP2000058062A (en) Non-sintered nickel positive electrode for alkaline storage battery
JP3114160B2 (en) Nickel electrode for alkaline storage battery and alkaline storage battery using the same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees