JPH01162152A - Measuring apparatus for degree of oil degradation - Google Patents

Measuring apparatus for degree of oil degradation

Info

Publication number
JPH01162152A
JPH01162152A JP32171387A JP32171387A JPH01162152A JP H01162152 A JPH01162152 A JP H01162152A JP 32171387 A JP32171387 A JP 32171387A JP 32171387 A JP32171387 A JP 32171387A JP H01162152 A JPH01162152 A JP H01162152A
Authority
JP
Japan
Prior art keywords
oil
section
degree
temperature
correction function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32171387A
Other languages
Japanese (ja)
Inventor
Akira Katayama
昭 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32171387A priority Critical patent/JPH01162152A/en
Publication of JPH01162152A publication Critical patent/JPH01162152A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the degree of degrading of oil accurately even when temperature of oil changes, by outputting a correction signal to a measuring sensor such as pollution degree measuring sensor or water content measuring sensor according to the temperature of the oil detected. CONSTITUTION:When an oil temperature measuring signal (T) from an oil temperature measuring sensor 25 is inputted into a pollution degree correction function calculating section 29 and a water content correction function calculating section 30 separately, the correction function calculating sections 29 and 30 generate correction signals respectively according to a pollution degree correction function f(T) and a water content correction function F(T). A pollution degree measuring sensor 27 and a water content measuring sensor 28 are connected to a pollution degree measuring section 31 and a water content measuring section 32 respectively and outputs of the pollution degree correction function calculating section 29 and the pollution degree measuring section 31 are inputted into a multiplying section 33 to multiply and outputs of the water content correction function calculating section 30 and the water content measuring section 32 into a multiplying section 34 to multiply. The resulting multiplied values are inputted into a decision section 35 to be compared with judging conditions previously inputted from a judging conditions setting section 36 and the results of the judgement are shown on a display section 37.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、潤滑油、作動油等の油の劣化状態を監視・測
定するための油劣化度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to an oil deterioration degree measuring device for monitoring and measuring the deterioration state of oil such as lubricating oil and hydraulic oil.

(従来の技術) 一般に、回転機材の軸受、減速機に使用されている潤滑
油や電気・油圧サーボ弁を初めとする制御装置の作動媒
体である油圧作動油の劣化および汚染等は、系統構成機
器(例えば、軸受、減速機、油ポンプ、電気・油圧サー
ボ弁)の故障の要因となる。このため、近年はその性状
管理が盛んに行われるようになってきており、油の劣化
度を測定する装置も提案されている。
(Prior art) In general, deterioration and contamination of hydraulic oil, which is the working medium of control devices such as bearings of rotating equipment and reduction gears, and electric/hydraulic servo valves, is generally caused by system configuration. This can cause failure of equipment (e.g. bearings, reducers, oil pumps, electric/hydraulic servo valves). For this reason, in recent years, oil property management has been actively carried out, and devices for measuring the degree of deterioration of oil have also been proposed.

たとえば、実開昭61−67564号公報には、第4図
に示すように、油タンク1内の油圧作動油2内に粘度セ
ンサ3および水分センサ4を配置し、粘度センサ3およ
び水分センサ4の測定信号を、測定部6、判定部7、判
定条件設定部8および表示部9からなる油圧作動油劣化
測定装置5に入力して油圧作動油の劣化の測定を行う装
置が開示されている。
For example, as shown in FIG. 4, viscosity sensor 3 and moisture sensor 4 are arranged in hydraulic oil 2 in oil tank 1, and A device is disclosed that measures the deterioration of hydraulic fluid by inputting the measurement signal into a hydraulic fluid deterioration measuring device 5 that includes a measuring section 6, a determining section 7, a determining condition setting section 8, and a display section 9. .

