JPH0128092B2 - - Google Patents

Info

Publication number
JPH0128092B2
JPH0128092B2 JP56118159A JP11815981A JPH0128092B2 JP H0128092 B2 JPH0128092 B2 JP H0128092B2 JP 56118159 A JP56118159 A JP 56118159A JP 11815981 A JP11815981 A JP 11815981A JP H0128092 B2 JPH0128092 B2 JP H0128092B2
Authority
JP
Japan
Prior art keywords
powder
hard
metal
alloy
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56118159A
Other languages
Japanese (ja)
Other versions
JPS5819410A (en
Inventor
Mikio Fukuhara
Ryo Yamaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP11815981A priority Critical patent/JPS5819410A/en
Publication of JPS5819410A publication Critical patent/JPS5819410A/en
Publication of JPH0128092B2 publication Critical patent/JPH0128092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1084Alloys containing non-metals by mechanical alloying (blending, milling)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、切削工具、耐摩耗工具及び耐衝撃工
具に使用される超硬合金及びサーメツトから成る
硬質焼結合金の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a hard sintered alloy made of cemented carbide and cermet used for cutting tools, wear-resistant tools, and impact-resistant tools.

従来超硬合金やサーメツトの製造方法は、硬質
化合物粉末と結合金属粉末とから成る被粉砕物と
ステンレス又は超硬合金から成る球状、円柱状、
三角柱又は四角柱等の角柱状の粉砕媒体とを容器
に入れて被粉砕物を混合粉砕している。このよう
にして得る混合粉砕粉末は、長時間粉砕すること
によつて或る程度迄は細まかく粉砕されるが粒子
の大きさが約0.5μm程度になると粉砕時間を延長
しても殆んど粉砕されずに容器や粉砕媒体から混
入する不純物の増加が進行する。このように約
0.5μm程度が限度の混合粉砕粉末は、圧粉体強度
が弱く、プレス成形しても完全な成形体が得られ
ないためにパラフイン、樟脳又はステアリン酸等
の成形剤を添加して目的の成形体を得ている。成
形剤は、目的の成形体を作る迄は必要であるが焼
結工程では不必要で害になるために前工程の予備
焼結で成形剤を成形体から除去している。成形剤
を除去する予備焼結は、一般にガス雰囲気か真空
中で行なうがガス雰囲気中で行なうと炉体内のガ
スの流れ方向、炉体内のガスの流入口近辺とガス
の流出口近辺及び炉体内での成形体の設置位置等
によつて1個の成形体内及び各々の成形体で炭素
量や酸素量が異なると云う問題が生じ、一方真空
中で行なうと成形体から分解して除去された成形
剤が炉体内に滞留したり、真空ポンプの能力を低
下させるために真空度が低下して成形体の表面を
酸化したり、分解除去された成形剤が炭素となつ
て成形体の表面に付着すると云う問題が生じる。
Conventional methods for manufacturing cemented carbide and cermets involve grinding a material to be crushed consisting of a hard compound powder and a bonded metal powder, and a spherical, cylindrical, or cylindrical material made of stainless steel or cemented carbide.
A prismatic crushing medium such as a triangular prism or a square prism is placed in a container and the material to be crushed is mixed and crushed. The mixed pulverized powder obtained in this way can be finely pulverized to a certain extent by being pulverized for a long time, but once the particle size reaches about 0.5 μm, even if the pulverization time is extended, it will hardly be pulverized. The amount of impurities that are mixed in from containers and grinding media without being crushed continues to increase. Like this about
Mixed pulverized powder with a particle diameter of about 0.5 μm is weak and a perfect compact cannot be obtained even when press-molded, so a molding agent such as paraffin, camphor, or stearic acid is added to form the desired shape. I'm getting a body. The molding agent is necessary until the desired molded body is produced, but it is unnecessary and harmful in the sintering process, so the molding agent is removed from the molded body in the preliminary sintering step. Pre-sintering to remove the forming agent is generally carried out in a gas atmosphere or vacuum, but if it is carried out in a gas atmosphere, it will affect the flow direction of the gas inside the furnace, the vicinity of the gas inlet and the gas outlet in the furnace, and the inside of the furnace. A problem arises in that the amount of carbon and oxygen in a single molded body and in each molded body differs depending on the installation position of the molded body, etc.; The molding agent may remain in the furnace, the vacuum level may decrease due to the reduced vacuum pump capacity, and the surface of the molded object may be oxidized, or the molding agent that has been decomposed and removed becomes carbon and forms on the surface of the molded object. The problem of adhesion occurs.

本発明の硬質焼結合金の製造方法は、上述のよ
うな問題点を解決すると共に粉末冶金の製造工程
の短縮化、省略化を可能にしたものである。
The method for producing a hard sintered alloy of the present invention solves the above-mentioned problems, and also makes it possible to shorten and omit the powder metallurgy production process.

本発明の硬質焼結合金の製造方法は、粉末冶金
における圧粉体強度が硬質化合物粉末の粒子の大
きさよりも結合金属粉末の粒子の大きさ及び硬質
化合物粉末と結合金属粉末との混合状態の影響に
よることを確認した結果完成したもので、その製
造方法は、硬質化合物粉末と結合金属粉末とから
成る混合粉末を得るのに少なくとも結合金属粉末
がこの結合金属および/または結合金属と硬質化
合物との固溶体から成る粉砕媒体から供給される
ことを特徴とする硬質焼結合金の製造方法であ
る。
In the method for producing a hard sintered alloy of the present invention, the green compact strength in powder metallurgy is determined by the particle size of the bonding metal powder and the mixing state of the hard compound powder and the bonding metal powder, rather than the particle size of the hard compound powder. This method was completed after confirming that this was due to the influence of the bonding metal powder, and the manufacturing method is such that at least the bonding metal powder is mixed with the bonding metal and/or the bonding metal and the hard compound in order to obtain a mixed powder consisting of the hard compound powder and the bonding metal powder. This is a method for producing a hard sintered alloy, characterized in that the grinding medium is supplied from a grinding medium made of a solid solution of.

即ち本発明の硬質焼結合金の製造方法は、混合
粉砕するための容器に硬質化合物粉末と結合金属
粉末および/または結合金属と硬質化合物との固
溶体から成る球状、円柱状、三角柱又は四角柱状
の焼結体から成る粉砕媒体と酸化防止及び混合粉
砕強化のための溶媒とを混入して混合撹はんする
と粉砕媒体と粉砕媒体、粉砕媒体と硬質化合物粉
末及び粉砕媒体と容器の内壁等で起る摩擦摩耗や
衝撃摩耗等により粉砕媒体中の結合金属が結合金
属粉末になる。このような製造方法によつて得た
硬質化合物粉末と粉砕媒体中の結合金属から生じ
た結合金属粉末との混合粉砕粉末は、結合金属粉
末が非常に微細で分散性が良く硬質化合物粉末中
によく混ざりしかも硬質化合物粉末を結合金属粉
末が被覆するような状態になつて混在する。
That is, the method for producing a hard sintered alloy of the present invention involves preparing a spherical, cylindrical, triangular prism, or quadrangular prism-shaped material made of a hard compound powder, a bonded metal powder, and/or a solid solution of a bonded metal and a hard compound in a container for mixing and pulverizing. When a grinding medium made of a sintered body is mixed with a solvent for preventing oxidation and for strengthening the mixing and grinding, and mixed and stirred, problems occur between the grinding medium and the grinding medium, between the grinding medium and the hard compound powder, between the grinding medium and the inner wall of the container, etc. Due to frictional wear, impact wear, etc., the bonded metal in the grinding media becomes bonded metal powder. In the mixed pulverized powder of the hard compound powder obtained by such a production method and the bonded metal powder generated from the bonded metal in the grinding medium, the bonded metal powder is very fine and has good dispersibility. They mix well and are mixed in such a state that the hard compound powder is coated with the binding metal powder.

本発明の硬質焼結合金の製造方法は、微細な結
合金属粉末及び硬質化合物粉末と結合金属粉末と
の良好な混合状態のためにプレス成形性と圧粉体
強度が優れ、成形剤を添加しなくても完全な成形
体が得られる。又、得られたプレス成形体は、圧
粉体強度が高いために昇温によつて圧粉体強度を
高くしなくても必要ならば充分に成形加工が可能
である。このように本発明の硬質焼結合金の製造
方法は、成形剤の添加が必要でなくしかも成形加
工のための成形体の硬さを高める昇温も必要がな
いために予備焼結工程が省略できた製造方法であ
る。
The method for producing a hard sintered alloy of the present invention has excellent press formability and green compact strength due to a good mixing state of fine bond metal powder, hard compound powder, and bond metal powder, and does not require the addition of a forming agent. A complete molded body can be obtained even without it. In addition, the obtained press-formed body has a high green compact strength, so that it can be sufficiently molded if necessary without increasing the green compact strength by increasing the temperature. As described above, the method for producing a hard sintered alloy of the present invention does not require the addition of a forming agent, nor does it require raising the temperature to increase the hardness of the compact for forming processing, so the preliminary sintering step is omitted. This is the manufacturing method.

