JPH01280611A - Device and method for detecting deterioration of lubricating oil - Google Patents

Device and method for detecting deterioration of lubricating oil

Info

Publication number
JPH01280611A
JPH01280611A JP10987388A JP10987388A JPH01280611A JP H01280611 A JPH01280611 A JP H01280611A JP 10987388 A JP10987388 A JP 10987388A JP 10987388 A JP10987388 A JP 10987388A JP H01280611 A JPH01280611 A JP H01280611A
Authority
JP
Japan
Prior art keywords
lubricating oil
deterioration
pressure
degree
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10987388A
Other languages
Japanese (ja)
Other versions
JP2693481B2 (en
Inventor
Kunihiko Hosonuma
細沼 邦彦
Yasushi Naito
康司 内藤
Tsutomu Nishino
西野 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK
Original Assignee
KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK filed Critical KIYOUSEKI SEIHIN GIJUTSU KENKYUSHO KK
Priority to JP63109873A priority Critical patent/JP2693481B2/en
Publication of JPH01280611A publication Critical patent/JPH01280611A/en
Application granted granted Critical
Publication of JP2693481B2 publication Critical patent/JP2693481B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To make it possible to high-accurately detect deterioration of lubricating oil by generating an output signal corresponding to the viscosity of lubricating oil due to pressure difference between the upperstream and lowerstream sides of a flow resistance part in a lubricating oil supply system, and judging the degree of deterioration of the lubricating oil based on the output signal. CONSTITUTION:An oil cooler 1 provided in a forced lubricating oil supply system has fine cooler pipes 3 in which lubricating oil is supplied from a pump through an input conduit 2. The lubricating oil is cooled with cooling water surrounding the cooler pipes 3 and hereafter discharged into an oil gallery through an output conduit 4. In this case, a bypass valve 5 is provided on the way of a route making a detour of the cooler pipes 3. And corresponding to the pressure difference between upper- and lowerstream sides of the cooler pipes 3 forming a flow resistance part, a load actuating on a valve seat 12 of a valve body 10 which is displaced against a spring 11 is detected with a load sensor 13. Based on this output, viscosity of the lubricating oil is calculated and simultaneously from the calculated value degree of deterioration of the lubricating oil is judged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は潤滑油の劣化の進行状態を高精度に検知できる
潤滑油の劣化検知装置及び検知方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a lubricating oil deterioration detection device and a detection method that can detect the progress of deterioration of lubricating oil with high accuracy.

(従来の技術) ディーゼルやガソリンエンジンの高性能化、高出力化に
伴ないエンジン油がより過酷な条件で使用されるため、
エンジン油の交換時期を適確に判断する必要がある。こ
のためには、エンジン油の劣化の進行状態を正確に検出
し、エンジントラブルの原因となるスラッジの大量生成
や粘度急上昇(オイルシックニング)等の発生を未然に
防止する必要がある。
(Conventional technology) As engine oils are used under harsher conditions as diesel and gasoline engines improve in performance and output,
It is necessary to accurately judge when to change engine oil. To this end, it is necessary to accurately detect the progress of engine oil deterioration and to prevent the occurrence of large amounts of sludge and rapid viscosity (oil thickening) that can cause engine trouble.

エンジン油の劣化度を指標する項目として、粘度、全酸
価、全塩基価等が採用されている。これら測定項目のう
ち粘度は特に重要な指標である。
Viscosity, total acid number, total base number, etc. are used as indicators of the degree of deterioration of engine oil. Among these measurement items, viscosity is a particularly important index.

従来、エンジン油をはじめとする種々の潤滑油の粘度測
定方法として、オイルパンに収容されている潤滑油をサ
ンプリングし、粘度計で測定する方法が一般的であった
。しかしこの方法では特定の粘度計や温度制御手段並び
にサンプリング操作が必要であり、またサンプリングに
よる油の損失がおこることなど、簡易に用いられる方法
ではなく、劣化の進行状態を監視するモニタシステムに
適用することはできない。
BACKGROUND ART Conventionally, a common method for measuring the viscosity of various lubricating oils such as engine oil has been to sample the lubricating oil contained in an oil pan and measure it with a viscometer. However, this method requires a specific viscometer, temperature control means, and sampling operation, and oil loss occurs due to sampling, so it is not a method that can be easily used, and is suitable for monitoring systems that monitor the progress of deterioration. I can't.

別の粘度測定装置として特開昭5943193号公報に
記載されている潤滑油の劣化検出装置が既知である。こ
の既知の装置では、オイルパンの上流側の管路内に羽根
車を配置し、管壁を貫通する孔を介して羽根車の軸を外
部まで延在させ、この軸にモータを連結している。そし
て、潤滑油の粘度に応じてモータ回転数が変化すること
を利用し、モータの回転数を積算し、この積算値から劣
化度を表示するように構成されている。
Another known viscosity measuring device is a lubricating oil deterioration detecting device described in Japanese Unexamined Patent Publication No. 5943193. In this known device, an impeller is arranged in a pipe upstream of an oil pan, a shaft of the impeller extends outside through a hole passing through the pipe wall, and a motor is connected to this shaft. There is. Utilizing the fact that the motor rotation speed changes depending on the viscosity of the lubricating oil, the motor rotation speed is integrated, and the degree of deterioration is displayed from this integrated value.

(発明が解決しようとする課題) 上述した既知の劣化検出装置では、羽根車を管路内に配
置し、その軸を管壁に設けた孔を経て外部まで延在させ
、軸に連結したモータの回転数の変化から粘度を表示す
る構成としているから、構造が極めて複雑であり、実用
化するのは極めて困難である。さらに、モータの回転軸
に減速伝達機構を設け、この減速機構を介して積算計を
連結する構成としているから、積算出力が機械的信号で
あり、電気信号でないため、積算計を操作者の視野範囲
に配置することも極めて困難であり、劣化の進行状態を
表示するモニタシステムにそのまま適用することはでき
ない。
(Problems to be Solved by the Invention) In the above-described known deterioration detection device, an impeller is arranged in a pipe, the shaft of which is extended to the outside through a hole provided in the pipe wall, and a motor connected to the shaft is arranged. Since the viscosity is displayed based on changes in the number of revolutions, the structure is extremely complicated and it is extremely difficult to put it into practical use. Furthermore, since a deceleration transmission mechanism is provided on the rotating shaft of the motor and the totalizer is connected via this deceleration mechanism, the totalizer output is a mechanical signal, not an electrical signal, so the totalizer can be seen within the operator's field of view. It is also extremely difficult to place it within a range, and it cannot be directly applied to a monitoring system that displays the progress state of deterioration.

従って、本発明の目的は上述した欠点を解消し、簡単な
構成で潤滑油の劣化度を高精度に検知できると共にモニ
タシステムとして活用できる潤滑油の劣化度検知方法及
び検知装置を提供するものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks, and to provide a method and a detection device for detecting the degree of deterioration of lubricating oil, which can detect the degree of deterioration of lubricating oil with a simple configuration and with high accuracy, and which can be used as a monitoring system. be.

(問題点を解決するための手段) 本発明による潤滑油の劣化度検知方法及び検知装置は、
圧送式潤滑油供給システムに用いられるエンジン等の潤
滑油供給システム中の潤滑油流路抵抗部とくにはこの中
に設置したオイルクーラ部の上流側の圧力と下流側の圧
力との差圧を検出する手段と、検出した差圧に基いて潤
滑油の粘度に対応した出力信号を発生する手段と、この
出力信号に基いて潤滑油の劣化度を表示する表示手段と
を具えることを特徴とするものである。
(Means for solving the problem) The method and device for detecting the degree of deterioration of lubricating oil according to the present invention are as follows:
Detects the differential pressure between the pressure on the upstream side and the pressure on the downstream side of the lubricating oil flow path resistance section in the lubricating oil supply system of engines, etc. used in pressure-feeding lubricating oil supply systems, especially the oil cooler section installed in this section. means for generating an output signal corresponding to the viscosity of the lubricating oil based on the detected differential pressure; and display means for displaying the degree of deterioration of the lubricating oil based on the output signal. It is something to do.

(作 用) ガソリンエンジンや、ディーゼルエンジン等の内燃機関
は各種車輌、船舶作業機械等並びに各種工程工作機械に
広く採用されている。該エンジンには、オイルパンに収
容した潤滑油をポンプの圧送力を利用して各潤滑部へ供
給する圧送式潤滑油供給システムが用いられている。こ
の圧送式潤滑油供給システムにおいては、流路内に細径
管路が存在すると、この細径管路が流路抵抗を構成し、
流路抵抗の上流側圧力と下流側圧力との間で差圧Pが生
ずる。この差圧Pは、流体すなわち流路を流れる潤滑油
の粘度μと密接な対応関係があり、例えば流体が円管路
を層流で流れる場合下記の式が成立する。
(Function) Internal combustion engines such as gasoline engines and diesel engines are widely used in various vehicles, marine working machines, and various process machine tools. This engine uses a pressure-feeding lubricant oil supply system that supplies lubricant oil stored in an oil pan to each lubricating section using the force of a pump. In this pressure-feeding lubricating oil supply system, if a small diameter pipe exists in the flow path, this small diameter pipe constitutes flow resistance,
A pressure difference P is generated between the pressure on the upstream side and the pressure on the downstream side of the flow path resistance. This differential pressure P has a close correspondence with the viscosity μ of the fluid, that is, the lubricating oil flowing through the flow path. For example, when the fluid flows in a laminar flow through a circular pipe path, the following equation holds true.

ここで、Q:流量、D:管径、l:管長(1)式におい
て、流量Q、管径D、管長lは既知の量とすることがで
きるから、流路抵抗部の前後における差圧Pを計測する
ことにより流体の粘度μを求めることができる。一方、
本発明者が潤滑油の劣化に関する種々の実験および解析
を行った結果、潤滑油の劣化度と粘度との間に対応関係
があることを見出した。潤滑油は、長時間使用中に粘度
が上昇傾向があることは公知のことである。エンジン作
動により潤滑油が流れる、流路抵抗部に差圧をか発生す
るが粘度変化に応じ、この差圧変化が潤滑油の劣化の進
行状態の尺度となりうる。
Here, Q: flow rate, D: pipe diameter, l: pipe length In equation (1), the flow rate Q, pipe diameter D, and pipe length l can be known quantities, so the differential pressure before and after the flow path resistance part By measuring P, the viscosity μ of the fluid can be determined. on the other hand,
As a result of various experiments and analyzes conducted by the present inventor regarding the deterioration of lubricating oil, it was discovered that there is a correspondence between the degree of deterioration of lubricating oil and its viscosity. It is well known that the viscosity of lubricating oil tends to increase during long-term use. When the engine is operated, a differential pressure is generated in the flow path resistance portion through which lubricating oil flows, and as the viscosity changes, this differential pressure change can be a measure of the progress of deterioration of the lubricating oil.

本発明は、このような認識に基くものであり、圧送式潤
滑油供給システムにおいて流路抵抗を構成する部分で発
生する差圧を電気信号として検出し、この検出信号を信
号処理回路で各種データに基いて信号処理を行い、粘度
に対応したデータを発生させ、この粘度データに基いて
劣化度に対応した出力信号を発生する。そして、この出
力信号に基いて劣化度を表示する。差圧を発生する流路
抵抗部は、種々の管路を選択することができるが、潤滑
油供給路中に配置したオイルクーラを用いるのが好適で
ある。このオイルクーラはオイルポンプの直後に配置さ
れ大量の潤滑油が流れると共に、管路として細径のター
ラバイブが配置されているため流路抵抗が大dく、従っ
てターラバイブの上流側と下流側との間で大きな値の差
圧を検出することができる。又、オイルクーラにより潤
滑油の温度が安定化し、粘度もこれにより変動が少ない
The present invention is based on this recognition, and detects the differential pressure generated in the part that constitutes the flow path resistance in a pressure-feeding lubricating oil supply system as an electrical signal, and converts this detection signal into various data in a signal processing circuit. Signal processing is performed based on this to generate data corresponding to viscosity, and based on this viscosity data, an output signal corresponding to the degree of deterioration is generated. Then, the degree of deterioration is displayed based on this output signal. Although various pipes can be selected as the flow path resistance section that generates the differential pressure, it is preferable to use an oil cooler disposed in the lubricating oil supply path. This oil cooler is placed immediately after the oil pump, and a large amount of lubricating oil flows through it, and a small-diameter Taravibe is placed as a conduit, so the flow path resistance is large. It is possible to detect a large differential pressure between the two. Furthermore, the temperature of the lubricating oil is stabilized by the oil cooler, and the viscosity also does not fluctuate much.