また、第5図は、監視項目として汚染度、水分含有量を
選択した油劣化度測定装置の一例を示すもので、油圧作
動油2の油ポンプ10の吐出ラインより分岐したサンプ
ルライン11に、流量調節計12、汚染度測定センサ1
3、水分含有量測定センサ14が各々設けられており、
汚染度測定センサ13、水分測定センサ14の測定信号
は、判定部7、判定条件設定M8および表示部9からな
る油圧作動油劣化測定装置5に入力され、劣化・汚染度
が測定される。
Furthermore, FIG. 5 shows an example of an oil deterioration degree measuring device in which contamination degree and moisture content are selected as monitoring items. Flow rate controller 12, pollution level measurement sensor 1
3. A moisture content measurement sensor 14 is provided,
The measurement signals from the contamination degree measurement sensor 13 and the moisture measurement sensor 14 are input to the hydraulic fluid deterioration measuring device 5, which includes a determination section 7, a determination condition setting M8, and a display section 9, and the degree of deterioration and contamination is measured.

また、その他の油劣化度測定装置として、一定時間の潤
滑油温度の平均を求め、潤滑油の油温と時間に対する劣
化曲線に対応させて劣化度を算出し、これを積算して潤
滑油の劣化度と交換時期を表示するようにしたもの(特
開昭56−133658号公報)、また、使用時の潤滑
油の温度状態も考慮した特定式に基づいて損耗状態を評
価することにより、潤滑油の損耗を合理的な近似値で評
価して潤滑油の劣化を判定するようにしたもの(特開昭
58−213244号公報)等もあるが、これらの装置
は実際の測定結果に基づくものではなく、判定精度が低
い。
In addition, as another oil deterioration degree measuring device, the average lubricant temperature over a certain period of time is calculated, the degree of deterioration is calculated by corresponding to the deterioration curve of the lubricating oil against oil temperature and time, and this is integrated. (Japanese Unexamined Patent Publication No. 56-133658), which displays the degree of deterioration and replacement time, and evaluates the state of wear and tear based on a specific formula that also takes into account the temperature state of the lubricating oil during use. There are devices that determine lubricating oil deterioration by evaluating oil wear using a reasonable approximate value (Japanese Unexamined Patent Publication No. 58-213244), but these devices are based on actual measurement results. However, the judgment accuracy is low.

(発明が解決しようとする問題点) 上記説明の従来の油劣化度測定装置は、運転員による定
期的なサンプル検査と比較し、運転員の負荷軽減、油劣
化または異常の早期発見による事故防止等の点において
非常に有用なものであるが、次のようないくつかの問題
点がある。
(Problems to be Solved by the Invention) The conventional oil deterioration degree measuring device described above reduces the burden on operators and prevents accidents by early detection of oil deterioration or abnormalities, compared to regular sample inspection by operators. Although it is very useful in these respects, there are some problems as follows.

