JPH01278437A - Coating of wire and unit therefor - Google Patents

Coating of wire and unit therefor

Info

Publication number
JPH01278437A
JPH01278437A JP63109319A JP10931988A JPH01278437A JP H01278437 A JPH01278437 A JP H01278437A JP 63109319 A JP63109319 A JP 63109319A JP 10931988 A JP10931988 A JP 10931988A JP H01278437 A JPH01278437 A JP H01278437A
Authority
JP
Japan
Prior art keywords
plasma
coating
reaction chamber
chamber
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109319A
Other languages
Japanese (ja)
Inventor
Ryozo Yamauchi
良三 山内
Shinji Araki
荒木 真治
Akira Wada
朗 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP63109319A priority Critical patent/JPH01278437A/en
Publication of JPH01278437A publication Critical patent/JPH01278437A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/22Deposition from the vapour phase
    • C03C25/223Deposition from the vapour phase by chemical vapour deposition or pyrolysis

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To provide the title unit so designed that the surface of a wire is coated with a coating material brought to chemical vapor growth in the plasma flame in a plasma reaction chamber of wide space, thereby forming a coating film on the continuous wire without hampering plasma flame generation due to attachment of deposited product. CONSTITUTION:A plasma generation chamber 12 is fed, via a gas inlet pipe 17, with a plasma gas to generate a plasma flame, which is then extended to a plasma reaction chamber 13 of wide space. Thence, said plasma flame is fed with a coating raw material through a raw material pipe 21, and a wire A is passed through said flame, thus coating said wire with a coating material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光ファイバや金属線などの長尺の線条体の
表面に連続的に被膜を形成するための方法および装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for continuously forming a coating on the surface of a long filament such as an optical fiber or a metal wire.

〔従来の技術〕[Conventional technology]

光ファイバや金属線などの長尺の線条体の表面に金属、
金属酸化物、金属窒化物、炭素などからな、る被膜を形
成する方法に、プラズマCVD法によるものがある。
Metal on the surface of a long filament such as an optical fiber or metal wire,
A plasma CVD method is a method for forming a film made of metal oxide, metal nitride, carbon, or the like.

第4図は、このブラズ?CVD法(Plasma En
hanced Chemical Vapor Dep
osition )によって線条体に連続的に被膜を形
成するための装置を示すものである。図中符号1は反応
室であり、この反応室1は石英ガラスなどからなる中空
筒状のものであり、この反応室1の両端には、これに連
続する減圧室2.2がそれぞれ一体に設けられている。
Figure 4 is this braz? CVD method (Plasma En
Hanced Chemical Vapor Dep
This figure shows an apparatus for continuously forming a coating on the striatum by different positions. Reference numeral 1 in the figure indicates a reaction chamber, and this reaction chamber 1 is a hollow cylindrical chamber made of quartz glass or the like. At both ends of this reaction chamber 1, there are vacuum chambers 2. It is provided.

減圧室2はやはり石英ガラスなどからなる中空筒状のも
のであって、減圧室2.2と反応室1との問は線条体A
を通す貫通孔3.3が形成された仕切壁4.4で仕切ら
れている。また、減圧室2゜2の端壁部にも線条体へを
通す貫通孔3,3が形成されている。さらに、反応室1
の外周には高周波誘導コイル5が巻回されており、この
コイル5は高周波電源6に接続されている。また、反応
室1にはアルゴンなどのプラズマ発生ガスと被膜材料と
なる原料ガスを導入するための導入パイプ7が設けられ
ており、減圧室2.2にはその内部を減圧するため減圧
パイプ8.8がそれぞれ設けられている。
The decompression chamber 2 is also a hollow cylinder made of quartz glass, etc., and the space between the decompression chamber 2.2 and the reaction chamber 1 is the striatum A.
It is partitioned off by a partition wall 4.4 having a through hole 3.3 formed therein. Also, through holes 3, 3 through which the filament is passed are formed in the end wall of the decompression chamber 2.degree. Furthermore, reaction chamber 1
A high frequency induction coil 5 is wound around the outer periphery of the high frequency induction coil 5, and this coil 5 is connected to a high frequency power source 6. Further, the reaction chamber 1 is provided with an introduction pipe 7 for introducing a plasma generating gas such as argon and a raw material gas serving as a coating material, and the decompression chamber 2.2 is provided with a decompression pipe 8 for reducing the pressure inside the chamber. .8 are provided respectively.

このような被覆装置を用いて線条体Aに被膜を形成する
には、反応室1および減圧室2.2を減圧したのち、反
応室1に導入パイプ7からプラズマ発生ガスと原料ガス
を供給し、高周波1!導コイル5に高周波電源6がこの
高周波電流を印加して無電極放電させて反応室1内にプ
ラズマ炎を発生させ、プラズマ炎内で原料ガスを反応さ
せ、貫通孔3・・・を通って走行する線条体へ表面に被
膜を形成する。
In order to form a coating on the filamentous body A using such a coating device, after reducing the pressure in the reaction chamber 1 and the decompression chamber 2.2, plasma generating gas and source gas are supplied to the reaction chamber 1 from the introduction pipe 7. Yes, high frequency 1! A high-frequency power source 6 applies this high-frequency current to the conductive coil 5 to cause an electrodeless discharge to generate a plasma flame in the reaction chamber 1, react the raw material gas within the plasma flame, and pass through the through holes 3... A coating is formed on the surface of the running striatum.

そして、被覆用原料ガスとして、例えばSL Cj 4
ガスを用いれば、 SLC第4→SL+2(J2 の反応によって金属シリコンからなる被膜が形成でき、
Si C14と02を供給すれば、5LCI4+Oz→
5LOz+2C1zの反応によって酸化ケイ素(シリカ
)からなる被膜が得られ、CCfzFzを用いれば C(JzFz→C+C12+Fz の反応が進んでアモルファス状態また多結晶状態のカー
ボン被膜が得られ、さらにはS= C14とNH3とを
反応室1内に供給すれば次式によって、3SLCI< 
+4NH3→SL3 N4 + 128Cオ窒化ケイ素
からなる被膜が形成できる。
As the raw material gas for coating, for example, SL Cj 4
If gas is used, a film made of metallic silicon can be formed by the reaction of SLC 4 → SL + 2 (J2),
If Si C14 and 02 are supplied, 5LCI4+Oz→
A film made of silicon oxide (silica) is obtained by the reaction of 5LOz+2C1z, and when CCfzFz is used, the reaction of C(JzFz→C+C12+Fz) proceeds to obtain an amorphous or polycrystalline carbon film, and furthermore, S=C14 and NH3. and is supplied into the reaction chamber 1, 3SLCI<
+4NH3→SL3 N4 + A film made of 128C silicon nitride can be formed.

(発明が解決しようとする課題) しかしながら、上述の被覆装置を用いて長尺の線条体A
に連続的に被膜を形成する場合、CVD反応によって析
出した物質が線条体へ表面のみならず、反応室1内壁に
も付着、堆積してゆき、長時間運転後には反応室1の実
質的な内径が挟まり、反応室1内にプラズマ炎が安定し
て発生せしめることができなくなる。また、金属やカー
ボンなどの導電性材料からなる被膜を形成する場合には
、反応室1内壁に付着した析出物質が電磁的な遮蔽層と
して作用し、反応室1内に高周波が浸透することが好害
され、プラズマ炎の発生が停止する問題もある。
(Problem to be Solved by the Invention) However, when the above-mentioned coating device is used to
When a film is continuously formed on the striatum, the substances precipitated by the CVD reaction adhere and accumulate not only on the surface of the striatum but also on the inner wall of the reaction chamber 1, and after long-term operation, the substance deposited in the reaction chamber 1 becomes As a result, a plasma flame cannot be stably generated within the reaction chamber 1. Furthermore, when forming a film made of a conductive material such as metal or carbon, the precipitated substances adhering to the inner wall of the reaction chamber 1 act as an electromagnetic shielding layer, preventing high frequencies from penetrating into the reaction chamber 1. There is also the problem that the generation of plasma flames stops due to harmful effects.

〔課題を解決するための手段〕[Means to solve the problem]

この発明では、プラズマ発生室内にプラズマガスを所定
流速で流してプラズマ炎を発生させるとともにこのプラ
ズマ炎をプラズマ発生室からプラズマ発生室と連通され
プラズマ発生室よりも広い空間を有するプラズマ反応室
にまで延ばし、この延ばされたプラズマ炎内に被覆原料
を供給するとともに線条体を通過させて生成した被覆材
を線条体上に被覆することをその解決手段とした。
In this invention, a plasma gas is flowed at a predetermined flow rate into a plasma generation chamber to generate a plasma flame, and the plasma flame is transferred from the plasma generation chamber to a plasma reaction chamber that is connected to the plasma generation chamber and has a larger space than the plasma generation chamber. The solution was to supply the coating material into the extended plasma flame and pass it through the filament, thereby coating the filament with the produced coating material.

〔作用〕[Effect]

上記構成をとることにより、被覆用原料がCVD反応を
起す部位はプラズマ反応室に限られ、プラズマ反応室は
プラズマ発生室に比べて十分広い空間となっているので
、析出物質が反応室内壁に付着、堆積してもプラズマ炎
の発生ならびに存在が好害されることがない。また、プ
ラズマ発生室ではCVD反応が行われないため、析出物
質の付着がなく常に安定してプラズマ炎を発生させるこ
とができる。
With the above configuration, the area where the coating raw material undergoes the CVD reaction is limited to the plasma reaction chamber, and the plasma reaction chamber is a sufficiently wider space than the plasma generation chamber, so that the precipitated substances can be deposited on the walls of the reaction chamber. Even if it adheres or accumulates, the generation and existence of plasma flame will not be affected. Furthermore, since no CVD reaction is performed in the plasma generation chamber, there is no deposition of precipitated substances and a plasma flame can always be generated stably.

〔実施例〕〔Example〕

第1図は、この発明の被覆装置の第1の例を示すもので
、この被覆装置11は、プラズマ発生室12とプラズマ
反応v13とから概略構成されている。
FIG. 1 shows a first example of a coating apparatus according to the present invention, and this coating apparatus 11 is roughly composed of a plasma generation chamber 12 and a plasma reaction v13.

プラズマ発生室12は、本体14、高周波誘導コイル1
5、高周波電源16およびプラズマ発生ガス導入パイプ
(プラズマガス供給手段)17とから構成されている。
The plasma generation chamber 12 includes a main body 14 and a high frequency induction coil 1.
5, a high frequency power source 16 and a plasma generating gas introduction pipe (plasma gas supply means) 17.

本体14は石英ガラスなどから作られた円筒状のもので
、その一方の端部は端vi18で閉じられ、他方の端部
は開放されてプラズマ反応室13に連接されている。こ
の本体14の端壁18のほぼ中央には線条体Aを通す入
口バイブ(wA条体挿通手段)19が設けられ、端壁1
8の縁部にはアルゴンなどのプラズマ発生ガスを導入す
るためのプラズマ発生ガス導入バイブ17が本体14の
軸線に対してやや傾斜して反応室13に向けて設けられ
ている。また、本体14の周囲には高周波誘導コイル1
5が巻回され、この高周波誘導コイル15は高周波電源
16に接続されている。さらに、本体14の開放側の端
部付近には、被覆材料用原料をプラズマ反応室13に送
り込むための原料パイプ(被覆原料供給手段)21.2
1が本体14の軸線に対して傾斜して反応室13に向け
て設けられている。
The main body 14 has a cylindrical shape made of quartz glass or the like, and one end thereof is closed at an end vi 18, and the other end is open and connected to the plasma reaction chamber 13. An inlet vibrator (wA strip insertion means) 19 for passing the filament A is provided approximately in the center of the end wall 18 of the main body 14, and the end wall 1
A plasma-generating gas introducing vibrator 17 for introducing a plasma-generating gas such as argon is provided at the edge of the main body 8 at a slight angle with respect to the axis of the main body 14 toward the reaction chamber 13 . Furthermore, a high frequency induction coil 1 is provided around the main body 14.
5 is wound, and this high frequency induction coil 15 is connected to a high frequency power source 16. Further, near the open end of the main body 14, a raw material pipe (coating raw material supply means) 21.2 for feeding raw material for the coating material into the plasma reaction chamber 13 is provided.
1 is provided toward the reaction chamber 13 at an angle with respect to the axis of the main body 14 .

また、プラズマ反応室13は、プラズマ発生室12の本
体14の内径よりも2〜5倍程度の大きな内径を有する
石英ガラスなどからなる円筒状のものであって、その一
方の端部のほぼ中心部は開放されてプラズマ発生室12
の本体14に連設され、他方の端部は端壁22で閉じら
れている。また、この端HX!22の中央には被覆処理
を終えた線条体Aを導き出す出口バイブ(線条体挿通手
段)23が設けられている。さらに、プラズマ反応室1
3およびプラズマ発生室12内の空間を所望の圧力に保
持するための減圧バイブ24が設けられており、この減
圧バイブ24は図示しない排気手段に接続されている。
Further, the plasma reaction chamber 13 is a cylindrical chamber made of quartz glass or the like and has an inner diameter approximately 2 to 5 times larger than the inner diameter of the main body 14 of the plasma generation chamber 12, and is approximately at the center of one end thereof. The plasma generation chamber 12 is opened.
The other end is closed with an end wall 22. Also, this end HX! At the center of 22, there is provided an exit vibrator (striate body insertion means) 23 for guiding out the filament A that has been coated. Furthermore, plasma reaction chamber 1
3 and a vacuum vibe 24 for maintaining the space inside the plasma generation chamber 12 at a desired pressure, and this vacuum vibe 24 is connected to an exhaust means (not shown).

また、上記入口バイブ19および出口バイブ23の内径
は、線条体Aの外径よりも微かに大きくされ、これらパ
イプ19.23からの外気の侵入をできるかぎり防ぐよ
うになっている。
Further, the inner diameters of the inlet vibrator 19 and the outlet vibrator 23 are made slightly larger than the outer diameter of the filament body A to prevent outside air from entering through these pipes 19, 23 as much as possible.

このような被覆装置を用いて線条体Aに被膜を形成する
には、減圧バイブ24から装置内の大気を排気して所望
の内圧としたうえ、導入バイブ17からアルゴンなどの
プラズマ発生ガスを所定の流速でプラズマ発生室12に
送り込み、高周波電源16から周波数数MH2〜数10
MHzの高周波電流を高周波誘導コイル15に印加し、
無電極放電してプラズマ発生室12の本体14内のプラ
ズマ発生ガスを励起し、プラズマ炎を発生させる。
In order to form a coating on the filament body A using such a coating device, the atmosphere inside the device is exhausted from the decompression vibe 24 to reach the desired internal pressure, and then a plasma generating gas such as argon is introduced from the introduction vibe 17. The plasma is fed into the plasma generation chamber 12 at a predetermined flow rate, and the frequency number MH2 to several 10 is supplied from the high frequency power source 16.
Applying a high frequency current of MHz to the high frequency induction coil 15,
Electrodeless discharge is performed to excite the plasma generating gas within the main body 14 of the plasma generating chamber 12 to generate a plasma flame.

このプラズマ炎は、プラズマ発生ガスの流れにそってプ
ラズマ発生室12の本体14からプラズマ反応室13に
流れる。このプラズマ反応室13にまで延びたプラズマ
炎に原料パイプ21.21から被覆材料用原料ガスを吹
き込み、プラズマ反応室13内の空間にあるプラズマ炎
中においてCVD反応を起させる。この状態で、プラズ
マ発生室12の入口バイブ19からプラズマ反応室13
の出口バイブ23にかけて線条体Aを走行せしめ、プラ
ズマ炎中を通過させれば、CVD反応によって析出した
金属、酸化物などからなる被膜が線条体へ表面に連続的
に形成される。
This plasma flame flows from the main body 14 of the plasma generation chamber 12 to the plasma reaction chamber 13 along the flow of plasma generation gas. A raw material gas for coating material is blown into the plasma flame extending to the plasma reaction chamber 13 from the raw material pipe 21, 21, and a CVD reaction is caused in the plasma flame located in the space inside the plasma reaction chamber 13. In this state, from the inlet vibrator 19 of the plasma generation chamber 12 to the plasma reaction chamber 13
When the filament A is run through the exit vibe 23 of the filament and passed through a plasma flame, a film made of metal, oxide, etc. deposited by the CVD reaction is continuously formed on the surface of the filament.