従って、オイルクーうで発生する差圧を検出すれば、検
出された差圧値自体が大きく、この結果検出精度が一層
向上し、外部からのノイズに影響を受けにくい検知装置
を実現することができる。さらに、オイルクーラはエン
ジンブロックの外部に装着されているから、差圧検出手
段として差圧検出センサをオイルクーラに装着でき、極
めて容易に実用化することができる。
Therefore, if the differential pressure generated in the oil cooler is detected, the detected differential pressure value itself will be large, and as a result, the detection accuracy will be further improved, making it possible to realize a detection device that is less susceptible to external noise. . Furthermore, since the oil cooler is mounted outside the engine block, a differential pressure detection sensor can be mounted on the oil cooler as differential pressure detection means, and it can be put to practical use very easily.

(実施例) ゛第1図a −cは本発明による潤滑油の劣化モニタリ
ング装置の一例の構成を示すものであり、第1図aは差
圧検出センサが装着されているオイルクーラの構成を示
す線図、第1図すは検出センサの構成を示す線図、第1
図Cは信号処理回路の構成を示す回路図である。本例で
は、圧送式潤滑油供給システム中に配置したオイルクー
ラの流路で発生する差圧から劣化の進行状態をモニタす
るシステムについて説明する。オイルパンに収容された
潤滑油はポンプにより圧送され、まず全量の潤滑油がオ
イルクーラ1に供給される。ポンプから供給されてくる
潤滑油は、太い径の人力導管2を経て細径のターラバイ
ブ3に送出され、このターラバイブ3において冷却され
る。冷却後太い径の出力導管4を経てオイルギヤラリに
送出される。
(Example) Fig. 1 a - c show the configuration of an example of a lubricating oil deterioration monitoring device according to the present invention, and Fig. 1 a shows the configuration of an oil cooler equipped with a differential pressure detection sensor. A diagram showing the configuration of the detection sensor, Figure 1.
FIG. C is a circuit diagram showing the configuration of the signal processing circuit. In this example, a system for monitoring the progress of deterioration based on the differential pressure generated in the flow path of an oil cooler disposed in a pressure-feed lubricating oil supply system will be described. The lubricating oil contained in the oil pan is pumped by a pump, and first, the entire amount of lubricating oil is supplied to the oil cooler 1. The lubricating oil supplied from the pump is sent to a small-diameter Tala vibe 3 through a large-diameter man-powered conduit 2, and is cooled in this Tala-vibe 3. After cooling, it is sent to an oil gear gallery through a large diameter output conduit 4.

ラジェータのウォータポンプから送出れる水がターラバ
イブ3の外側を通過しターラバイブの冷却を行なう。オ
イルクーラでは、ポンプに連通ずる入力側とオイルギヤ
ラリに連通ずる出力側との間にクーラパイプと並列にバ
イパス流路が形成され、このバイパス流路中にバイパス
バルブ5が装着すれている。ターラバイブ3は、放熱面
積をかせぐため入力導管2および出力導管3よりも一層
細径とされているから、ターラバイブ3が大きな流路抵
抗部を構成し、ターラバイブ3の上流側と下流側との間
に大きな差圧が発生ずる。一方バイパス流路の上流側は
バイパスバルブ5を介して入力導管2に連通し、下側流
はオイルギヤラリに連通ずる。従って、バイパスバルブ
5の前後においてターラバイブ3の両端で発生する差圧
がそのまま現われることになる。第1図すはバイパスバ
ルブ5の詳細な構成を示すものであり、弁体10ば圧縮
スプリング11により図面上の右側に向けて押圧される
。そして、弁体10と弁座面12との間に円環状の荷重
センサー3を装着する。この荷重センサ13は、弁体1
0が弁座面12に対して作用する荷重に応じた電気的出
力信号を発生する。今、バイパスバルブ5の上流側の流
路14の圧力をP+、その断面積をSとし、下流側の流
路15の圧力を12、その断面積をSとする。また、圧
縮スプリングの荷重をW。とじ、荷重センサー3に作用
する荷重をWとすると以下の式が成立する。
Water sent out from the water pump of the radiator passes through the outside of the Tala vibe 3 and cools the Tala vibe. In the oil cooler, a bypass flow path is formed in parallel with the cooler pipe between an input side communicating with the pump and an output side communicating with the oil gear, and a bypass valve 5 is installed in this bypass flow path. Since the Tara Vibe 3 has a smaller diameter than the input conduit 2 and the output conduit 3 in order to increase the heat dissipation area, the Tara Vibe 3 constitutes a large flow resistance section, and there is a gap between the upstream side and the downstream side of the Tara Vibe 3. A large differential pressure will occur. On the other hand, the upstream side of the bypass flow path communicates with the input conduit 2 via the bypass valve 5, and the lower side communicates with the oil gear gallery. Therefore, the differential pressure generated at both ends of the Taravibe 3 before and after the bypass valve 5 appears as is. FIG. 1 shows the detailed configuration of the bypass valve 5, in which the valve body 10 is pressed toward the right side in the drawing by a compression spring 11. Then, an annular load sensor 3 is installed between the valve body 10 and the valve seat surface 12. This load sensor 13 is connected to the valve body 1
0 generates an electrical output signal responsive to the load acting on the valve seat surface 12. Now, it is assumed that the pressure in the flow path 14 on the upstream side of the bypass valve 5 is P+ and its cross-sectional area is S, and the pressure in the flow path 15 on the downstream side is 12 and its cross-sectional area is S. Also, the load of the compression spring is W. When the load acting on the load sensor 3 is W, the following equation holds true.