なお、前述の汚染度測定センサ13の基本的測定原理と
しては光散乱方式、または光遮断方式があるが、いずれ
の方式においても、ある一定容積(v)内における粒子
(汚染物)の大きさと個数を測定することにより汚染度
のランクを分類している。すなわち、ある一定流量を確
保している系において、一定時間内にセンサを通過した
粒子の大きさと個数を測定していることになる。なお、
−定容積mはV=QXtとして表される。(ここでQは
流量調整計12にて調整される流量であり、tはその測
定時間である。) また、水分含有量測定センサ14の基本的測定MT!i
としてはヘンリーの法則(一定の温度のもとで一定量の
液体に溶解するガスの質量は、それと平衡状態にある気
相の蒸気圧に比例する)を用いたものが多く、ある測定
作動油の水分含有量(C)は、C=(Cs/Ps)Pと
して表される。(ここでCsは測定作動油温における飽
和水分濃度(PPM) 、Psは飽和水蒸気圧、Pは測
定している作動油の水蒸気圧測定値を各々示す、) 第6図は、ある油圧作動油の飽和水分濃度と飽和水蒸気
圧の関係を示したものであるが、例えば、油温45°C
(P点)における飽和水分濃度(Cs)は約6200P
PMであり、また飽和水蒸気圧(Ps)は9.5×11
0−2h/−となる、なお、これらの特性は作動油によ
り異なり、各々の値は実験で求められる。これに対して
、たとえば水分含有量測定センサ14により測定された
作動油水蒸気圧(P)がlX1O−2ktr/dである
とすると、その時の水分含有量(C)はC=(6200
/9.5 x 1O−2) x 1 x 10−2* 
650PPM  として算出される。
The basic measurement principle of the pollution level measurement sensor 13 mentioned above is a light scattering method or a light blocking method, but in either method, the size of particles (contaminants) within a certain volume (v) and The degree of contamination is classified by measuring the number of particles. In other words, in a system that maintains a certain flow rate, the size and number of particles passing through the sensor within a certain period of time are measured. In addition,
- constant volume m is expressed as V=QXt. (Here, Q is the flow rate adjusted by the flow rate regulator 12, and t is the measurement time.) Also, the basic measurement MT of the moisture content measurement sensor 14! i
Most of the methods use Henry's law (the mass of gas dissolved in a certain amount of liquid at a certain temperature is proportional to the vapor pressure of the gas phase in equilibrium with it). The water content (C) of is expressed as C=(Cs/Ps)P. (Here, Cs is the saturated water concentration (PPM) at the measured hydraulic oil temperature, Ps is the saturated water vapor pressure, and P is the measured value of the water vapor pressure of the hydraulic oil being measured.) Figure 6 shows a certain hydraulic oil. This shows the relationship between the saturated water concentration and the saturated water vapor pressure, for example, at an oil temperature of 45°C.
The saturated water concentration (Cs) at (P point) is approximately 6200P
PM, and the saturated water vapor pressure (Ps) is 9.5×11
Note that these characteristics vary depending on the hydraulic oil, and each value is determined by experiment. On the other hand, if the hydraulic oil water vapor pressure (P) measured by the moisture content measurement sensor 14 is 1X1O-2ktr/d, then the moisture content (C) is C=(6200
/9.5 x 1O-2) x 1 x 10-2*
Calculated as 650PPM.

さて、ここで注目しなければならないのは、汚染度測定
、水分測定いずれの場合においても測定値が油温め変化
により影響されるということである。
Now, what must be noted here is that in both cases of contamination level measurement and moisture content measurement, the measured values are affected by changes in oil temperature.

たとえば、ある油系の作動油の通常油温は約45℃であ
るが、起動待初期には約20℃程度まで許容されており
、当然ながらこの油温、あるいは45℃に至るまでの途
中油温段階においても油劣化度測定が実施されることが
あり油温め影響を受けない測定方法、または測定装置で
なければならない。
For example, the normal oil temperature of a certain oil-based hydraulic fluid is about 45°C, but it is allowed to go up to about 20°C in the initial stage of startup waiting, and it is natural that the oil temperature will rise to this temperature or on the way to 45°C. The degree of oil deterioration may be measured even during the temperature stage, so a measuring method or measuring device must be used that is not affected by oil heating.

ところが汚染度測定の場合、油温変化は油の粘性変化と
なって表れ、ある時刻での流量Q°は次式で示されるよ
うに実際には油温■の影響を受ける。
However, in the case of contamination level measurement, changes in oil temperature appear as changes in oil viscosity, and the flow rate Q° at a certain time is actually affected by the oil temperature (2) as shown by the following equation.

Q’=f(ν” (T’)/ν(T))XQここで、■
°は測定中の油温(例えば起動待初期20℃)、■は流
量調整計設定時の油′4(例えば45℃)、νとν°は
油温Tと■°における各々の動粘性係数、Qは流量調整
計設定時の流量(例えば45℃)である。
Q'=f(ν” (T')/ν(T))XQwhere, ■
° is the oil temperature during measurement (e.g. 20°C in the initial startup wait), ■ is the oil '4 when the flow rate regulator is set (e.g. 45°C), ν and ν° are the kinematic viscosity coefficients at oil temperatures T and ■°, respectively. , Q is the flow rate (for example, 45° C.) when the flow rate regulator is set.

使用している作動油の油温変化にともなう粘性特性にも
よるが、Q“とOの差は無視できない事が多く、測定原
理の基本となる一定容積Vの正確な確保がなされないこ
ともある。一般的には油温が低くなると作動油の粘性が
高くなるなめに流量は確保できず、汚染度はより低い傾
向を示すことになってしまう、この傾向は油管環上、好
ましいものではない。
Although it depends on the viscosity characteristics of the hydraulic oil used as the oil temperature changes, the difference between Q" and O is often not negligible, and it may not be possible to accurately secure a constant volume V, which is the basis of the measurement principle. Generally speaking, when the oil temperature decreases, the viscosity of the hydraulic oil increases, making it impossible to secure a sufficient flow rate, and the degree of contamination tends to be lower.This tendency is not desirable in terms of the oil pipe ring. do not have.

また、水分含有量測定の場合は、前述のように水蒸気圧
がlX1O−2kH/−であるとすると、油温が45℃
の場合、水分含有量は約600PPMであるが、油温が
20℃の場合、 C=(1x10’  /2.5 xlo−2)xo、4
 x10’=1600PPM を含有していることになる。すなわち油温が20℃にお
いて実際1600PPMの水分を含有している油圧作動
油でも油温か45℃とされている場合、見掛は上650
PPMの水分しか含んでいないことになり、汚染度と同
様管理上問題となる。
In addition, in the case of moisture content measurement, assuming that the water vapor pressure is 1X1O-2kHz/- as mentioned above, the oil temperature is 45℃.
In the case of , the water content is about 600 PPM, but when the oil temperature is 20 °C, C = (1x10' /2.5 xlo-2)xo, 4
This means that it contains x10'=1600 PPM. In other words, even if hydraulic oil actually contains 1600 PPM of water at an oil temperature of 20°C, if the oil temperature is assumed to be 45°C, the apparent water content is 650 ppm.
This means that it only contains water from PPM, which poses a management problem similar to the degree of contamination.

本発明は、かかる従来の事情に対処してなされたもので
、油温が変化する場合でも、従来に較べて精度良く油の
劣化度を測定することができ、油の性状管理をより適切
に行うことのできる油劣化度測定装置を提供しようとす
るものである。
The present invention has been made in response to such conventional circumstances, and even when the oil temperature changes, it is possible to measure the degree of oil deterioration with higher accuracy than in the past, and to manage oil properties more appropriately. The purpose of this invention is to provide an oil deterioration degree measuring device that can measure the degree of oil deterioration.

[発明の構成コ (問題点を解決するための手段) すなわち本発明は、油をサンプリングし、測定センサに
よりこの油の劣化度の測定を行う油劣化度測定装置にお
いて、前記油の温度を検出する温度検出手段と、この温
度検出手段によって検出された温度に応じて補正信号を
出力し前記測定センサの測定結果を補正する補正信号発
生手段とを備えたことを特徴とする。
[Configuration of the Invention (Means for Solving Problems)] That is, the present invention provides an oil deterioration degree measuring device that samples oil and measures the degree of deterioration of the oil using a measurement sensor, which detects the temperature of the oil. The present invention is characterized by comprising a temperature detection means for detecting the temperature, and a correction signal generation means for outputting a correction signal according to the temperature detected by the temperature detection means and correcting the measurement result of the measurement sensor.

(作 用) 上記構成の本発明の油劣化度測定装置では、油の温度を
検出する温度検出手段と、この温度検出手段によって検
出された温度に応じて、たとえば汚染度測定センサ、水
分含有量測定センサ等の測定センサに、補正信号を出力
し測定センサの測定結果を補正する補正信号発生手段と
が配置されている。
(Function) The oil deterioration level measuring device of the present invention having the above configuration includes a temperature detecting means for detecting the temperature of the oil, and a contamination degree measuring sensor, a moisture content sensor, etc. A correction signal generating means for outputting a correction signal to correct a measurement result of the measurement sensor is disposed in a measurement sensor such as a measurement sensor.

