JPH01276827A - Random fm noise decreasing circuit - Google Patents

Random fm noise decreasing circuit

Info

Publication number
JPH01276827A
JPH01276827A JP10383188A JP10383188A JPH01276827A JP H01276827 A JPH01276827 A JP H01276827A JP 10383188 A JP10383188 A JP 10383188A JP 10383188 A JP10383188 A JP 10383188A JP H01276827 A JPH01276827 A JP H01276827A
Authority
JP
Japan
Prior art keywords
signal
frequency
output
multiplier
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10383188A
Other languages
Japanese (ja)
Inventor
Shigeaki Ogose
生越 重章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10383188A priority Critical patent/JPH01276827A/en
Publication of JPH01276827A publication Critical patent/JPH01276827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Noise Elimination (AREA)

Abstract

PURPOSE:To decrease the influence of a random FM noise and to attain a high quality signal transmission by executing the product of a signal obtained through a delay compensating circuit and a signal to frequency-modulate a base band signal. CONSTITUTION:A carrier component is extracted by two-multiplying the frequency of a receiving signal by a multiplier 11. The output of the multiplier 11 is inputted to a band pass filter 12 in which a passband characteristic is a narrow band. After a base band signal obtained as the detection output of a frequency detector 13 passes through a coefficient multiplier 14, the signal is inputted to a frequency modulator 15 and a frequency modulation is executed. The product is executed for the output of the frequency modulator 15 and the output of a delay compensator 16 in a mixer 17, and after the outputs pass through a band pass filter 18, they are outputted to an output terminal 19. Thus, even when a quick phase fluctuation due to fading exists, a satisfactory detection characteristic can be obtained and a high quality radio signal transmission line can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、移動通信等に用いられるディジタル信号の受
信・検波法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for receiving and detecting digital signals used in mobile communications and the like.

〔従来の技術〕[Conventional technology]

無線基地局と移動局により構成される移動通信方式にお
いでは、電波の多重伝搬に起因する7エーノングによる
伝送品質の劣化が生ずる。
In a mobile communication system composed of a radio base station and a mobile station, deterioration of transmission quality occurs due to 7-anong caused by multiple propagation of radio waves.

伝送品質劣化の原因としては、■受信レベルの落ち込み
によるもの、■受信レベルが十分高いにもかかわらず急
激な位相変化を生ずることによるもの、および、■伝搬
時間の異なる複数の信号が受信されることによるものの
3つに大別される。
The causes of transmission quality deterioration are: - A drop in the reception level; - A sudden phase change occurs even though the reception level is sufficiently high; and - Multiple signals with different propagation times are received. It can be roughly divided into three types depending on the situation.

これらの内、■の急激な位相変化に起因するものはラン
ダムFM雑音といわれるものであり、■の伝搬時間の異
なる複数の信号が受信されることによるものとともに信
号の伝送上の誤りを生じる原因となっている。
Among these, the noise caused by sudden phase changes in ■ is called random FM noise, and along with the noise caused by receiving multiple signals with different propagation times in ■, it is a cause of errors in signal transmission. It becomes.

このような7エーシングの軽減策の一つにダイパーシテ
ィ受信技術があり、前記■の受信レベルの低下によるも
のや■のランダムFM雑音に対して効果があること力を
示されている。
Diperity reception technology is one of the mitigation measures for such 7-acing, and it has been shown to be effective against (2) caused by a decrease in reception level and (2) random FM noise.

しかしながら、上記ダイパーシティ受信によっても完全
にはその影響を取り除くことができない。
However, even with the above-mentioned diversity reception, the influence cannot be completely removed.

これに対し、従来、異なる周波数の搬送波を2つ用意し
、その第一の搬送波のみに変調を施し、第二の搬送波と
ともに同時送出し、受信側において第二の搬送波を用い
てランダムFMi音を軽減する方法がありG ranl
unclの方法として知られている(文献 「J、 G
ranlund 。
In contrast, conventionally, two carrier waves with different frequencies are prepared, only the first carrier wave is modulated, and the second carrier wave is simultaneously transmitted, and the receiving side uses the second carrier wave to generate random FMi sound. There is a way to reduce the
It is known as the uncl method (Reference ``J, G
ranlund.

’Topics in the design of 
antenna for 5cat−ter ” 、 
 Tech、 Rep、 Lincoln labor
atoryMIT、Nov、1956 J  参照)。
'Topics in the design of
antenna for 5 cat-ter”,
Tech, Rep, Lincoln Labor
atoryMIT, Nov. 1956 J).

しかし、第二の搬送波を用いないでフングムFM雑音を
軽減する方法は開示されていなかった。
However, no method has been disclosed for reducing Hunghum FM noise without using a second carrier.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ディノタル位相変I$1!信号では、同期検波および遅
延検波の位相検波法により復調を行なう。
Dinotal phase change I$1! The signal is demodulated using phase detection methods such as synchronous detection and delayed detection.

この場合、復調法として特に同期検波を採用した場合に
は、再生搬送波の位相が7エージングによる高速な位相
の変化に追従できないことにより軽減困難な誤りが生じ
、高品質伝送実現の点で問題があった。
In this case, especially when synchronous detection is used as the demodulation method, errors that are difficult to reduce occur because the phase of the recovered carrier wave cannot follow the rapid phase changes caused by aging, which poses a problem in terms of achieving high-quality transmission. there were.

以下、ランダムFM2!音の影響を同期検波を行なう場
合について説明する。
Random FM2 below! A case will be described in which synchronous detection of the influence of sound is performed.

tIS2図は同期検波回路の楕或の例を示すブロック図
であり、コスタスループを用いて搬送波再生を付なう場
合を示している。
Figure tIS2 is a block diagram showing an example of a synchronous detection circuit, and shows a case where carrier wave recovery is added using a Costas loop.

同期検波回路13の動作を以下に示す。The operation of the synchronous detection circuit 13 will be described below.

検波器入力端子21に入力された受信信号はハイブリッ
ド22に入力され、その出力の0成分は乗f、器23に
、x / 2成分は乗算器25に導かれる。 VCO(
Voltage Cot+Lrolled 0s−ci
llator) 30の出力は2分され、一方は乗算器
23へ、他の一方は移相器24を介して71器25に入
力され、それぞれハイブリッド出力信号との乗積がとら
れる。移相器24の出力信号は入力信号との位相差がπ
/2の関係を有する。乗算器23および乗算器25の出
力はそれぞれローパスフィルタ26および27を通過し
、搬送波周波数の2倍の周波数成分が除去された後、そ
れぞれ同相成分出力端子31および直交成分出力端子3
2に検波信号を出力する。
The received signal input to the detector input terminal 21 is input to the hybrid 22 , the 0 component of the output thereof is guided to the multiplier f, and the x/2 component is guided to the multiplier 25 . VCO(
Voltage Cot+Lrolled 0s-ci
The output of the llator) 30 is divided into two parts, one of which is input to the multiplier 23 and the other to the 71 unit 25 via the phase shifter 24, and the product of each is multiplied by the hybrid output signal. The output signal of the phase shifter 24 has a phase difference of π from the input signal.
/2. The outputs of the multiplier 23 and the multiplier 25 pass through the low-pass filters 26 and 27, respectively, and after removing the frequency component twice the carrier frequency, the outputs are sent to the in-phase component output terminal 31 and the quadrature component output terminal 3, respectively.
The detection signal is output to 2.

また、ローパスフィルタ26および27の出力は乗算器
28において乗積がとられる。乗算器28の出力はルー
プフィルタ29を通過し、直流電圧としてVCO30の
周波数制御端子に入力される。
Further, the outputs of the low-pass filters 26 and 27 are multiplied by a multiplier 28. The output of the multiplier 28 passes through a loop filter 29 and is input as a DC voltage to the frequency control terminal of the VCO 30.

次に、同期検波の原理を数式を用いて説明する。Next, the principle of synchronous detection will be explained using mathematical formulas.

検波器入力端子21に加えられる受信信号「(t)を r(t)” R(t) cos (ωを十φ、(t)十
〇(t)〕・・・・・・(1) とおく。
The received signal applied to the detector input terminal 21 is "(t) r(t)" R(t) cos (ω is 1φ, (t) 10(t))... (1) put.

ここで、R(t)は受信信号の振幅、ωは搬送波角周波
数、φ、(t)は変調による位相成分である。また、θ
(1)は7エーソングによる位相であり、移動伝搬路を
経由した受信信号が受けるレイIJ−7エーノングでは
ランダムに変動する。 このとき、乗fL器23およc
/25の入力r+(t)およびrib)はそれぞれ rl(t)= r(tl r2(t)= R(t)  5in(cm L+ φ、
(し)+ θ (L)〕・・・・・・(2) となる、また、VCOの出力は次式で与えられる。
Here, R(t) is the amplitude of the received signal, ω is the carrier wave angular frequency, and φ, (t) is the phase component due to modulation. Also, θ
(1) is a phase based on 7 asons, which varies randomly in the ray IJ-7 asons received by the received signal via the moving propagation path. At this time, the multiplier fL unit 23 and c
/25 input r+(t) and rib) are respectively rl(t)=r(tl r2(t)=R(t) 5in(cm L+φ,
(shi)+θ(L)]...(2) The output of the VCO is given by the following equation.

u(t)=U (L)  cosn (ωt+ψ(t)
)   −−−−−−(3)U(t)お上りψ(1)は
、それぞれ振幅および位相である。このとさ、乗算器2
3および25の入力ul(t)および、2(1)はそれ
ぞれu+(t)= U (t) u、(t)=U(t)  5in(ω し+ ψ(t)
)    −・−・・−(4)で与えられる。
u(t)=U(L)cosn(ωt+ψ(t)
) -------(3) U(t) rise ψ(1) are amplitude and phase, respectively. This time, multiplier 2
The inputs ul(t) and 2(1) of 3 and 25 are respectively u+(t)=U(t) u,(t)=U(t) 5in(ω + ψ(t)
) −・−・・−(4) is given.

従って、同相成分出力端子31および直交成分出力端子
32の出力はそれぞれ d+(t)= D  +(t)  cos (φm(t
) 十 〇 (t:)−φ (L))do(t)” D
g(t)sin(φM(t)+θ(1)−ψ(t)〕・
・・・・・ (5) となる。
Therefore, the outputs of the in-phase component output terminal 31 and the quadrature component output terminal 32 are respectively d+(t)=D+(t) cos (φm(t
) 10 〇 (t:)−φ (L))do(t)” D
g(t) sin(φM(t)+θ(1)−ψ(t))]・
...(5) It becomes.

また、Ml器28の出力をループフィルタ29を通過さ
せて得られた直流信号電圧により、VCOの発振周波数
を一定に保つように制御する1式(5)の検波出力を用
いることにより、クロック再生および符号識別を行ない
、復調信号を得ることができる。
In addition, by using the detection output of equation 1 (5) that controls the oscillation frequency of the VCO to be kept constant using the DC signal voltage obtained by passing the output of the Ml generator 28 through the loop filter 29, clock regeneration is possible. Then, a demodulated signal can be obtained by performing code identification.

ところで、式(5)において、θ(t)=ψ(L)でな
い限り復調特性の劣化が生じる。この方法では再生搬送
波の周波数は一定に保たれるが、ループフィルタを挿入
するため、再生搬送波の位相φ(1)は7エージングに
よる位相変動θ(1)に追従できない、このため、7エ
ージング存在下では受信入力電圧の大きな領域において
軽減困難な誤りが生じ、その大きさはループフィルタの
定数にもよるが周波数検波と比較して1桁以上大きい(
文献「K、 D&1koku et al、 w”  
High−speed  digital  tran
smission  experi−ments  i
n  9 2 0  M Hz  urban  an
d  suburbanmobile  radio 
 channels  、   IEEE   Tra
ns。
By the way, in equation (5), unless θ(t)=ψ(L), the demodulation characteristics will deteriorate. In this method, the frequency of the recovered carrier wave is kept constant, but because a loop filter is inserted, the phase φ(1) of the recovered carrier wave cannot follow the phase fluctuation θ(1) due to 7 aging. Under this condition, an error that is difficult to reduce occurs in a region where the received input voltage is large, and the magnitude of the error is more than an order of magnitude larger than that of frequency detection, although it depends on the constant of the loop filter (
Literature “K, D&1koku et al, w”
High-speed digital tran
mission experiments i
n 9 2 0 MHz urban an
d suburban mobile radio
channels, IEEE Tra
ns.