この際、プラズマ発生ガスをプラズマ発生室12の端壁
18(財)から吹き込んでいるため、発生したプラズマ
炎は発生室12から反応室13の方向に流れ、しかも被
覆材料用原料ガスも反応室13の方向に向って吹き込ま
れるため、プラズマ炎中でのCVD反応は反応室13に
おいてのみ起り、発生室12においては起らない。よっ
て、プラズマ発生室12の内壁に析出物質が付着、堆積
することはない。また、プラズマ反応室13は、その内
容積がプラズマ炎そのものの体積に比して十分に大きく
なっているため、線条体Aに付着して被膜となった以外
の析出物質がたとえ反応室13内壁に付着したとしても
、この付着物によってプラズマ炎の安定性などが脅かさ
れることがない。このため、装置の長時間連続運転が可
能となり、極めて長尺の線条体に対して連続的に被膜の
形成が安定して行える。
At this time, since the plasma generation gas is blown into the end wall 18 of the plasma generation chamber 12, the generated plasma flame flows from the generation chamber 12 to the reaction chamber 13, and the raw material gas for the coating material also flows into the reaction chamber. Since the plasma is blown in the direction of the plasma flame, the CVD reaction in the plasma flame occurs only in the reaction chamber 13 and does not occur in the generation chamber 12. Therefore, precipitated substances do not adhere or accumulate on the inner wall of the plasma generation chamber 12. In addition, since the internal volume of the plasma reaction chamber 13 is sufficiently large compared to the volume of the plasma flame itself, even if precipitated substances other than those that adhere to the filament A and become a film are present in the reaction chamber 13, Even if it adheres to the inner wall, the stability of the plasma flame is not threatened by this adherent. Therefore, the device can be operated continuously for a long period of time, and coatings can be continuously and stably formed on extremely long filaments.

第2図は、この発明の被覆装置の第2の例を示すもので
、この例の装置はプラズマ発生室12としてノズル状部
材25を用い、このノズル状部材25を矩形空胴共振器
26内に配設し、空胴共振器26の始端側に設けられた
マグネトロン27からのマイクロ波を方向性結合器28
を介して空胴共振器26の終端側に導波し、プラズマ発
生室12となるノズル状部材25内でプラズマ炎を発生
せしめるようにしたものである。上記ノズル状部材25
は、石英ガラスなどからなり、空胴共振器26内に存在
する部分の軸方向の長さがマイクロ波のほぼ1/4波長
に相当するようになっている。
FIG. 2 shows a second example of the coating device of the present invention. This device uses a nozzle-like member 25 as the plasma generation chamber 12, and this nozzle-like member 25 is placed inside a rectangular cavity resonator 26. The microwave from the magnetron 27 provided on the starting end side of the cavity resonator 26 is transmitted to the directional coupler 28.
The wave is guided to the terminal end of the cavity resonator 26 through the plasma generator 26, and a plasma flame is generated within the nozzle-shaped member 25 which becomes the plasma generation chamber 12. The nozzle-shaped member 25
is made of quartz glass or the like, and the length in the axial direction of the portion existing inside the cavity resonator 26 corresponds to approximately 1/4 wavelength of the microwave.

また、空胴共振器26の終端には、可動式のプランジャ
29が設けられプラズマ炎との整合状態を可変できるよ
うになっている。また、上記ノズル状部材25の基端部
30には線条体Aを通す貫通孔31が形成され、このn
通孔31の側方にはプラズマ発生ガス導入バイブ17が
設けられている。
Furthermore, a movable plunger 29 is provided at the end of the cavity resonator 26, so that the state of alignment with the plasma flame can be varied. Further, a through hole 31 through which the filament body A passes is formed in the base end portion 30 of the nozzle-like member 25, and this n
A plasma generating gas introduction vibe 17 is provided on the side of the through hole 31 .

また、ノズル状部材25の先端は、空胴共振器26に形
成されたプラズマ反応室13に通ずる連通孔32にまで
延びている。さらに、プラズマ反応室13の壁を口過し
て2本の原料バイブ21,21が設けられ、これらの先
端の吹田部分は線条体Aの走行方向に傾斜して上記連通
孔31の近くまで延びている。
Further, the tip of the nozzle-like member 25 extends to a communication hole 32 formed in the cavity resonator 26 and communicating with the plasma reaction chamber 13 . Furthermore, two raw material vibrators 21, 21 are provided passing through the wall of the plasma reaction chamber 13, and the Suita portions of these tips are inclined in the running direction of the filament body A and reach close to the communication hole 31. It is extending.

この例の被覆装置では、マグネトロン27で発振された
マイクロ波はアンテナ33から発射され、方向性結合器
28を経てノズル状部材25内に導波され、その内部の
プラズマ発生ガスを励起し、プラズマ炎を発生せしめる
。このプラズマ炎はプラズマ発生室12であるノズル状
部材25の先端から連通孔32を通りプラズマ反応室1
3に向けて放射される。このプラズマ炎には原料バイブ
21.21から原料ガスが吹き込まれ、CVD反応が生
起される。この状態で線条体Aをプラズマ発生室12の
ノズル状部材25からプラズマ反応室13に向番ノて走
行させプラズマ炎中を通過させれば、線条体へ表面に被
膜が連続的に形成される。
In the coating device of this example, the microwave oscillated by the magnetron 27 is emitted from the antenna 33, guided through the directional coupler 28 into the nozzle-shaped member 25, excites the plasma generating gas inside the nozzle-shaped member 25, and generates a plasma. Generates flame. This plasma flame passes from the tip of the nozzle-shaped member 25, which is the plasma generation chamber 12, through the communication hole 32 and into the plasma reaction chamber 1.
It is radiated towards 3. Raw material gas is blown into this plasma flame from the raw material vibrator 21.21, and a CVD reaction occurs. In this state, if the filament A is run in the opposite direction from the nozzle-shaped member 25 of the plasma generation chamber 12 to the plasma reaction chamber 13 and passed through the plasma flame, a film will be continuously formed on the surface of the filament. be done.

また、プラズマ反応室13の内容積は先の例と同様に十
分大きいので、析出物質がプラズマ反応室13の内壁に
付着、堆積してもプラズマ炎の発生を阻害することは全
くない。
Further, since the internal volume of the plasma reaction chamber 13 is sufficiently large as in the previous example, even if precipitated substances adhere to or accumulate on the inner wall of the plasma reaction chamber 13, the generation of the plasma flame will not be inhibited at all.

なお、空胴共振器26には、ノズル状部材25を配置す
るためにその胴部には貫通孔が形成されるが、第3図に
示すように空胴共振器26内の電界分布がそのn通孔の
位置で最大となるように空胴共振WA26の寸法を設定
し、境界条件を定めれば、この貫通孔はマイクロ波の状
態に悪影響を与えることはほとんどない。なお、第3図
中の矢印線は電気力線を示す。
Note that a through hole is formed in the body of the cavity resonator 26 in order to arrange the nozzle-like member 25, but as shown in FIG. If the dimensions of the cavity resonance WA 26 are set so that they are maximum at the position of the n through-holes, and the boundary conditions are determined, the through-holes will hardly have an adverse effect on the state of the microwave. Note that the arrow lines in FIG. 3 indicate lines of electric force.

また、この発明における線条体Aとしては、ガラスsi
tm、光ファイバ、金属線、超伝導線材やこれらの表面
に一次被覆を施したものあるいはこれらの線材を撚り合
せたものや他の線材と複合したものなどが包含される。
Further, as the filament A in this invention, glass Si
Examples include optical fibers, metal wires, superconducting wires, those whose surfaces are coated with a primary coating, those wires twisted together, and composites with other wires.

また、被覆材料の原料としてはガス状のものに限られず
、液状あるいは粉末状のものであってもよい。
Further, the raw material for the coating material is not limited to gaseous materials, but may be liquid or powdery materials.

〔実験例〕[Experiment example]

第2図に示した被覆装置を用いて、石英系光フアイバ表
面にアモルファス状のカーボンを被覆した。
Using the coating apparatus shown in FIG. 2, the surface of a quartz optical fiber was coated with amorphous carbon.