Wo+ SF3− SPI =W        ・(
2)ここで、差圧をδPとすれば、 6P = P+ −Pz =    (Wo −W) 
−(3)(3)式において管路の断面積Sおよび圧縮ス
プリングの荷重W。は共に既知の値とすることができる
から、荷重センサー3に作用する荷重Wを計測するこ゛
とによりバイパスバルブ5に現われる差圧δPを計測す
ることができる。荷重センサ13からの出力信号を増幅
器16に供給し、信号増幅を行ってから信号処理装置1
7に供給する。この信号処理装置17では、圧縮スプリ
ングから発生する押圧荷重W。
Wo+ SF3- SPI =W ・(
2) Here, if the differential pressure is δP, 6P = P+ -Pz = (Wo -W)
-(3) In equation (3), the cross-sectional area S of the pipe and the load W of the compression spring. Since both can be set to known values, by measuring the load W acting on the load sensor 3, the differential pressure δP appearing at the bypass valve 5 can be measured. The output signal from the load sensor 13 is supplied to the amplifier 16, and after signal amplification, the signal processing device 1
Supply to 7. In this signal processing device 17, the pressing load W generated from the compression spring.

および管路断面積Sを予め記憶しておき、荷重センナ1
3からの出力信号に基いて差圧δPを算出する。さらに
、この信号処理装置には(1)式に表される種々のパラ
メータも予め記憶し、算出した差圧δPから潤滑油の粘
度μを求める。さらに、粘度と劣化度との関係を予め記
憶しておき、算出された粘度値から潤滑油の劣化度を表
わす出力信号を発生ずる。この粘度と劣化度との関係は
、例えばエンジンの運転時間と粘度との関係を予め実験
により求めることにより得られる。尚、潤滑油の粘度は
油温によって変化するため、油温補正データを信号処理
装置に入力しておき、この信号処理装置において油温補
正処理を行なうこともできる。
and the pipe cross-sectional area S are memorized in advance, and the load sensor 1
The differential pressure δP is calculated based on the output signal from 3. Furthermore, various parameters represented by equation (1) are also stored in advance in this signal processing device, and the viscosity μ of the lubricating oil is determined from the calculated differential pressure δP. Furthermore, the relationship between the viscosity and the degree of deterioration is stored in advance, and an output signal representing the degree of deterioration of the lubricating oil is generated from the calculated viscosity value. The relationship between the viscosity and the degree of deterioration can be obtained, for example, by determining the relationship between the engine operating time and the viscosity through experiments in advance. Incidentally, since the viscosity of lubricating oil changes depending on the oil temperature, it is also possible to input oil temperature correction data to a signal processing device and perform oil temperature correction processing in this signal processing device.

この信号処理装置17からの出力信号を表示装置18に
供給して潤滑油の劣化度を表示する。表示方法として、
デジタル表示やアナログ表示を行なうことができ、さら
に劣化の限界を超えた場合に表示ランプを点灯または点
滅させて警報信号として表示することもできる。さらに
、信号処理装置で得た粘度値をそのまま表示してもよい
The output signal from the signal processing device 17 is supplied to a display device 18 to display the degree of deterioration of the lubricating oil. As a display method,
Digital display or analog display can be performed, and furthermore, when the limit of deterioration is exceeded, an indicator lamp can be turned on or blinked to indicate an alarm signal. Furthermore, the viscosity value obtained by the signal processing device may be displayed as is.

第2図は上記センサを用いて種々の粘度の潤滑油につい
て測定した粘度と差圧との関係を示すグラフである。横
軸は粘度を示し縦軸は測定された差圧値を示す。尚、第
2図の潤滑油の粘度は油温を変化させることにより変化
させている。第2図に示すように、検出された差圧は、
相当大きな値であること並びに粘度と差圧との間に線形
な対応関係があること、粘度変化に対する差圧の変化分
が大きいことが明らかであり、又特徴的である。
FIG. 2 is a graph showing the relationship between viscosity and differential pressure measured for lubricating oils of various viscosities using the above sensor. The horizontal axis shows the viscosity, and the vertical axis shows the measured differential pressure value. Note that the viscosity of the lubricating oil in FIG. 2 is changed by changing the oil temperature. As shown in Figure 2, the detected differential pressure is
It is clear that the value is quite large, that there is a linear correspondence between viscosity and differential pressure, and that the change in differential pressure with respect to the change in viscosity is large, and is also characteristic.

例えば粘度が30mm2/Sから70mm”/Sだけ変
化すると、差圧値が0.11kg/c+flから0.2
1kg/c+flまで変化しており、差圧の変化分が大
きいことが明らかである。これらの検討により、オイル
クーラで発生する差圧を検出することにより潤滑油の粘
度を高精度に検出できることになる。
For example, if the viscosity changes from 30 mm2/S to 70 mm"/S, the differential pressure value changes from 0.11 kg/c+fl to 0.2
It changes up to 1 kg/c+fl, and it is clear that the change in differential pressure is large. Through these studies, the viscosity of lubricating oil can be detected with high accuracy by detecting the differential pressure generated in the oil cooler.

第3図aおよびbば差圧検出センサの変形例の= 12
− 構成を示す線図である。本例では、オイルポンプでの直
後に配置したオイルクーラ21で発生する差圧をダイヤ
フラム式圧力センサで検出する例について説明する。オ
イルクーラ21の上流側の導管路と連通ずる第1の連通
路22および下流側の導管路と連通ずる第2の連通路2
3を設け、これら連通路の他端をダイヤフラム式圧力セ
ンサ24に接続する。
Figures 3a and b are variations of the differential pressure detection sensor = 12
- a diagram showing the configuration; In this example, an example will be described in which a diaphragm pressure sensor detects the differential pressure generated in the oil cooler 21 disposed immediately after the oil pump. A first communication path 22 that communicates with a conduit on the upstream side of the oil cooler 21 and a second communication path 2 that communicates with a conduit on the downstream side.
3 are provided, and the other ends of these communication passages are connected to a diaphragm pressure sensor 24.

このダイヤフラム式圧力センサ24ば、上流側の第1の
連通路22と連通ずる第1チヤンバ25と下流側の第2
の連通路23と連通ずる第2チヤンバ26とを有し、こ
れらチャンバの間にダイヤフラム27を配置した構成と
する。上流側と下流側との間で圧力差が生ずると、その
差圧に応じてダイヤフラノ、の中央部が矢印a方向に変
位する。従って、ダイヤフラム27の中央部に作動バー
28の一端を連結し、その他端を差動トランス29に葎
結すれば、発生した差圧に応じた電気信号が差動トラン
ス29から発生ずる。そして、差動トランス29からの
出力信号を信号処理装置で信号処理することにより、潤
滑油の粘度を求めることができる。
This diaphragm pressure sensor 24 has a first chamber 25 communicating with the first communication path 22 on the upstream side and a second chamber 25 on the downstream side.
The second chamber 26 communicates with the communication path 23 of the second chamber, and a diaphragm 27 is disposed between these chambers. When a pressure difference occurs between the upstream side and the downstream side, the center portion of the diaphragm moves in the direction of arrow a in accordance with the pressure difference. Therefore, by connecting one end of the actuating bar 28 to the center of the diaphragm 27 and connecting the other end to the differential transformer 29, the differential transformer 29 generates an electric signal corresponding to the differential pressure generated. Then, by processing the output signal from the differential transformer 29 using a signal processing device, the viscosity of the lubricating oil can be determined.