Vehic、 Technol、e  VT−31w 
  pp、70−75、May 1982  J  参
照)。
Vehic, Technol, e VT-31w
pp. 70-75, May 1982 J).

本発明は、このような従来の問題点に鑑み、受信側にお
いて、原理的に前記ランダムFM雑音の影響を軽減し、
高品質信号伝送を行なう方法を提供することを目的とし
ている。
In view of these conventional problems, the present invention theoretically reduces the influence of the random FM noise on the receiving side,
The purpose is to provide a method for high quality signal transmission.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、上記目的は特許請求の範囲に記載の手
段により達成される。
According to the invention, the above object is achieved by the means described in the claims.

すなわち、本発明は、ディノタル位相変調信号の受信部
において、受信信号の逓倍または該受信信号の乗積によ
り変調位相成分を除去した信号を得て、該信号からバン
ドパスフィルタにより抽出した信号を周波数検波して得
られたベースバンド信号を前記逓倍数の逆数倍の大きさ
の信号とし、該信号で前記ベースバンド信号に周波数変
調を施し周波数変調信号を得るとともに、受信信号を前
記バンドパスフィルタの遅延特性および周波数検波、周
波数変調により生じる遅延特性と等価な遅延特性を有す
る遅延補償回路を通して得られた信号と前記周波数変調
信号との乗積を行なうランダムFM雑音軽減回路である
That is, the present invention obtains a signal from which a modulated phase component is removed by multiplying or multiplying the received signal in a dinotal phase modulation signal receiving section, and extracts the signal from the signal using a bandpass filter and converts the frequency The baseband signal obtained by the detection is made into a signal with a magnitude that is a reciprocal of the multiplication number, and the baseband signal is subjected to frequency modulation using the signal to obtain a frequency modulated signal, and the received signal is passed through the bandpass filter. This is a random FM noise reduction circuit that multiplies the frequency modulation signal and a signal obtained through a delay compensation circuit having delay characteristics equivalent to those caused by frequency detection and frequency modulation.

〔作 用〕[For production]

ディノ゛タル位相信号自身の有する特徴を利用して、7
エーソングを受けた変調信号から位相変動を含む搬送波
成分を抽出し、抽出された信号を周波数検波して得られ
た信号でさらに周波数変調を施し、該信号と受信信号と
の乗積により、受信された変調信号の位相項のうち7エ
ージングによる変動成分を除去した信号を得るものであ
る。
Using the characteristics of the digital phase signal itself, 7
A carrier wave component including phase fluctuation is extracted from the modulated signal that has received the Ason, and the extracted signal is frequency-detected.The resulting signal is further subjected to frequency modulation, and the received signal is multiplied by the received signal. A signal is obtained by removing seven aging-induced fluctuation components from the phase term of the modulated signal.

〔実施例〕〔Example〕

PIS1図は、本発明の一実施例を示すブロック図であ
って、B P S K (B 1nary P his
s S hiftK eying)信号を復調する場合
について示している。
PIS1 diagram is a block diagram showing one embodiment of the present invention, and is a block diagram showing an embodiment of the present invention.
s shift keying) signal is demodulated.

同図において、入力端子10に入力された受信信号は2
分され、逓信器11お上り遅延補償回路16に入力され
る。逓倍器11では受信信号の周波数を2逓倍すること
により搬送波成分を抽出する。逓倍器11の出力を通過
帯域特性が狭帯域なバンドパスフィルタ12に入力する
In the figure, the received signal input to the input terminal 10 is 2
and is input to the upstream delay compensation circuit 16 of the transmitter 11. The multiplier 11 extracts the carrier wave component by doubling the frequency of the received signal. The output of the multiplier 11 is input to a bandpass filter 12 having a narrow passband characteristic.