矩形空胴共振器26の内寸法は85履X45+wとし、
石英ガラス製のノズル状部材25の内径は10麿、長さ
45amとした。一方、プラズマ反応室13は、硬質ガ
ラス製であり、内径250am、長さ250mmとした
。マグネトロン27から周波数2450MHz、出力6
00Wのマイクロ波を発射し、プラズマ発生ガスとして
アルゴンを15SLM供給し、プラズマ反応室13内の
圧力を70Tor rに保持し、被覆材料用ガスとして
CCl2 F2  (フレオン12)を3SLM供給し
、プラズマ中で反応させた。この状態で、外径125μ
mの石英系光ファイバを線速10m/分で走行させたと
ころ、光フアイバ上に厚さ80nIlのアモルファスカ
ーボンの被膜が連続的に形成され、その被覆速度は12
n11/分であった。
The inner dimensions of the rectangular cavity resonator 26 are 85mm x 45+w,
The nozzle-shaped member 25 made of quartz glass had an inner diameter of 10 mm and a length of 45 am. On the other hand, the plasma reaction chamber 13 was made of hard glass, and had an inner diameter of 250 am and a length of 250 mm. Frequency 2450MHz from magnetron 27, output 6
A microwave of 00 W was emitted, 15 SLM of argon was supplied as a plasma generation gas, the pressure inside the plasma reaction chamber 13 was maintained at 70 Torr, and 3 SLM of CCl2F2 (Freon 12) was supplied as a coating material gas. I reacted with In this state, the outer diameter is 125μ
When a quartz-based optical fiber of 1.5 m is run at a linear speed of 10 m/min, an amorphous carbon film with a thickness of 80 nIl is continuously formed on the optical fiber, and the coating speed is 12 m/min.
It was n11/min.

アモルファスカーボンの被膜が設けられた光ファイバを
1気圧の水素100%雰囲気中に100時間放置したと
ころ水素分子の光フアイバ内への拡散は観測されなかっ
た。
When an optical fiber provided with an amorphous carbon coating was left in a 100% hydrogen atmosphere at 1 atm for 100 hours, no diffusion of hydrogen molecules into the optical fiber was observed.

また、被覆装置を連続10時間運転し、延長6−の光フ
ァイバに被膜を形成したが、プラズマの発生は常に安定
であり、良好に運転できた。
Further, the coating apparatus was continuously operated for 10 hours to form a coating on an optical fiber having an extension of 6-, but the plasma generation was always stable and the operation was good.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明はプラズマ発生室内にプ
ラズマガスを所定流速で流してプラズマ炎を発生させる
とともにこのプラズマ炎をプラズマ発生室からプラズマ
発生室と連通されプラズマ発生室よりも広い空間を有す
るプラズマ反応室にまで延ばし、この延ばされたプラズ
マ炎内に被覆原料を供給するとともに線条体を通過させ
て生成した被覆材を線条体上に被覆するものであるので
、プラズマ炎中でのCVD反応は広い空間を有するプラ
ズマ反応室で行われるため、反応による析出物質の付着
、堆積があってもプラズマ炎の発生が阻害されることが
なくなり、長時間安定して長尺の線条体に被膜を形成す
ることができる。
As explained above, the present invention generates a plasma flame by flowing plasma gas at a predetermined flow rate into a plasma generation chamber, and communicates the plasma flame with the plasma generation chamber, which has a space larger than the plasma generation chamber. The plasma flame is extended to the plasma reaction chamber, the coating material is supplied into this extended plasma flame, and the coating material produced by passing through the filament is coated on the filament. Since the CVD reaction is carried out in a plasma reaction chamber with a wide space, the generation of plasma flame is not inhibited even if precipitated substances are attached or deposited due to the reaction, and long filaments can be produced stably for a long time. A coating can be formed on the body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はいずれもこの発明の被覆装置の例
を示す概略構成図、第3図は第2図の空胴共振器におけ
る電界分布を示す図、第4図は従来の被覆装置を示す概
略構成図である。 11・・・被覆装置、12・・・プラズマ発生室、13
・・・プラズマ反応室、14・・・本体、15・・・高
周波誘導コイル、16・・・高周波電源、17・・・プ
ラズマ発生ガス導入バイブ、21・・・原料バイブ、2
4・・・減圧バイブ、25・・・ノズル状部材、26・
・・空胴共振器、27・・・マグネトロン。
1 and 2 are both schematic configuration diagrams showing an example of the coating device of the present invention, FIG. 3 is a diagram showing the electric field distribution in the cavity resonator of FIG. 2, and FIG. 4 is a diagram showing the conventional coating device. FIG. 11... Coating device, 12... Plasma generation chamber, 13
. . . Plasma reaction chamber, 14 . . . Main body, 15 .
4... Decompression vibrator, 25... Nozzle-shaped member, 26...
...Cavity resonator, 27...Magnetron.