次に実験結果について説明する。市販のディーゼルエン
ジンを用い、このオイルパンに新油を張り込んで長時間
運転を行った。運転に当りエンジン回転数400Orp
mで運転し、運転開始後0時間、100時間、200時
間および300時間経過旬に、エンジン回転数80Or
pmの状態で差圧および油温を測定すると共に、同時に
潤滑油をサンプリングして粘度計により粘度を測定した
。尚、差圧測定は、第3図に示ずダイヤフラム式圧力セ
ンサを用いて行なった。この実験結果を表1に示す。
Next, the experimental results will be explained. Using a commercially available diesel engine, we filled the oil pan with new oil and operated it for a long time. Engine rotation speed 400 Orp during operation
The engine was operated at 80 m, and after 0 hours, 100 hours, 200 hours, and 300 hours had passed since the start of operation, the engine speed was 80 or
The differential pressure and oil temperature were measured in pm, and at the same time, the lubricating oil was sampled and its viscosity was measured using a viscometer. Note that the differential pressure measurement was performed using a diaphragm pressure sensor not shown in FIG. The results of this experiment are shown in Table 1.

表  1 尚、40°Cおよび100 ’Cにおける粘度はJIS
規格の測定方法による測定結果であり、油温、回転数、
測定油温での粘度および差圧はモニタリングによる測定
結果である。まず、粘度について検討するが、エンジン
の運転時間に応じて粘度が直線的に増加している。表1
の測定油温での粘度は、エンジン油で通常採用される4
0゛Cと100°Cでの粘度及びモニタリングされた油
温から換算した値である。
Table 1 The viscosity at 40°C and 100'C is JIS
The measurement results are based on the standard measurement method, and include oil temperature, rotation speed,
The viscosity and differential pressure at the measured oil temperature are the results of monitoring. First, let us consider the viscosity, which increases linearly with engine operating time. Table 1
The viscosity at the measured oil temperature is 4, which is usually adopted for engine oil.
This value is calculated from the viscosity at 0°C and 100°C and the monitored oil temperature.

次に、差圧について検討する。測定された差圧値は、8
2〜109 g/ca  の範囲にあり、値自体が非常
に大きな値として得られていることに注目すべきである
。また、差圧値も運転時間に対してほぼ直線的に増大し
ている。第4図に差圧と粘度との関係を示す。第4図に
示すように、モニタリングによって測定された差圧と粘
度との間に直線的な関係があることは明らかである。さ
らに、油温もほぼ一定しており、油温の変化による影響
をほとんど受けない。これらの結果より、差圧検出によ
り潤滑油の粘度を高精度に検出でき2検出された粘度デ
ータから潤滑油の劣化の進行状態を高精度にモニタでき
ることになる。従って、予め実験によって得た差圧と粘
度との関係を検量線データとして信号処理袋W17に記
憶しておき、モニタ中に測定された差圧値と、差圧と粘
度との関係とに基いて粘度を求めることもできる。
Next, consider differential pressure. The measured differential pressure value is 8
It should be noted that the values themselves are very large, ranging from 2 to 109 g/ca. Moreover, the differential pressure value also increases almost linearly with the operating time. Figure 4 shows the relationship between differential pressure and viscosity. As shown in FIG. 4, it is clear that there is a linear relationship between the differential pressure measured by monitoring and the viscosity. Furthermore, the oil temperature is almost constant and is hardly affected by changes in oil temperature. From these results, the viscosity of the lubricating oil can be detected with high precision by differential pressure detection, and the progress of deterioration of the lubricating oil can be monitored with high precision from the detected viscosity data. Therefore, the relationship between differential pressure and viscosity obtained through experiments is stored in advance as calibration curve data in the signal processing bag W17, and the relationship between differential pressure and viscosity is calculated based on the differential pressure value measured during monitoring and the relationship between differential pressure and viscosity. The viscosity can also be determined by

第5図a −cは差圧検出センサの変形例を示す線図で
ある。第5図aはバイパスバルブ内に荷重センサを一体
的に組み込んだ例を示す。ハウジング30内に圧縮スプ
リング31および球状の弁体32を配置すると共に、球
状弁体32と対向して荷重センサ33を固定する。この
ように構成すれば、上流側の圧力Plと下流側の圧力P
2との差圧に応じて荷重センサ33に作用する荷重が変
化するので、粘度変化に対応して、発生ずる差圧を検出
することができる。また、第5図すに示される差動トラ
ンス34をスプリング35で支持する沈鐘方式の圧力セ
ンサや、第5図Cに示す液汁方式の圧力センサを用いる
こともできる。
FIGS. 5a to 5c are diagrams showing modified examples of the differential pressure detection sensor. FIG. 5a shows an example in which a load sensor is integrated into the bypass valve. A compression spring 31 and a spherical valve body 32 are arranged within the housing 30, and a load sensor 33 is fixed opposite to the spherical valve body 32. With this configuration, the upstream pressure Pl and the downstream pressure P
Since the load acting on the load sensor 33 changes in accordance with the differential pressure between the two and 2, it is possible to detect the differential pressure that occurs in response to a change in viscosity. Further, a sinking type pressure sensor in which a differential transformer 34 is supported by a spring 35 as shown in FIG. 5, or a liquid liquid type pressure sensor as shown in FIG. 5C may also be used.