したがって、油温か変化する場合でも、従来に較べて精
度良く油の劣化度を測定することができ、油の性状管理
をより適切に行うことができる。
Therefore, even when the oil temperature changes, the degree of oil deterioration can be measured with higher accuracy than in the past, and the oil properties can be managed more appropriately.

(実施例) 以下、図面を参照しながら本発明の実施例を詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例の油劣化度測定装置の構成
を示すもので、油タンク21内に収容された油圧作動油
22を送出するための油ポンプ23の吐出ラインから分
岐してサンプルライン24が設けられており、このサン
プルライン24には、油温測定センサ25、流量調節計
26、汚染度測定センサ27、水分含有量測定センサ2
8が各々設けられている。
FIG. 1 shows the configuration of an oil deterioration degree measuring device according to an embodiment of the present invention. A sample line 24 is provided, and this sample line 24 includes an oil temperature measurement sensor 25, a flow rate controller 26, a contamination level measurement sensor 27, and a moisture content measurement sensor 2.
8 are provided respectively.

また、油温測定センサ25は、汚染度補正関数算出部2
9および水分含有量補正関数算出部30に各々接続され
ており、汚染度測定センサ27および水分含有量測定セ
ンサ28は、各々汚染度測定部31および水分含有量測
定部32に接続されている。
Further, the oil temperature measurement sensor 25 is connected to the pollution level correction function calculation unit 2.
9 and a moisture content correction function calculating section 30, respectively, and the contamination degree measuring sensor 27 and the moisture content measuring sensor 28 are connected to a contamination degree measuring section 31 and a moisture content measuring section 32, respectively.

そして、汚染度補正関数算出部29および汚染度測定部
31の出力は、乗算部33に入力されて乗算され、水分
含有量補正関数算出部30および水分含有量測定部32
の出力は、乗算部34に入力されて乗算される。これら
の乗算値は、各々判定部35に入力され、予め判定条件
設定部36から入力された判定条件と比較され、表示部
37にこの判定結果が表示されるよう構成されている。
The outputs of the contamination degree correction function calculation section 29 and the contamination degree measurement section 31 are input to the multiplication section 33 and multiplied by the moisture content correction function calculation section 30 and the moisture content measurement section 32.
The output of is input to the multiplier 34 and multiplied. These multiplied values are each input to the determination section 35 and compared with a determination condition inputted in advance from the determination condition setting section 36, and the determination result is displayed on the display section 37.

上記構成のこの実施例の油劣化度測定装置では、油温測
定センサ25からの油温測定信号(Mが、汚染度補正関
数算出部29、水分含有量補正関数算出部30に各々入
力されると、これらの汚染度補正関数算出部29、水分
含有量補正関数算出部30は、各々の汚染度補正関数f
(T)、水分含有量補正関数F(T)に応じた補正信号
を発生する。
In the oil deterioration level measuring device of this embodiment having the above configuration, the oil temperature measurement signal (M) from the oil temperature measurement sensor 25 is input to the contamination degree correction function calculation section 29 and the water content correction function calculation section 30, respectively. The pollution degree correction function calculation unit 29 and the moisture content correction function calculation unit 30 each calculate the pollution degree correction function f.
(T), generates a correction signal according to the moisture content correction function F(T).

第2図は、汚染度補正間数m)の−例を示すもので、た
とえば油温的45℃の場合は、乗算部33に入力される
補正係数Kが1となり、汚染度測定部31からの信号は
、そのまま判定部35に入力される。また、たとえば油
温的20℃の場合は、油の粘性高による流量低下の影響
がでるため補正係数にとしては1.1が選択され、乗算
部33に入力される。このため、汚染度測定部31から
の信号は、1.1倍された値となって判定部35に入力
される。
FIG. 2 shows an example of the contamination degree correction interval (m). For example, when the oil temperature is 45°C, the correction coefficient K input to the multiplier 33 is 1, and the contamination degree measurement unit 31 The signal is input to the determination section 35 as is. Further, for example, when the oil temperature is 20° C., 1.1 is selected as the correction coefficient and is input to the multiplier 33 because of the influence of a decrease in flow rate due to the high viscosity of the oil. Therefore, the signal from the contamination level measuring section 31 is multiplied by 1.1 and input to the determining section 35.

また、第3図は、水分含有量補正間数F(T)の−例を
示すもので、たとえば油温的45℃の場合は、乗算部3
4に入力される補正係数Hが1となり、水分含有量測定
部32からの信号は、そのまま判定部35に入力される
。また、たとえば油温的20℃の場合は、水分溶解度に
差がでるため、補正係数Hとしては2.5が選択され、
乗算部34に入力される。このため、水分含有量測定部
32からの信号は、2.5倍された値となって判定部3
5に入力される。たとえば、水分含有量測定センサ28
の水蒸気圧がlX1G−2hぎ1011の場合、水分含
有量測定部32で算出される水分含有量は650PPM
であるが、2゜5倍されるため約1600PPMとなり
正規な値に補正される。
Further, FIG. 3 shows an example of the moisture content correction interval F(T). For example, when the oil temperature is 45°C, the multiplier 3
4 becomes 1, and the signal from the moisture content measuring section 32 is inputted as is to the determining section 35. Furthermore, for example, when the oil temperature is 20°C, there is a difference in water solubility, so 2.5 is selected as the correction coefficient H.
The signal is input to the multiplication section 34. Therefore, the signal from the moisture content measuring section 32 becomes a value multiplied by 2.5, and the signal from the determining section 32 is multiplied by 2.5.
5 is input. For example, the moisture content measurement sensor 28
When the water vapor pressure of 1×1G−2h is 1011, the moisture content calculated by the moisture content measurement unit 32 is 650 PPM.
However, since it is multiplied by 2.5, it becomes approximately 1600 PPM, which is corrected to a normal value.

なお、上記補正関数f(T)、F(T)は、通常運転時
の油温(本実施例では約45℃)をベースとしているが
、これらの補正関数f(T)、F(T)は、油温を変化
させた時の流量の測定、あるいは予め水分含有量が既知
である油の油温変化による水蒸気圧の変化を調査するこ
とにより、比較的容易に求められる。また、上記説明で
は、起動時の油温的20℃を想定しているが、第2図あ
るいは第3図から明らかなように、通常運転より油温が
何らかの原因により上昇して運転されている場合におい
ても同様に補正される。
Note that the above correction functions f(T) and F(T) are based on the oil temperature during normal operation (approximately 45°C in this example); can be determined relatively easily by measuring the flow rate when the oil temperature is changed, or by investigating the change in water vapor pressure due to a change in oil temperature of oil whose water content is known in advance. In addition, in the above explanation, it is assumed that the oil temperature is 20°C at startup, but as is clear from Figures 2 and 3, the oil temperature may be higher than normal operation due to some reason. The same correction is made in this case.

すなわち、この実施例の油劣化度測定装置では、汚染度
、水分含有量測定を通常運転時の油温ばかりでなく、起
動時を含めたあらゆる運転状態の油温においても自動的
に温度補正し、精度良く求めることができ、油圧作動油
の管理上大きく貢献するものである。
In other words, the oil deterioration degree measuring device of this embodiment automatically corrects the temperature of the contamination degree and moisture content measurements not only at the oil temperature during normal operation, but also at oil temperatures in all operating conditions including startup. , which can be determined with high accuracy, greatly contributes to the management of hydraulic fluid.

なお、この実施例では、油温測定センサ25をサンプリ
ングライン26に設置したが、これはできるだけ流量調
節計26あるいは測定部近くの油温を測定しようとした
ものであり、これらの部位の油温と油タンク21内の油
温との差が小さい場合は、油タンク21内の油温を測定
するよう構成してもよい。
In this embodiment, the oil temperature measurement sensor 25 is installed in the sampling line 26, but this is intended to measure the oil temperature as close to the flow rate controller 26 or the measurement section as possible. If the difference between the temperature of the oil in the oil tank 21 and the temperature of the oil in the oil tank 21 is small, the oil temperature in the oil tank 21 may be measured.

また、この実施例では、油の劣化度として、汚染度、水
分含有量を測定する場合について説明したが、連続監視
上の他の要因、たとえば、粘度、比重の油温変化により
その測定値が左右されるような要因に対しても本発明を
適用できることはもちろんである。
Furthermore, in this example, we have explained the case where the degree of contamination and moisture content are measured as the degree of oil deterioration, but the measured values may vary due to other factors during continuous monitoring, such as changes in oil temperature such as viscosity and specific gravity. It goes without saying that the present invention can also be applied to factors that may be affected.

[発明の効果] 以上説明したように、本発明の油劣化度測定装置によれ
ば、油温が変化する場合でも、従来に7 較べて精度良
く油の劣化度を測定することができ、油の性状管理をよ
り適切に行うことができる。
[Effects of the Invention] As explained above, according to the oil deterioration degree measuring device of the present invention, even when the oil temperature changes, it is possible to measure the degree of oil deterioration with higher accuracy than in the past. properties can be managed more appropriately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の油劣化度測定装置を示す構
成図、第2図は汚染度補正関数を示すグラフ、第3図は
水分含有量補正関数を示すグラフ、第4図〜第5図は従
来の油劣化度測定装置を示す構成図、第6図は作動油の
油温、飽和水分含有層水蒸気圧力の関係を表す特性図で
ある。 21・・・・・・・・・油タンク 22・・・・・・・・・油圧作動油 23・・・・・・・・・油ポンプ 24・・・・・・・・・サンプリングライン25・・・
・・・・・・油温測定センサ26・・・・・・・・・流
量調節計 27・・・・・・・・・汚染度測定センサ28・・・・
・・・・・水分含有量測定センサ29・・・・・・・・
・汚染度補正関数算出部30・・・・・・・・・水分含
有量補正関数算出部31・・・・・・・・・汚染度測定
部 32・・・・・・・・・水分含有量測定部33.34・
・・乗算部 35・・・・・・・・・判定部 36・・・・・・・・・判定条件設定部37・・・・・
・・・・表示部 出願人       株式会社 東芝 代理人  弁理士  須 山 佐 − 第2図 第3図 第4図 第5図 第6図
Fig. 1 is a configuration diagram showing an oil deterioration degree measuring device according to an embodiment of the present invention, Fig. 2 is a graph showing a contamination degree correction function, Fig. 3 is a graph showing a moisture content correction function, and Figs. FIG. 5 is a configuration diagram showing a conventional oil deterioration degree measuring device, and FIG. 6 is a characteristic diagram showing the relationship between the temperature of the hydraulic oil and the steam pressure of the saturated water-containing layer. 21... Oil tank 22... Hydraulic oil 23... Oil pump 24... Sampling line 25 ...
...Oil temperature measurement sensor 26 ...Flow rate controller 27 ...Contamination level measurement sensor 28 ...
...Moisture content measurement sensor 29...
- Pollution degree correction function calculation section 30...Moisture content correction function calculation section 31...Pollution degree measurement section 32...Moisture content Quantity measurement part 33.34・
...Multiplication section 35... Judgment section 36... Judgment condition setting section 37...
...Display Department Applicant Toshiba Corporation Patent Attorney Sa Suyama - Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)油をサンプリングし、測定センサによりこの油の
劣化度の測定を行う油劣化度測定装置において、前記油
の温度を検出する温度検出手段と、この温度検出手段に
よって検出された温度に応じて補正信号を出力し前記測
定センサの測定結果を補正する補正信号発生手段とを備
えたことを特徴とする油劣化度測定装置。
(1) An oil deterioration degree measuring device that samples oil and measures the degree of deterioration of this oil using a measurement sensor, which includes a temperature detection means for detecting the temperature of the oil, and a temperature detection means according to the temperature detected by the temperature detection means. An oil deterioration degree measuring device comprising: correction signal generating means for outputting a correction signal to correct the measurement result of the measurement sensor.
(2)前記測定センサは、汚染度測定センサおよび水分
含有量測定センサであり、前記補正信号発生手段は、こ
れらのセンサごとに設けられていることを特徴とする特
許請求の範囲第1項記載の油劣化度測定装置。
(2) The measurement sensor is a pollution degree measurement sensor and a moisture content measurement sensor, and the correction signal generation means is provided for each of these sensors. Oil deterioration degree measuring device.
JP32171387A 1987-12-19 1987-12-19 Measuring apparatus for degree of oil degradation Pending JPH01162152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32171387A JPH01162152A (en) 1987-12-19 1987-12-19 Measuring apparatus for degree of oil degradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32171387A JPH01162152A (en) 1987-12-19 1987-12-19 Measuring apparatus for degree of oil degradation

Publications (1)

Publication Number Publication Date
JPH01162152A true JPH01162152A (en) 1989-06-26

Family

ID=18135605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32171387A Pending JPH01162152A (en) 1987-12-19 1987-12-19 Measuring apparatus for degree of oil degradation

Country Status (1)

Country Link
JP (1) JPH01162152A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139188A (en) * 2006-12-04 2008-06-19 Ntn Corp Lubricant degradation detector of bearing
JP2014214875A (en) * 2013-04-29 2014-11-17 ゼネラル・エレクトリック・カンパニイ Turbomachine lubricating oil analyzer system, computer program product and related methods
JP2015203642A (en) * 2014-04-15 2015-11-16 株式会社Ihi Lubrication oil-monitoring system
JP2019148450A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Component detection sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139188A (en) * 2006-12-04 2008-06-19 Ntn Corp Lubricant degradation detector of bearing
JP2014214875A (en) * 2013-04-29 2014-11-17 ゼネラル・エレクトリック・カンパニイ Turbomachine lubricating oil analyzer system, computer program product and related methods
JP2015203642A (en) * 2014-04-15 2015-11-16 株式会社Ihi Lubrication oil-monitoring system
JP2019148450A (en) * 2018-02-26 2019-09-05 パナソニックIpマネジメント株式会社 Component detection sensor

Similar Documents

Publication Publication Date Title
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
AU2001249215B2 (en) Narrow band infrared water fraction apparatus for gas well and liquid hydrocarbon flow stream use
US10408653B2 (en) System and method for metering gas based on amplitude and/or temporal characteristics of an electrical signal
US7810376B2 (en) Mitigation of gas memory effects in gas analysis
EP0069759A4 (en) Gas analysis instrument having flow rate compensation.
US10558731B2 (en) Flame instability monitoring with draft pressure and process variable
US5817921A (en) Piezoelectric enviromental fluid monitoring assembly and method
US5041990A (en) Method and apparatus for measuring entrained gas bubble content of flowing fluid
WO2012078327A9 (en) Fluid system health monitor
JPH01162152A (en) Measuring apparatus for degree of oil degradation
JP4371575B2 (en) Method and apparatus for monitoring water process equipment
JP2007506910A (en) Method for monitoring oil and gas lubricated equipment using fringe sensors
US6170319B1 (en) Methods and apparatus for monitoring water process equipment
AU2003258682C1 (en) Device for the determination of flow parameters for a fluid and method for operating such a device
US3453868A (en) Specific gravity measuring system for interface detection
SU789079A1 (en) Device for evaluating water toxicity by fish reaction
EP0435623A1 (en) Monitoring apparatus
JPS58221148A (en) Sludge concentration meter
JPS6131951A (en) Concentration meter with abnormality judging function
JP3995615B2 (en) Spectroscopic concentration measuring apparatus and light source stability determination method thereof
RU2279641C2 (en) Method and device for measuring mass flow rate of gas-liquid mixture
KR20210147927A (en) Apparatus and method for measuring oil mist, and compression system
KR20210147015A (en) Determination of Steam Pressure Using Steam Manometer Coefficients
WO2021097158A1 (en) System and method for measuring corrosion levels in air streams
RU1795287C (en) Method of measuring gas mass flow rate