Claims (2)

【特許請求の範囲】[Claims] (1)プラズマ発生室内にプラズマガスを所定流速で流
してプラズマ炎を発生させるとともにこのプラズマ炎を
プラズマ発生室からプラズマ発生室と連通されプラズマ
発生室よりも広い空間を有するプラズマ反応室にまで延
ばし、この延ばされたプラズマ炎内に被覆原料を供給す
るとともに線条体を通過させて生成した被覆材を線条体
上に被覆することを特徴とする線条体の被覆方法。
(1) Plasma gas is flowed at a predetermined flow rate into the plasma generation chamber to generate a plasma flame, and the plasma flame is extended from the plasma generation chamber to the plasma reaction chamber, which is in communication with the plasma generation chamber and has a larger space than the plasma generation chamber. A method for coating a filamentous body, characterized by supplying a coating material into the extended plasma flame and passing the coating material through the filament body to coat the generated coating material on the filament body.
(2)プラズマ発生室と、このプラズマ発生室にプラズ
マガスを所定流速で流すためのプラズマガス供給手段と
、前記プラズマ発生室と連通されプラズマ発生室よりも
広い空間を有するプラズマ反応室と、このプラズマ反応
室へ被覆原料を供給する被覆原料供給手段と前記プラズ
マ反応室に線条体を通過させる線条体挿通手段を有する
ことを特徴とする線条体の被覆装置。
(2) a plasma generation chamber; a plasma gas supply means for flowing plasma gas into the plasma generation chamber at a predetermined flow rate; a plasma reaction chamber that communicates with the plasma generation chamber and has a space wider than the plasma generation chamber; A coating apparatus for a filamentous body, comprising a coating raw material supplying means for supplying a coating raw material to a plasma reaction chamber, and a filament insertion means for passing the filamentous body through the plasma reaction chamber.
JP63109319A 1988-05-02 1988-05-02 Coating of wire and unit therefor Pending JPH01278437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109319A JPH01278437A (en) 1988-05-02 1988-05-02 Coating of wire and unit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109319A JPH01278437A (en) 1988-05-02 1988-05-02 Coating of wire and unit therefor

Publications (1)

Publication Number Publication Date
JPH01278437A true JPH01278437A (en) 1989-11-08

Family

ID=14507206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109319A Pending JPH01278437A (en) 1988-05-02 1988-05-02 Coating of wire and unit therefor

Country Status (1)

Country Link
JP (1) JPH01278437A (en)

Similar Documents

Publication Publication Date Title
CA2182247C (en) Apparatus and method for treatment of substrate surface using plasma focused below orifice leading from chamber into substrate containing area
JP2840699B2 (en) Film forming apparatus and film forming method
US6396214B1 (en) Device for producing a free cold plasma jet
KR100189311B1 (en) Microwave plasma torch and method for generating plasma
US4897285A (en) Method and apparatus for PCVD internal coating a metallic pipe by means of a microwave plasma
JPH0317908B2 (en)
EP0284436B1 (en) Substrate-treating apparatus
US5360485A (en) Apparatus for diamond deposition by microwave plasma-assisted CVPD
US7159536B1 (en) Device and method for generating a local by micro-structure electrode dis-charges with microwaves
US20120222617A1 (en) Plasma system and method of producing a functional coating
US20030148041A1 (en) Volume-optimized reactor for simultaneously coating eyeglasses on both sides
JPH01278437A (en) Coating of wire and unit therefor
JPH08236293A (en) Microwave plasma torch and plasma generating method
JPH07135094A (en) Material supply method and device for microwave induction plasma
JPH06140186A (en) Manufacture of plasma
JPS62116775A (en) Plasma cvd device
JPH07130492A (en) Method and device for generating plasma
JP4871442B2 (en) Dense hard thin film forming apparatus and hard thin film forming method
JP2548785B2 (en) Electron cyclotron resonance plasma chemical vapor deposition equipment
JPH04136179A (en) Microwave plasma cvd device
JP2759568B2 (en) Manufacturing method of optical functional element
JP2548786B2 (en) Electron cyclotron resonance plasma chemical vapor deposition equipment
JPH07211657A (en) Method and equipment for depositing film
JPS63316427A (en) Ecr plasma reaction device
JPH0453229A (en) Manufacture device of semiconductor device