本発明は上述した実施例だけに限定されず、種々の変形
や変更が可能である。例えば上述した実施例では、ディ
ーゼルエンジンに搭載されているオイルクーラのクーラ
パイプの上流側圧力と下流側圧力との差圧により潤滑油
の粘度を検出する例を以て説明したが、車輌に搭載され
ている潤滑油供給システムに限定されず、種々の内燃機
関をはじめとし適当な流路抵抗部を有する全ての圧送式
潤滑油供給装置に適用することができる。
The present invention is not limited to the embodiments described above, and various modifications and changes are possible. For example, in the embodiment described above, the viscosity of lubricating oil is detected based on the differential pressure between the upstream pressure and the downstream pressure of the cooler pipe of the oil cooler installed in a diesel engine. The present invention is not limited to the lubricating oil supply system used in the present invention, but can be applied to all pressure-feeding type lubricating oil supply devices having an appropriate flow path resistance portion, including various internal combustion engines.

尚、ガソリンエンジン車のように、オイルクーラが搭載
されていない圧送式潤滑システムに適用する場合には、
油温かほぼ一定値となる定常状態においてモニタリング
するように構成すれば、油温変化による影響を受けるこ
とはない。
In addition, when applying to a pressure-feeding lubrication system that is not equipped with an oil cooler, such as a gasoline engine vehicle,
If the configuration is such that monitoring is performed in a steady state where the oil temperature is approximately constant, it will not be affected by oil temperature changes.

(発明の効果) 以上説明したように本発明によれば、圧送式潤滑油供給
システムの流路抵抗部で生ずる差圧を電気信号として検
出し、検出した差圧から潤滑油の粘度を求める構成とし
ているから、潤滑油の粘度、すなわち劣化度を高精度に
検出できると共に、劣化の進行状態を採油することなく
、ニモタできるモニタリング装置を実現することができ
る。この結果、エンジン油の劣化度を運転者の視野内に
表示することができ、アラーム機能を付加すればエンジ
ン油の交換時期を適確に把握することができる。
(Effects of the Invention) As explained above, according to the present invention, the differential pressure generated in the flow path resistance part of the pressure-feed lubricating oil supply system is detected as an electric signal, and the viscosity of the lubricating oil is determined from the detected differential pressure. Therefore, it is possible to realize a monitoring device that can detect the viscosity of lubricating oil, that is, the degree of deterioration with high precision, and monitor the progress of deterioration without sampling the oil. As a result, the degree of deterioration of the engine oil can be displayed within the driver's field of vision, and if an alarm function is added, it is possible to accurately know when it is time to replace the engine oil.

また、流路抵抗部を潤滑油供給システム中に配置したオ
イルクーラで構成すれば、流通する潤滑油が大量である
と共に流路抵抗も、大きいため、検出される差圧値自体
が大きく、この結果外的ノイズ(例えば気泡)による影
響を受けにくく精度を一層向上させることができる。
In addition, if the flow path resistance section is configured with an oil cooler placed in the lubricating oil supply system, a large amount of lubricating oil is flowing and the flow path resistance is also large, so the detected differential pressure value itself is large. As a result, it is less susceptible to external noise (for example, air bubbles), and accuracy can be further improved.