バンドパスフィルタ12の出力は周波数検波器13に入
力され検波される1周波数検波器13の検波出力として
得られたベースバンド信号は係数器14を経た後、周波
数変調器15に入力され周波数変調される0周波数変調
器15の出力および遅延補償器16の出力はミキサ17
においで乗積され、バンドパスフィルタ18を経た後、
その出力端子19に出力する。16はバンドパスフィル
タ12の遅延特性および周波数検波器13、係数器14
、周波数変調器15における遅延を補償する回路である
The output of the bandpass filter 12 is input to the frequency detector 13 and detected.The baseband signal obtained as the detection output of the frequency detector 13 is input to the frequency modulator 15 after passing through the coefficient unit 14 and is frequency modulated. The output of the zero frequency modulator 15 and the output of the delay compensator 16 are sent to the mixer 17.
After being multiplied by the odor and passing through the bandpass filter 18,
The signal is output to the output terminal 19 thereof. 16 is the delay characteristic of the bandpass filter 12, the frequency detector 13, and the coefficient unit 14.
, which is a circuit that compensates for the delay in the frequency modulator 15.

なお、周波数2逓倍器に代えてミキサを使用し、受信信
号自身の乗積をとることも可能である。
Note that it is also possible to use a mixer instead of the frequency doubler and take the product of the received signal itself.

次に、数式を用いて第1図の動作を説明する。Next, the operation shown in FIG. 1 will be explained using mathematical formulas.

受信信号を式(1)で表わすとさ、逓倍器11の出力を
バンドパスフィルタ12を通すことにより w+(t)= R”(t) cos(2ωt+2φ5(
t)+20(t)〕 ・・・・・・(6) なる信号が得られる。ここで、BPSKでは0 (マー
ク) φ lI(し)=                 
       ・・・・・・ (7)π (スペース) であるから、式(6)は変調信号成分φ、(L)を含ま
ない形で 豐+(t)” R”(L) cos (2ωt+2θ(
0〕・・・・・・(8) と表わされる。12の通過帯域幅は中心角周波数2ωと
して搬送波成分が通過できる程度に狭いものとする。
When the received signal is expressed by equation (1), by passing the output of the multiplier 11 through the bandpass filter 12, w+(t)=R''(t) cos(2ωt+2φ5(
t)+20(t)]...(6) A signal is obtained. Here, in BPSK, 0 (mark) φ lI (shi) =
...... (7) Since π (space), equation (6) can be expressed as 豐+(t)"R"(L)cos(2ωt+2θ(
0]...(8) It is assumed that the passband width of No. 12 is narrow enough to allow the carrier wave component to pass with a center angular frequency of 2ω.

式(8)を中心周波数2ωの周波数検波器で検波すると
、 w(L)= (1/2π)d(2θ(t) )/dt・
・・・・・(9) なる検波信号が得られる。ここで、dx/cltはXの
時間微分を表わす1式(9)を係数器14により k倍
した信号で周波数変調を施すと、u(L)= U (t
) cos (ωLt+2 kr f m(L)dt十
ψL(t) )       ・・・・・・ (10)
なるfH号が得られる。ここで、ω、は搬送波角周波数
、ψ1(t)は搬送波発振器により与えられる位相であ
る。
When formula (8) is detected by a frequency detector with a center frequency of 2ω, w(L) = (1/2π) d(2θ(t) )/dt・
...(9) A detected signal is obtained. Here, dx/clt is frequency modulated using a signal obtained by multiplying Equation (9) representing the time differential of X by k using the coefficient multiplier 14, and then u(L)=U(t
) cos (ωLt+2 kr f m(L)dt ψL(t) ) ・・・・・・ (10)
The fH number is obtained. Here, ω is the carrier wave angular frequency and ψ1(t) is the phase given by the carrier wave oscillator.

式(10)と式(1)で与えられる信号をミキサ17に
よりJTi!積すると v(L)= V (t) cos ((ω+ωL> t
+φm(t)十〇(t)+ 2 kπf■(t)dt+
ψL(t) )+cos((ω−ωL) t+φ―(1
)十〇(1)−2kff f 5i(t)dt−ψL(
t) )・・・・・・(11) となる信号が得られる1式(11)で与えられる信号を
中心角周波数ω−ω、のバンドパスフィルタを通すこと
により、 v(t)−V (t)  cos ((ω −ωL) 
 t+−一(1)十 〇 (t)−2krf曽(t)a
t  −ψ+−(1))・・・・・・(12) なる信号をえる。ここで、係数器の係数をに=1/2と
おき、θ (t)= 2にf(噛(t)/ 2 )dt
の関係を用いると、式(12)は %式%(1) となる0式(13)には、変調成分以外の位相項として
、時間的に緩やかに変動する発振器の位相項ψL(t)
は含まれるが、7エージングによる急激に変動する位相
項θ(1)は含まれていない。
The mixer 17 converts the signals given by equations (10) and (1) into JTi! When multiplied, v(L) = V (t) cos ((ω+ωL> t
+φm(t) 10(t)+ 2 kπf■(t)dt+
ψL(t) )+cos((ω−ωL) t+φ−(1
) 10(1)-2kff f 5i(t)dt-ψL(
t) )...(11) By passing the signal given by equation (11) through a bandpass filter with a center angular frequency ω-ω, the following signal is obtained: v(t)-V (t) cos ((ω −ωL)
t+-1(1) 10 〇 (t)-2krfso(t)a
t −ψ+−(1))・・・・・・(12) Obtain the signal. Here, the coefficient of the coefficient multiplier is set to = 1/2, and θ (t) = 2 is given by f(t(t)/2)dt
Using the relationship, Equation (12) becomes %Equation %(1). Equation (13) includes the phase term ψL(t) of the oscillator, which fluctuates gradually over time, as a phase term other than the modulation component.
is included, but the rapidly changing phase term θ(1) due to aging is not included.

従って、18の出力に対して検波を施すことにより良好
な検波特性を有する検波出力信号が得られる。
Therefore, by performing detection on the output of 18, a detected output signal having good detection characteristics can be obtained.

本発明は、QPSK等の多値ディノタル位相−変調信号
にも適用可能であることが容易に示される0例えば、Q
PSKでは第1図の逓倍器で周波数を4逓倍し、搬送波
周波数成分を抽出すればよい。
It is easily shown that the present invention is also applicable to multilevel dinotal phase-modulated signals such as QPSK.
In PSK, the frequency can be multiplied by 4 using the multiplier shown in FIG. 1, and the carrier frequency component can be extracted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば7エージングによ
る急激な位相変動が存在する場合にも良好な検波特性を
得ることができ、高品質無線信号伝送路を実現できる利
点がある。
As described above, according to the present invention, it is possible to obtain good detection characteristics even when there is a rapid phase fluctuation due to aging, and there is an advantage that a high quality radio signal transmission path can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
同期検波回路の構成の例を示すブロック図である。 10 ・・・・・・入力端子、  11 ・・・・・・
逓倍器、12  、 18  ・・・・・・バンドパス
フィルタ、13 ・・・・・・周波数検波器、   1
4 ・・・・・・係数器、   15 ・・・・・・周
波数変調器、   16・・・・・・遅延補償器、  
  17 ・・・・・・ ミキサ、21 ・・・・・・
検波器入力端子、  22 ・・・・・・ハイブリッド
、   23  、 25  、 28  ・・・・・
・ 乗算器、   24 ・・・・・・移相器、   
26 。 27 ・・・・・・ ローパスフィルタ、    29
 ・・・・・・ループフィルタ、   30 ・・・・
・・vCO131・・・・・・同相成分出力端子、  
  32 ・・・・・・ 直交成分出力端子、    
33 ・・・・・・同相検波回路
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing an example of the configuration of a synchronous detection circuit. 10...Input terminal, 11...
Multiplier, 12, 18...Band pass filter, 13...Frequency detector, 1
4...Coefficient unit, 15...Frequency modulator, 16...Delay compensator,
17 ・・・・・・ Mixer, 21 ・・・・・・
Detector input terminal, 22...Hybrid, 23, 25, 28...
・ Multiplier, 24 ... Phase shifter,
26. 27 ・・・・・・ Low pass filter, 29
...Loop filter, 30 ...
・・vCO131・・・・Common mode component output terminal,
32... Orthogonal component output terminal,
33...In-phase detection circuit

Claims (1)

【特許請求の範囲】[Claims] ディジタル位相変調信号の受信部において、受信信号の
逓倍または該受信信号の乗積により変調位相成分を除去
した信号を得て、該信号からバンドパスフィルタにより
抽出した信号を周波数検波して得られたベースバンド信
号を前記逓倍数の逆数倍の大きさの信号とし、該信号で
前記ベースバンド信号に周波数変調を施し周波数変調信
号を得るとともに、受信信号を前記バンドパスフィルタ
の遅延特性および周波数検波、周波数変調により生じる
遅延特性と等価な遅延特性を有する遅延補償回路を通し
て得られた信号と前記周波数変調信号との乗積を行なう
ことを特徴とするランダムFM雑音軽減回路。
In the receiving section of the digital phase modulation signal, a signal from which the modulated phase component is removed is obtained by multiplying or multiplying the received signal, and a signal extracted from the signal by a bandpass filter is frequency-detected. The baseband signal is a signal having a magnitude that is a reciprocal of the multiplication number, frequency modulation is performed on the baseband signal using the signal to obtain a frequency modulation signal, and the received signal is subjected to frequency detection based on the delay characteristics of the bandpass filter. A random FM noise reduction circuit characterized in that a signal obtained through a delay compensation circuit having a delay characteristic equivalent to a delay characteristic caused by frequency modulation is multiplied by the frequency modulated signal.
JP10383188A 1988-04-28 1988-04-28 Random fm noise decreasing circuit Pending JPH01276827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10383188A JPH01276827A (en) 1988-04-28 1988-04-28 Random fm noise decreasing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10383188A JPH01276827A (en) 1988-04-28 1988-04-28 Random fm noise decreasing circuit

Publications (1)

Publication Number Publication Date
JPH01276827A true JPH01276827A (en) 1989-11-07

Family

ID=14364370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10383188A Pending JPH01276827A (en) 1988-04-28 1988-04-28 Random fm noise decreasing circuit

Country Status (1)

Country Link
JP (1) JPH01276827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046865A (en) * 2013-08-01 2015-03-12 日本無線株式会社 Interference wave replica generating circuit and interference wave suppression circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046865A (en) * 2013-08-01 2015-03-12 日本無線株式会社 Interference wave replica generating circuit and interference wave suppression circuit

Similar Documents

Publication Publication Date Title
FI80175C (en) Digital telecommunication system where quadrature modulated carrier signals are used
US8036541B2 (en) Coherent optical receiver
US7346279B1 (en) Optical transceiver using heterodyne detection and a transmitted reference clock
US5610946A (en) Radio communication apparatus
US8093943B2 (en) Phase noise correction device and its method
US6516183B1 (en) Method and apparatus for disturbance compensation of a direct conversion receiver in a full duplex transceiver
EP0110726B1 (en) Method and system for transmitting and receiving data
US5757531A (en) Gils for heterodyne receiver having low intermediate frequency
US5261120A (en) Method and apparatus for transmitting a signal with an offset which follows a received signal
JPH01276827A (en) Random fm noise decreasing circuit
JPS6347313B2 (en)
EP0099113B2 (en) Interference cancellation type space diversity system
JPS6211347A (en) Four-phase psk demodulating device
US5592507A (en) Intermediate relay station of a digital microwave communication system using service channel for monitoring and controlling space and/or time diversity, heterodyne relay, phase control, frequency control, with phase shift keying modulation
US5134721A (en) Noise eliminating device for angle-modulated wave
US5982200A (en) Costas loop carrier recovery circuit using square-law circuits
JPH088796A (en) Transmitter/receiver
KR0171031B1 (en) Single sideband bpsk modulating/demodulating method by phase deduction
JPS6214557A (en) 4-phase psk demodulator
KR860000232B1 (en) Compatible am stereo broadcast system
KR100285756B1 (en) Apparatus for tracking carrier in wireless transfer system
JP2001103005A (en) Optical inter-satellite communication system
JPH04345328A (en) Line changeover control circuit
JPS61177054A (en) Receiving circuit of phase modulating signal
JPH04100357A (en) Pi/4 shift qpsk delay detection demodulator