本発明の硬質焼結合金の製造方法に於て、硬質
化合物と結合金属との固溶体から成る粉砕媒体が
特に硬質化合物と結合金属との共晶組成からなる
粉砕媒体を使用すると粉砕媒体の作成が容易で且
つ粉砕媒体としての硬さと結合金属粉末を供給す
るのに適している。又、固溶体及び共晶組成から
成る粉砕媒体が硬質化合物の粒子成長を抑制する
金属および/または金属化合物を含有していると
混合粉砕工程で結合金属と共に硬質化合物の粒子
成長抑制のための金属および/または金属化合物
が混合粉砕粉末中に混入し、これが焼結工程で硬
質化合物粒子の異常成長の抑制に役立つ。例えば
硬質化合物がWCならば、Zr、Ti、Hf、V、
Ta、Nb、Cr等の金属並びにこれらの炭化物、窒
化物、AlN、Al2O3、NiO、MgO、TiO2及び
TiNi、Ti2Ni、TiNi3、NiAl3、Ni2Al3、Ni3Al、
Ni3(TiAl)等の金属間化合物の1種又は2種以
上を粉砕媒体に含有しておくと、これらが焼結中
に於いてWCの粒子成長抑制に役立つ。
In the method for producing a hard sintered alloy of the present invention, the grinding medium made of a solid solution of a hard compound and a binder metal is particularly advantageous when a grinding medium made of a eutectic composition of a hard compound and a binder metal is used. It is easy and suitable for supplying hardness and bonding metal powder as a grinding medium. In addition, if the grinding medium having a solid solution and eutectic composition contains a metal and/or a metal compound that suppresses the particle growth of the hard compound, the metal and/or metal compound that suppresses the particle growth of the hard compound together with the binding metal in the mixing and grinding process. /Or a metal compound is mixed into the mixed pulverized powder, which helps to suppress abnormal growth of hard compound particles during the sintering process. For example, if the hard compound is WC, Zr, Ti, Hf, V,
Metals such as Ta, Nb, Cr, and their carbides, nitrides, AlN, Al 2 O 3 , NiO, MgO, TiO 2 and
TiNi, Ti 2 Ni, TiNi 3 , NiAl 3 , Ni 2 Al 3 , Ni 3 Al,
If the grinding media contains one or more intermetallic compounds such as Ni 3 (TiAl), these will help to suppress the particle growth of WC during sintering.

次に実施例に従つて本発明の硬質焼結合金の製
造方法について詳細に説明する。
Next, the method for producing a hard sintered alloy of the present invention will be described in detail according to Examples.

実施例 1 Co金属から成る7ψ×6mmの円柱状粉砕媒体600
gと平均粒径3.0μmのWC粉末の被粉砕物200gと
を4ψインチのシリンダー容器に装入し振動ボー
ルミルによつて20時間ミリングして混合粉砕粉末
を得た。この混合粉砕粉末を成形剤添加なしで
SNP432の形状にプレス成形し、これを4×10-2
mmHg真空中1400℃30分間で焼結した組織写真を
第1図に示した。第1図から判るようにCo結合
相は、均一にWC粒子を取り囲んでおり異常粒子
もみられない合金であつた。Co量は、ミリング
時間の関数として表わされ第1図の組成はWC−
10重量%Coであつた。
Example 1 7ψ×6mm cylindrical grinding media 600 made of Co metal
g and 200 g of a WC powder to be crushed having an average particle size of 3.0 μm were placed in a 4ψ inch cylinder container and milled for 20 hours using a vibrating ball mill to obtain a mixed pulverized powder. This mixed pulverized powder is used without adding a molding agent.
Press-molded into the shape of SNP432 and 4×10 -2
Figure 1 shows a photograph of the structure sintered at 1400°C for 30 minutes in a mmHg vacuum. As can be seen from Figure 1, the Co binder phase uniformly surrounded the WC particles, and no abnormal particles were observed in the alloy. The amount of Co is expressed as a function of milling time, and the composition in Figure 1 is WC-
It was 10% by weight Co.

比較として、平均粒径3.0μmのWC粉末と平均
粒径1.5μmのCo粉末の被粉砕物を超硬合金製ボ
ールの粉砕媒体でもつて混合粉砕粉末にしたこと
及びパラフインの成形剤を添加した以外は、上述
の本発明の方法とほぼ同様にしてWC−10重量%
Co組成の合金を得た。
For comparison, WC powder with an average particle size of 3.0 μm and Co powder with an average particle size of 1.5 μm were mixed into a pulverized powder using a grinding medium of cemented carbide balls, and a paraffin molding agent was added. WC-10% by weight was prepared in substantially the same manner as in the method of the present invention described above.
An alloy with Co composition was obtained.

この比較の方法で得た合金と上述の本発明の方
法で得た合金の硬さ及び抗折力を測定した結果、
比較の方法で得た合金は、硬さ89.0HRA、抗折
力180Kg/mm2であつたのに対し、本発明の方法で
得た合金は、硬さ89.0HRA、抗折力210Kg/mm2
あつた。
As a result of measuring the hardness and transverse rupture strength of the alloy obtained by this comparative method and the alloy obtained by the above-mentioned method of the present invention,
The alloy obtained by the comparative method had a hardness of 89.0HRA and a transverse rupture strength of 180Kg/ mm2 , whereas the alloy obtained by the method of the present invention had a hardness of 89.0HRA and a transverse rupture strength of 180Kg/mm2. It was 210Kg/ mm2 .

実施例 2 Co−35重量%WCの共晶組成から成る6ψ×6
mmの円柱状粉砕媒体400gと平均粒径1.5μmのWC
粉末の被粉砕物200gとをヘキサン溶媒にて16時
間ミリングした混合粉砕粉末を成形剤なしで
SNP432の形状にプレス成形し、これを4×10-2
mmHg真空中1420℃30分で焼結した。得られた焼
結体は、WC−6.5重量%Co組成で、Coの分布が
均一な健全組織のものであつた。
Example 2 6ψ×6 consisting of Co-35 wt% WC eutectic composition
400g of mm cylindrical grinding media and WC with an average particle size of 1.5μm
A mixed pulverized powder made by milling 200g of the powder to be pulverized in hexane solvent for 16 hours without a molding agent.
Press-molded into the shape of SNP432 and 4×10 -2
Sintered at 1420℃ for 30 minutes in mmHg vacuum. The obtained sintered body had a WC-6.5% by weight Co composition and had a sound structure with uniform Co distribution.

比較として、平均粒径1.5μmのWC粉末及びCo
粉末の被粉砕物を超硬合金製ボールの粉砕媒体で
もつて混合粉末にしたこと及びパラフインの成形
剤を添加した以外は、上述の本発明の方法とほぼ
同様にしてWC−6.5重量%Co組成の合金を得た。
For comparison, WC powder and Co powder with an average particle size of 1.5 μm
A WC-6.5% by weight Co composition was prepared in almost the same manner as in the method of the present invention described above, except that the powder to be crushed was made into a mixed powder using a crushing medium of cemented carbide balls and a paraffin molding agent was added. An alloy of

この比較の方法で得た合金と上述の本発明の方
法で得た合金の硬さ及び抗折力を測定した結果、
比較の方法で得た合金は、硬さ91.0HRA、抗折
力160Kg/mm2であつたのに対して、本発明の方法
で得た合金は、硬さ91.2HRA、抗折力185Kg/mm2
であつた。
As a result of measuring the hardness and transverse rupture strength of the alloy obtained by this comparative method and the alloy obtained by the above-mentioned method of the present invention,
The alloy obtained by the comparative method had a hardness of 91.0HRA and a transverse rupture strength of 160Kg/ mm2 , whereas the alloy obtained by the method of the present invention had a hardness of 91.2HRA and a transverse rupture strength of 160Kg/mm2. Force 185Kg/mm 2
It was hot.

実施例 3 Ni−Co合金から成る1/3ψインチの球状粉砕媒
体800gとWC−TiC−TiN−(W・Ti・Ta・
Mo)C被粉砕物200gを実施例2と同条件にて
25時間ミリングした混合粉砕粉末を成形剤なしで
JIS抗折力試片にプレス成形し、これを4×10-2
mmHg真空中1400℃30分間焼結した焼結体の特性
は硬度HRA=92.0抗折力120Kg/mm2、組成はWC
−15% TiC−5% TiN−10% TaC−5%
Mo2C−3.5% Co−3.4% Ni(重量%)でCo−
Niの結合金属の分布が均一な健全組織のもので
あつた。
Example 3 800g of 1/3ψ inch spherical grinding media made of Ni-Co alloy and WC-TiC-TiN-(W・Ti・Ta・
200g of Mo) C material to be crushed under the same conditions as Example 2.
Mixed pulverized powder milled for 25 hours without molding agent
Press-formed into a JIS transverse rupture strength specimen, and
The properties of the sintered body sintered in mmHg vacuum at 1400℃ for 30 minutes are hardness HRA = 92.0 transverse rupture strength 120Kg/mm 2 and composition WC
-15% TiC-5% TiN-10% TaC-5%
Mo 2 C−3.5% Co−3.4% Ni (wt%) Co−
It had a healthy structure with a uniform distribution of Ni binding metal.

比較として、平均粒径1.5μm〜2.5μmのWC、
TiC、TiN、TaC、Mo2Co、Niの粉末からなる
被粉砕物を超硬合金製ボールの粉砕媒体でもつて
WC−15% TiC−5% TiN−10% TaC−5
% Mo2C−3.5% Co−3.4% Ni(重量%)組
成の混合粉砕粉末を得た。この混合粉砕粉末を成
形剤添加なしで上述の本発明の方法における成形
と同様にして成形体とした所、エツジの欠けが激
しく目的とする成形体が得られなかつた。
For comparison, WC with an average particle size of 1.5 μm to 2.5 μm,
The material to be crushed consisting of powders of TiC, TiN, TaC, Mo 2 Co, and Ni is crushed with the crushing media of cemented carbide balls.
WC-15% TiC-5% TiN-10% TaC-5
A mixed pulverized powder having a composition of % Mo 2 C-3.5% Co-3.4% Ni (wt%) was obtained. When this mixed pulverized powder was molded into a molded body in the same manner as in the method of the present invention described above without the addition of a molding agent, the desired molded body was not obtained due to severe chipping of edges.

実施例 4 Co−2重量% Cr−3重量% Cr3C2から成る
1/3ψインチの球状粉砕媒体600gと平均粒径3.0μ
mのWC粉末の被粉砕物200gとを実施例2と同
一条件にてミリングし、焼結体を得た。得られた
焼結体の組成はWC−0.5% Cr3C2−9.5% Co
(重量%)で結合金属の分布が均一な健全組織で
しかもWC粒子の大きさも均一で異常成長もない
合金であつた。
Example 4 Co-2% by weight Cr-3% by weight 600 g of 1/3 ψ inch spherical grinding media consisting of Cr 3 C 2 and an average particle size of 3.0 μ
200 g of WC powder to be crushed was milled under the same conditions as in Example 2 to obtain a sintered body. The composition of the obtained sintered body is WC-0.5% Cr 3 C 2 -9.5% Co
(% by weight), the alloy had a healthy structure with a uniform distribution of bonded metals, and the WC grains were also uniform in size with no abnormal growth.

比較として、平均粒径3.0μmのWC粉末、平均
粒径1.5μmのCo粉末、−325メツシユのCr3C2粉末
から被粉砕物を超硬合金製ボールの粉砕媒体でも
つて混合粉砕粉末にしたこと及びパラフインの成
形剤を添加した以外は、上述の本発明の方法とほ
ぼ同様にしてWC−0.5% Cr3C2−9.5% Co(重
量%)組成の合金を得た。
For comparison, mixed pulverized powders were prepared from WC powder with an average particle size of 3.0 μm, Co powder with an average particle size of 1.5 μm, and Cr 3 C 2 powder with -325 mesh using a grinding medium of cemented carbide balls. An alloy having a composition of WC-0.5% Cr 3 C 2 -9.5% Co (wt%) was obtained in substantially the same manner as the method of the present invention described above, except that a paraffin molding agent was added.

この比較の方法で得た合金と上述の本発明の方
法で得た合金の硬さ及び抗折力を測定した結果、
比較の方法で得た合金は、硬さ90.0HRA、抗折
力165Kg/mm2であつたのに対して、本発明の方法
で得た合金は、硬さ90.5HRA、抗折力195Kg/mm2
であつた。
As a result of measuring the hardness and transverse rupture strength of the alloy obtained by this comparative method and the alloy obtained by the above-mentioned method of the present invention,
The alloy obtained by the comparative method had a hardness of 90.0HRA and a transverse rupture strength of 165Kg/ mm2 , whereas the alloy obtained by the method of the present invention had a hardness of 90.5HRA and a transverse rupture strength of 165Kg/mm2. Force 195Kg/mm 2
It was hot.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の硬質焼結合金の製造方法に
よつて得たWC−10重量%Co合金の顕微鏡組織写
真である。
FIG. 1 is a photograph of the microscopic structure of a WC-10% by weight Co alloy obtained by the method for producing a hard sintered alloy of the present invention.

Claims (1)

【特許請求の範囲】 1 混合粉砕工程を経て、硬質化合物と結合金属
とから成る焼結合金を得るための製造方法におい
て、結合金属が該結合金属および/または該結合
金属と硬質化合物との固溶体から成る粉砕媒体か
ら混合粉砕工程中に供給されることを特徴とする
硬質焼結合金の製造方法。 2 上記粉砕媒体が結合金属と硬質化合物との共
晶組成から成ることを特徴とする特許請求の範囲
第1項記載の硬質焼結合金の製造方法。 3 上記粉砕媒体が硬質化合物の粒子成長を抑制
する金属および/または金属化合物を含有してい
ることを特徴とする特許請求の範囲第1項又は第
2項記載の硬質焼結合金の製造方法。
[Claims] 1. A manufacturing method for obtaining a sintered alloy consisting of a hard compound and a bonding metal through a mixing and pulverizing step, wherein the bonding metal is a solid solution of the bonding metal and/or the bonding metal and a hard compound. A method for producing a hard sintered alloy, characterized in that a grinding medium consisting of: is supplied during a mixing and grinding process. 2. The method for producing a hard sintered alloy according to claim 1, wherein the grinding medium has a eutectic composition of a bonding metal and a hard compound. 3. The method for producing a hard sintered alloy according to claim 1 or 2, wherein the grinding medium contains a metal and/or a metal compound that suppresses particle growth of the hard compound.
JP11815981A 1981-07-28 1981-07-28 Production of hard sintered alloy Granted JPS5819410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11815981A JPS5819410A (en) 1981-07-28 1981-07-28 Production of hard sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11815981A JPS5819410A (en) 1981-07-28 1981-07-28 Production of hard sintered alloy

Publications (2)

Publication Number Publication Date
JPS5819410A JPS5819410A (en) 1983-02-04
JPH0128092B2 true JPH0128092B2 (en) 1989-06-01

Family

ID=14729556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11815981A Granted JPS5819410A (en) 1981-07-28 1981-07-28 Production of hard sintered alloy

Country Status (1)

Country Link
JP (1) JPS5819410A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227104A (en) * 1985-03-30 1986-10-09 Mitsubishi Metal Corp Preparation of powder mixture for producing sintered hard alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521092A (en) * 1978-07-29 1980-02-14 Agfa Gevaert Ag Photograph printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521092A (en) * 1978-07-29 1980-02-14 Agfa Gevaert Ag Photograph printer

Also Published As

Publication number Publication date
JPS5819410A (en) 1983-02-04

Similar Documents

Publication Publication Date Title
JP4662599B2 (en) Manufacturing method of submicron cemented carbide with increased toughness
US6228139B1 (en) Fine-grained WC-Co cemented carbide
US5778301A (en) Cemented carbide
US5482670A (en) Cemented carbide
JP2895107B2 (en) Sintered hard metal composite and method for producing the same
JP4773416B2 (en) Method for producing sintered body, powder mixture used in the method, and sintered body produced by the method
JP2003518195A (en) Powder mixtures and composite powders, their preparation and their use in composites
JPH05209247A (en) Cermet alloy and its production
CN1312078C (en) Submicron grain Ti(C,N)-base cermet and its prepn process
KR20090053934A (en) Metal powder
JPS6121187B2 (en)
JP2006257467A (en) Hard metal material for tool and manufacturing method therefor
JPH0860201A (en) Carburized carbide powder mixture based on tungsten and carburized carbide product produced therefrom
CN110923535A (en) Hard alloy and preparation method and application thereof
EP0646186A1 (en) Sintered extremely fine-grained titanium based carbonitride alloy with improved toughness and/or wear resistance
CN116949334A (en) Binding phase-free hard alloy and preparation method and application thereof
JPS63286550A (en) Nitrogen-containing titanium carbide-base alloy having excellent resistance to thermal deformation
JPH0128092B2 (en)
JP2006111947A (en) Ultra-fine particle of cermet
JPS6059195B2 (en) Manufacturing method of hard sintered material with excellent wear resistance and toughness
JP2514088B2 (en) High hardness and high toughness sintered alloy
JP2796011B2 (en) Whisker reinforced cemented carbide
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
KR950007174B1 (en) Hard alloy process of watch case
CN115584409B (en) Preparation method of graphene reinforced and toughened titanium-based metal ceramic