さらに、差圧検出センサを、バイパスバルブの弁座に装
着した荷重センサで構成すれば、簡単な構造で市販の車
輌に検出センサを実装することができる。
Furthermore, if the differential pressure detection sensor is configured with a load sensor attached to the valve seat of the bypass valve, the detection sensor can be installed in a commercially available vehicle with a simple structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a −cは本発明による潤滑油の劣化モニタリン
グ装置の一例の構成を示す線図、線図的断面図および回
路図、 第2図は実験結果による差圧と粘度の関係を示すグラフ
、 第3図aおよびbはダイヤフラム式差圧検出センザの構
成を示す線図、 第4図は連続運転実験における粘度と差圧の関係を示す
グラフ、 第5図a −cは差圧検出センサの変形例の構成を示す
線図である。 10・・・弁体       11・・・圧縮スプリン
グ12・・・弁座面      13・・・荷重センサ
14、15・・・流路     16・・・増幅器17
・・・信号処理装置   18・・・表示装置特許出願
人   株式会社共石製品技術研究所■ 嚢 手   続   補   正   書 平成 元年 3月30日 特許庁長官  吉   1)  文   毅  殿■、
事件の表示 昭和63年特許願第109873号 2、発明の名称 潤滑油の劣化度検出装置及び検出方法 3、補正をする者 事件との関係  特許出願人 株式会社 共面製品技術研究所 4、代理人 冊 り表) 1ル □□□苧が” )欄 6、補正の内容(別紙の通り) 1、明細書第18頁第10行と第11行間に以下を加入
する。 [第6図は市販のオイルクーラに装着されているパルパ
スバルブを用いて差圧検出を行なう例を示す。第6図a
に示すように、市販のオイルクーラに装着されているバ
イパスバルブは弁体40を有し、その外周に形成されて
いるネジ部40aによりオイルクーラ本体に螺合する。 弁体40の内部空間にスリーブ41及び圧縮スプリング
42が収納され、エンドキャップ43により圧縮スプリ
ングを固定する。弁体40は上流側流路と連絡する開口
部40b及び下流側流路と連絡する開口部40cを有し
、開口部40cは弁体の内部空間と連通している。従っ
て、弁体40の開口部40b側の圧力と弁体の内部空間
の圧力との差力を検出することにより、オイルクーラの
上流側圧力と下流側圧力との差力を検出できることにな
る。 第6図すに示す実施例では、エンドキャップ43に貫通
孔を設けこの貫通孔の内壁面にネジ溝を形成する。そし
て、このネジ部に出口流路接続−1= 金具44を螺合し、この接続金具44の端部に第2のエ
ンドキャップ45を螺合する。接続金具44には出口管
44aを形成し、この出口管にチューブ(図示せず)を
接続して圧力センサの一方の入力部まで導く。また、第
2のエンドキャップ45及びスリーブ41に貫通孔をそ
れぞれ形成して直管のテフロン製チューブ46を通し、
このチューブの一端46aを弁体40の開口部40bを
経てオイルクーラの上流側流路に連絡し他端46bを圧
力センサの他方の入力部に導く。第6図Cに示す実施例
では、直管のテフロン製チューブの代りにスパイラル状
のチューブ50を用い、その一端50aをオイルクーラ
の上流側流路に連絡させ他端50bを圧力センサに導く
。このように構成すれば、市販のオイルクーラに装着さ
れているバイパスバルブのエンドキャップに簡単な加工
を施すだけでオイルクーラの上流側と下流側との間の差
圧を検出することができる。」 2、同第20頁第18行を以下のとおりに訂正する。 「を示す線図、 第6図a −cは差圧検出の変形例の構成を示す線図的
断面図である。」 3、図面中、第6図(a)〜(c)を追加する。 ゛さ き 省 二 、\ 特 嚢7 」 彎
Figures 1a-c are diagrams, diagrammatic cross-sectional views, and circuit diagrams showing the configuration of an example of a lubricating oil deterioration monitoring device according to the present invention. Figure 2 is a graph showing the relationship between differential pressure and viscosity based on experimental results. , Figure 3 a and b are diagrams showing the configuration of the diaphragm type differential pressure detection sensor, Figure 4 is a graph showing the relationship between viscosity and differential pressure in continuous operation experiments, Figure 5 a - c are differential pressure detection sensors FIG. 3 is a diagram showing the configuration of a modified example of FIG. 10... Valve body 11... Compression spring 12... Valve seat surface 13... Load sensor 14, 15... Channel 16... Amplifier 17
...Signal processing device 18...Display device patent applicant Kyoseki Product Technology Research Institute Co., Ltd. ■ Amendment of procedures March 30, 1989 Director General of the Japan Patent Office Yoshi 1) Mr. Moon Yi ■,
Display of the case 1988 Patent Application No. 109873 2, Name of the invention Device and method for detecting deterioration of lubricating oil 3, Person making the amendment Relationship to the case Patent applicant Co., Ltd. Komen Product Technology Research Institute 4, Agent Column 6, Contents of amendment (as attached) 1. Add the following between lines 10 and 11 on page 18 of the specification. [Figure 6 shows An example of differential pressure detection using a palpass valve installed in a commercially available oil cooler is shown. Figure 6a
As shown in FIG. 2, the bypass valve installed in a commercially available oil cooler has a valve body 40, which is screwed into the oil cooler main body through a threaded portion 40a formed on the outer periphery of the valve body. A sleeve 41 and a compression spring 42 are housed in the internal space of the valve body 40, and the compression spring is fixed by an end cap 43. The valve body 40 has an opening 40b communicating with the upstream flow path and an opening 40c communicating with the downstream flow path, and the opening 40c communicates with the internal space of the valve body. Therefore, by detecting the differential force between the pressure on the opening 40b side of the valve body 40 and the pressure in the internal space of the valve body, the differential force between the upstream pressure and the downstream pressure of the oil cooler can be detected. In the embodiment shown in FIG. 6, a through hole is provided in the end cap 43 and a screw groove is formed on the inner wall surface of the through hole. Then, the outlet flow path connection-1 = metal fitting 44 is screwed onto this threaded portion, and the second end cap 45 is screwed onto the end of this connection metal fitting 44. An outlet pipe 44a is formed in the connecting fitting 44, and a tube (not shown) is connected to this outlet pipe to lead to one input part of the pressure sensor. In addition, through holes are formed in the second end cap 45 and the sleeve 41, respectively, and a straight Teflon tube 46 is passed therethrough.
One end 46a of this tube is connected to the upstream flow path of the oil cooler through the opening 40b of the valve body 40, and the other end 46b is led to the other input part of the pressure sensor. In the embodiment shown in FIG. 6C, a spiral tube 50 is used instead of the straight Teflon tube, one end 50a of which is connected to the upstream flow path of the oil cooler, and the other end 50b is led to the pressure sensor. With this configuration, the differential pressure between the upstream side and the downstream side of the oil cooler can be detected by simply modifying the end cap of the bypass valve installed in a commercially available oil cooler. ” 2. The 18th line on page 20 of the same is corrected as follows. ``Diagram showing ``Figures 6a-c are diagrammatic sectional views showing the configuration of a modified example of differential pressure detection.'' 3. Add Figures 6(a) to (c) to the drawings. .゛Saki Shoji, \ special bag 7''

Claims (1)

【特許請求の範囲】 1、圧送式潤滑油供給システムに用いられる潤滑油の劣
化度を検出する潤滑油劣化度検出装置において、潤滑油
供給システム中の流路抵抗部の上流側の圧力と下流側の
圧力との差圧を検出する手段と、検出した差圧に基づい
て潤滑油の粘度に対応した出力信号を発生する手段と、
この出力信号に基いて潤滑油の劣化度に対応した出力信
号を発生する信号処理装置とを具えることを特徴とする
潤滑油の劣化度検出装置。 2、圧送式潤滑油供給システムに用いられる潤滑油の劣
化度を検出する潤滑油の劣化度検出装置において、潤滑
油供給システム中に配置したオイルクーラの上流側圧力
と下流側圧力との差圧を検出する手段と、検出した差圧
に基いて潤滑油の粘度に対応した出力信号を発生する手
段と、この出力信号に基いて潤滑油の劣化度に対応した
出力信号を発生する信号処理装置とを具えることを特徴
とする潤滑油の劣化度検出装置。 3、前記差圧検出手段を、オイルクーラのバイパスバル
ブの弁座面に作用する荷重を検出する荷重センサで構成
したことを特徴とする請求項2に記載の潤滑油の劣化度
検出装置。 4、前記差圧検出手段を、オイルクーラの上流側の圧力
と下流側の圧力との差圧を検出する圧力センサで構成し
たことを特徴とする請求項2に記載の潤滑油潤滑油の劣
化度検出装置。 5、前記劣化度に対応した出力信号に基いて潤滑油の劣
化度を表示する表示手段を具えることを特徴とする請求
項1から請求項4までのいずれか1項に記載の潤滑油の
劣化度検出装置。 6、前記圧送式潤滑油供給システムが内燃機関であるこ
とを特徴とする請求項1項から5項までのいずれか1項
に記載の潤滑油の劣化度検出方法。 7、圧送式潤滑油供給システムに用いられる潤滑油の劣
化度を検出する潤滑油の劣化度検出方法において、当該
システム中に配置したオイルクーラ内を流れる潤滑油の
上流側圧力と下流側圧力との差圧を検出することを特徴
とする潤滑油の劣化度を検出する方法。 8、圧送式潤滑油供給システムに用いる潤滑油の劣化度
合を検知する方法において、当該システム中に配置した
オイルクーラのバイパスバルブの弁座面に設けた荷重セ
ンサによって潤滑油の圧力を検知することを特徴とする
潤滑油の劣化度を検出する方法。
[Claims] 1. In a lubricating oil deterioration detection device for detecting the deterioration degree of lubricating oil used in a pressure-feeding lubricating oil supply system, pressure on the upstream side and downstream of a flow path resistance section in the lubricating oil supply system means for detecting a differential pressure between the lubricating oil and the lubricating oil; and a means for generating an output signal corresponding to the viscosity of the lubricating oil based on the detected differential pressure.
A lubricating oil deterioration degree detection device comprising: a signal processing device that generates an output signal corresponding to the deterioration degree of the lubricating oil based on the output signal. 2. In a lubricating oil deterioration detection device that detects the deterioration degree of lubricating oil used in a pressure-feed lubricating oil supply system, the differential pressure between the upstream pressure and the downstream pressure of the oil cooler placed in the lubricating oil supply system. means for detecting the difference in pressure, means for generating an output signal corresponding to the viscosity of the lubricating oil based on the detected differential pressure, and a signal processing device generating an output signal corresponding to the degree of deterioration of the lubricating oil based on the output signal. A lubricating oil deterioration degree detection device comprising: 3. The lubricating oil deterioration degree detection device according to claim 2, wherein the differential pressure detection means is constituted by a load sensor that detects a load acting on a valve seat surface of a bypass valve of an oil cooler. 4. Deterioration of lubricating oil according to claim 2, characterized in that the differential pressure detection means is constituted by a pressure sensor that detects the differential pressure between the pressure on the upstream side and the pressure on the downstream side of the oil cooler. degree detection device. 5. The lubricating oil according to any one of claims 1 to 4, further comprising display means for displaying the degree of deterioration of the lubricating oil based on an output signal corresponding to the degree of deterioration. Deterioration level detection device. 6. The lubricating oil deterioration level detection method according to any one of claims 1 to 5, wherein the pressure-feeding lubricating oil supply system is an internal combustion engine. 7. In a lubricating oil deterioration detection method for detecting the deterioration degree of lubricating oil used in a pressure-fed lubricating oil supply system, the upstream pressure and downstream pressure of lubricating oil flowing in an oil cooler placed in the system are determined. A method for detecting the degree of deterioration of lubricating oil, the method comprising detecting the differential pressure of lubricating oil. 8. In a method for detecting the degree of deterioration of lubricating oil used in a pressure-feeding lubricating oil supply system, the pressure of lubricating oil is detected by a load sensor provided on the valve seat surface of a bypass valve of an oil cooler disposed in the system. A method for detecting the degree of deterioration of lubricating oil, characterized by:
JP63109873A 1988-05-07 1988-05-07 Lubricant deterioration detector Expired - Fee Related JP2693481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109873A JP2693481B2 (en) 1988-05-07 1988-05-07 Lubricant deterioration detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109873A JP2693481B2 (en) 1988-05-07 1988-05-07 Lubricant deterioration detector

Publications (2)

Publication Number Publication Date
JPH01280611A true JPH01280611A (en) 1989-11-10
JP2693481B2 JP2693481B2 (en) 1997-12-24

Family

ID=14521354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109873A Expired - Fee Related JP2693481B2 (en) 1988-05-07 1988-05-07 Lubricant deterioration detector

Country Status (1)

Country Link
JP (1) JP2693481B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264237A (en) * 1990-09-26 1992-09-21 Soc Natl Etud Constr Mot Aviat <Snecma> Detector for impurity mixed in fluid and circuit using such detector
IT201800000831A1 (en) * 2018-01-12 2019-07-12 Marco Baldini VISCOSITY MEASURING DEVICE
JPWO2022044863A1 (en) * 2020-08-24 2022-03-03

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142608U (en) * 1979-04-03 1980-10-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55142608U (en) * 1979-04-03 1980-10-13

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04264237A (en) * 1990-09-26 1992-09-21 Soc Natl Etud Constr Mot Aviat <Snecma> Detector for impurity mixed in fluid and circuit using such detector
IT201800000831A1 (en) * 2018-01-12 2019-07-12 Marco Baldini VISCOSITY MEASURING DEVICE
JPWO2022044863A1 (en) * 2020-08-24 2022-03-03
WO2022044863A1 (en) * 2020-08-24 2022-03-03 株式会社日立産機システム Oil feed type air compressor
US11988217B2 (en) 2020-08-24 2024-05-21 Hitachi Industrial Equipment Systems Co., Ltd. Oil feed type air compressor

Also Published As

Publication number Publication date
JP2693481B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
US5038893A (en) Lubrication monitoring system
US5295083A (en) Device for dynamically measuring bubble content of flowing liquid
EP0670476B1 (en) A fluid sensor
EP0426884B1 (en) Apparatus for detecting deterioration of lubricating oil
CN114088924B (en) Monitoring device and monitoring method for engineering machinery lubricating oil
US5042292A (en) Viscometer
JPH01280611A (en) Device and method for detecting deterioration of lubricating oil
US9244053B2 (en) Apparatus for monitoring aeration in fluid of hydraulic circuit
CN107063685A (en) A kind of oily amount determining device of gear minimum lubrication
US2993369A (en) Pressure responsive means
CN104727895A (en) Oil filter with pressure difference alarm function
US10473549B2 (en) Fluid leak measurement test device and methods
RU73072U1 (en) DENSITY-FLOW METER OF LIQUID OR GAS MEDIA
KR100429279B1 (en) The performance measuring device for hydro-utilities with thermodynamic method
US2050242A (en) Viscosimeter
RU207642U1 (en) Bench device for detecting high-frequency fluctuations of oil pressure in the lubrication system of diesel engines
CN112857503B (en) Small-flow gas volume flow measuring device
JPH1062330A (en) Deterioration detector of lubricating oil
SU1460603A1 (en) Apparatus for measuring the gap in liquid-cooled bearing
Patel et al. Design and fabrication of engine oil sensor for safety of automotive engines
JPH01162152A (en) Measuring apparatus for degree of oil degradation
GB2232258A (en) Viscometer
US20140047827A1 (en) Aeration in liquid reservoirs
Barbarelli et al. A Model Investigation on the Pressure Transducer Dynamics for Measurements in Lubricating Vane Pumps: Influence of Dissolved Air and of Transducer/Tubing Geometry
US2028188A (en) Viscosimeter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees