JPS6214557A - 4-phase psk demodulator - Google Patents

4-phase psk demodulator

Info

Publication number
JPS6214557A
JPS6214557A JP15229185A JP15229185A JPS6214557A JP S6214557 A JPS6214557 A JP S6214557A JP 15229185 A JP15229185 A JP 15229185A JP 15229185 A JP15229185 A JP 15229185A JP S6214557 A JPS6214557 A JP S6214557A
Authority
JP
Japan
Prior art keywords
signal
phase
pass filter
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15229185A
Other languages
Japanese (ja)
Inventor
Yukihiro Okada
行弘 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Electric Co Ltd filed Critical NEC Home Electronics Ltd
Priority to JP15229185A priority Critical patent/JPS6214557A/en
Publication of JPS6214557A publication Critical patent/JPS6214557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To perform accurate demodulation by comparing the phase difference between input and output signals of a narrow band pass filter having a variable center frequency which a converted signal passes and applying the comparison output to the narrow band pass filter through a low pass filter to make said phase difference zero. CONSTITUTION:A reception signal 1 is inputted to a remodulating part 201 and an orthogonal phase demodulating part 202 through a preamplifier 101. The demodulated signal is inputted to the remodulating part 201 to produce a carrier signal 18. The signal 18 becomes the reference reproduced carrier signal 6 of the demodulating part 202 through an AFC part 203 to form a loop. The signal 18 is multiplied in a multiplier 115 by the signal supplied from an oscillator 112, and the output of the multiplier 115 is supplied to a multiplier 120 and a narrow band BPF 117 through a BPF 116. The output of the BPF 117 is supplied to a variable phase shifter 119 and a multiplier 123 through a limiter circuit 118, and the phase comparison output of the multiplier 120 is supplied to the BPF 117 through an LPF 121 to change the center frequency of the BPF 117. Thus, the frequency of the AFC loop is made constant to perform the accurate demodulation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 通信および放送の分野において、マイクロ波周波数帯の
4相PSK変調信号を復調する同期型復調装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a synchronous demodulator that demodulates a four-phase PSK modulated signal in a microwave frequency band in the fields of communication and broadcasting.

〔従来の技術〕[Conventional technology]

衛星通信、衛星放送に代表されるマイクロ波周波数帯の
信号伝送系において高周波信号を時分割多重することに
よりデータおよび各種の信号を伝送するRFTDM (
Radio  Frequency  TimeD 1
vision  Multiplex)方式が近年用い
られるようになってきている。日本放送協会のMUSE
(Multiplex  5ub−Nyquist  
Sampling  En −coding)方式高精
細度テレビジョン放送もその例である。高周波信号を変
調してデータを伝送するには占有帯域幅および伝送効率
の面ですぐれた4相PSK変調方式が用いられている。
RFTDM (
Radio Frequency TimeD 1
In recent years, the vision multiplex system has come into use. Japan Broadcasting Corporation's MUSE
(Multiplex 5ub-Nyquist
An example of this is high-definition television broadcasting based on Sampling En-coding. To transmit data by modulating a high frequency signal, a four-phase PSK modulation method is used, which is excellent in terms of occupied bandwidth and transmission efficiency.

受信装置は上記のような高周波信号を受信し、4相PS
K変調信号を復調する場合、複数段の周波数変換回路を
設は特定の中間周波信号に変換し復調装置に入力する。
The receiving device receives the high frequency signal as described above and converts it into a 4-phase PS
When demodulating a K-modulated signal, a multi-stage frequency conversion circuit is used to convert the signal into a specific intermediate frequency signal and input it to the demodulator.

4相PSK復調装置は、入力された4相PSK変調信号
から搬送波信号を再生し、この再生搬送波信号を用い変
調されたデータを復調する同期型復調方式が主に用いら
れる。
A 4-phase PSK demodulator mainly uses a synchronous demodulation method in which a carrier wave signal is regenerated from an input 4-phase PSK modulated signal, and the modulated data is demodulated using this regenerated carrier wave signal.

高速搬送波信号再生方式としては、逆変調方式または4
逓倍方式が一般的であるが、入力搬送波信号の周波数が
高い場合は逆変調方式が有利である。逆変調方式を使用
した搬送波再生・復調回路の例を第3図に示す。この回
路は直交位相復調回路401と再変調回路402および
狭帯域通過フィルタ回路403で構成され搬送波信号再
生ループを形成する。入力された4相PSK変調信号a
は基準信号となる再生搬送波信号f、gを用いて直交位
相復調回路401により復調される。乗算器302,3
03により復調信号以外にも多くの不要成分が生ずるが
、これを除くために低域通過フィルタ305,306に
通し、さらにリミッタ回路307,308に入力された
後再変調回路402に復調信号り、iが供給される。
As a high-speed carrier signal regeneration method, inverse modulation method or 4
Although the multiplication method is common, the inverse modulation method is advantageous when the frequency of the input carrier signal is high. FIG. 3 shows an example of a carrier wave regeneration/demodulation circuit using the inverse modulation method. This circuit is composed of a quadrature phase demodulation circuit 401, a remodulation circuit 402, and a narrow band pass filter circuit 403, forming a carrier signal regeneration loop. Input 4-phase PSK modulation signal a
is demodulated by a quadrature phase demodulation circuit 401 using reproduced carrier wave signals f and g, which serve as reference signals. Multiplier 302,3
03, many unnecessary components are generated in addition to the demodulated signal, but in order to remove these, the demodulated signal is passed through low-pass filters 305 and 306, and further inputted to limiter circuits 307 and 308, and then sent to the remodulation circuit 402. i is supplied.

再変調回路402において、前記復調信号り。A remodulation circuit 402 receives the demodulated signal.

iと入力信号m、lとを乗算器309,310で乗算後
、加算器312により加算すると変調成分の無い搬送波
信号nが得られる。搬送波信号nはC/N比の向上のた
め狭帯域通過フィルタ313に通し、さらに信号の振幅
変動分を除去するためリミッタ回路314に供給され、
可変移相器315を介して直交位相復調回路401に用
いる基準信号g+  fとして送出される。なお304
.311は信号位相をπ/2遅らせる移相器である。
When i is multiplied by input signals m and l by multipliers 309 and 310 and then added by an adder 312, a carrier wave signal n without a modulation component is obtained. The carrier wave signal n is passed through a narrow band pass filter 313 to improve the C/N ratio, and is further supplied to a limiter circuit 314 to remove amplitude fluctuations of the signal.
It is sent out via the variable phase shifter 315 as a reference signal g+f used for the quadrature phase demodulation circuit 401. Furthermore, 304
.. 311 is a phase shifter that delays the signal phase by π/2.

以下、第3図の回路の各部の信号を数式的に示し、搬送
波信号の再生動作の説明を行なう。入力端子301から
入力する4相PSK変調信号aをa =  I cos
  wt+ Qsin  wt(ここでI、Qは正負の
値をもつ定数、1H1=IQ1) とし、直交位相復調回路4010基準信号f、  gは
位相誤差φ1をもつものとして f ””  Kr cos (wt−φ−g=KI s
in (wt−φ+) とする。乗算器302,303の出力信号す、  cは
、乗算器の利得をに2とすると b= (Icos ht+Qsin wt)  ・(−
に+ cos(wt−φI))・K2 =  ((KI  Q/2)sin  2wt−cos
  φ1−(KI  I / 2)sin  2w1s
in  φr    (K +Q/2)sin  φ+
  ”  (KI  Q/ 2)  cos2 wt−
sin  φr  −(KI  I/2cos  φ1
−(KI  I/2)cos  2wt−cos  φ
+    (KII/2)sin  2wt−5in 
 φ+)・Kzc =  (Icos wt+Qsin
 wt)  ・KI  sin  (wt−φ、) =  ((KI  Q/ 2)cos  φI  −(
KI  Q/2)・CO3211t−CO3φ+   
 (KI  Q/ 2)sin2 wt−sinφ+ 
+(KI I/2) sin 2wt’ cos  φ
r    (KI  I/2)sin  φ、−(KI
  I/2)cos  2wt−5in  φ+)・K
zとなる。
Hereinafter, the signals of each part of the circuit of FIG. 3 will be expressed mathematically, and the reproduction operation of the carrier wave signal will be explained. The 4-phase PSK modulation signal a input from the input terminal 301 is a = I cos
wt+Qsin wt (here, I and Q are constants with positive and negative values, 1H1=IQ1), and the quadrature phase demodulation circuit 4010 reference signals f and g have a phase error φ1. −g=KIs
In (wt-φ+). The output signals S and c of the multipliers 302 and 303 are expressed as b= (Icos ht+Qsin wt) ・(−
+ cos (wt-φI))・K2 = ((KI Q/2) sin 2wt-cos
φ1-(KI I/2) sin 2w1s
in φr (K +Q/2)sin φ+
” (KI Q/2) cos2 wt-
sin φr −(KI I/2cos φ1
-(KI I/2)cos 2wt-cos φ
+ (KII/2) sin 2wt-5in
φ+)・Kzc = (Icos wt+Qsin
wt) ・KI sin (wt-φ,) = ((KI Q/ 2) cos φI −(
KI Q/2)・CO3211t-CO3φ+
(KI Q/ 2) sin2 wt-sinφ+
+(KI I/2) sin 2wt' cos φ
r (KI I/2) sin φ, -(KI
I/2) cos 2wt-5in φ+)・K
It becomes z.

信号す、cを低域通過フィルタ305,306に供給す
るとその出力信号d、eは前記フィルタの利得をに、と
して d= −Ka Qsinφ、−に、rcos φ1e 
” K 4 Qcos φ、−に、l5in φ1(こ
こでに+  Kz K3 / 2 = K4 )となる
。信号d、eをリミッタ回路307,308に供給した
場合、φ、が小さい値であればリミッタ回路307,3
08の出力信号り、iはh=−に、I n=に、Q (ここでに、はリミッタ回路の定数) となり、信号り、iはφ1が小さい場合には一定値にな
る。 次に信号り、iは再変調回路402に供給され信
号1.mと乗算される。遅延回路316は、乗算器30
2,303からそれぞれ乗算器309,310に到る復
調信号り、  iの遅延量を補償するものでありその遅
延it(位相変化分)をφ2とすると、信号!2mは次
のように表わすことができる。
When the signals s and c are supplied to low-pass filters 305 and 306, the output signals d and e are given by d=-Ka Qsinφ,-, rcos φ1e with the gain of the filter as
" K 4 Qcos φ, - becomes l5in φ1 (here + Kz K3 / 2 = K4). When the signals d and e are supplied to the limiter circuits 307 and 308, if φ is a small value, the limiter circuit 307,3
In the output signal of 08, i becomes h=-, In=, Q (here, is a constant of the limiter circuit), and the signal i becomes a constant value when φ1 is small. Next, the signal 1.i is supplied to the remodulation circuit 402 and the signal 1. Multiplied by m. The delay circuit 316 includes the multiplier 30
The demodulated signals from 2 and 303 to multipliers 309 and 310 respectively compensate for the delay amount of i, and if the delay it (phase change amount) is φ2, then the signal! 2m can be expressed as follows.

1 = I cos (wt−φz) + Qsin 
(wt−φ2)m = −Qcos (wt−φz) 
+ l5in (wt−φり(ここで遅延回路316お
よび移相器311の利得は簡単のため1とする。) したがって乗算器309.310の出力信号j。
1 = I cos (wt-φz) + Qsin
(wt-φ2)m = -Qcos (wt-φz)
+l5in (wt-φ (Here, the gains of the delay circuit 316 and phase shifter 311 are assumed to be 1 for simplicity.) Therefore, the output signals j of the multipliers 309 and 310.

kは乗算器の利得をに、とすると j = I QK7 cos  (wt−φz)   
I”  K7  sin(wt−φ2) k = I QK?  cos  (wt−φz)  
+Q”  K7  sin(wt−φ2) (ここでに?=KS  ・K6) 加算器312の出力信号nは加算器の利得を1として n= (1”  +Q” )  ・K7sin (wt
−φ2)=Ks sin (wt−φり (ここでKs = (I” +Q2 )  ・K、=定
数)と表わすことができ狭帯域通過フィルタ313゜リ
ミッタ回路314.可変移相器315により処理され直
交位相復調回路401の基準信号f、  gとなる。可
変移相器315はその出力信号gかに+ sin wt
となるように位相およびゲインを調整する回路である。
If k is the gain of the multiplier, then j = I QK7 cos (wt-φz)
I" K7 sin (wt-φ2) k = I QK? cos (wt-φz)
+Q" K7 sin (wt-φ2) (Where?=KS ・K6) The output signal n of the adder 312 is set to 1, and the gain of the adder is 1. n= (1"+Q") ・K7 sin (wt
−φ2)=Ks sin (wt−φri (here, Ks = (I” +Q2)・K,=constant) Processed by a narrow band pass filter 313, a limiter circuit 314, and a variable phase shifter 315. These become the reference signals f and g of the quadrature phase demodulation circuit 401.The variable phase shifter 315 uses the output signal g as + sin wt
This circuit adjusts the phase and gain so that

以上説明した動作により搬送波信号の再生が行なわれる
The carrier wave signal is reproduced through the operations described above.

〔発明が解決しようとする問題点〕         
  1上記構成による復調装置に入力される4相psK
変調信号(以下では、受信信号という)は前述のように
マイクロ波周波数帯から複数段の周波数変換回路により
周波数変換された中間周波数信号でありその周波数安定
度は周波数変換回路の局部発振周波数の安定度に依存す
る。
[Problem that the invention seeks to solve]
1 4-phase psK input to the demodulator with the above configuration
As mentioned above, the modulated signal (hereinafter referred to as received signal) is an intermediate frequency signal whose frequency is converted from the microwave frequency band by a multi-stage frequency conversion circuit, and its frequency stability is determined by the stability of the local oscillation frequency of the frequency conversion circuit. Depends on the degree.

ところで、4相PSK復調装置において受信信号の周波
数が変動した場合、前記狭帯域通過フィルタ313を通
過する再生搬送波信号n、の周波数が変動することにな
り前記フィルタ313の入力信号nと出力信号qとの位
相の差が生じ、再生搬送波信号gの位相があいまいにな
ってしまう。そのため前記複数段の周波数変換回路にお
いて、その局部発振回路に水晶発振回路を用いて中間周
波信号の周波数を安定にする方法も考えられるが、回路
構成、コストの面で不利である。
By the way, when the frequency of the received signal changes in the 4-phase PSK demodulator, the frequency of the reproduced carrier signal n passing through the narrow band pass filter 313 changes, so that the input signal n and output signal q of the filter 313 change. A phase difference occurs, and the phase of the reproduced carrier signal g becomes ambiguous. Therefore, in the multi-stage frequency conversion circuit, a crystal oscillation circuit may be used as the local oscillation circuit to stabilize the frequency of the intermediate frequency signal, but this method is disadvantageous in terms of circuit configuration and cost.

また、4相PSK変調信号において、データ伝送レート
が高い場合一般に復調装置の再生搬送波信号の周波数が
高くなり、前記狭帯域通過フィルタ313.リミッタ回
路314等の設計および構成が困難になる欠点がある。
Furthermore, in a four-phase PSK modulated signal, when the data transmission rate is high, the frequency of the regenerated carrier signal of the demodulator generally becomes high, and the narrow band pass filter 313. There is a drawback that designing and configuring the limiter circuit 314 and the like becomes difficult.

本発明の目的は、受信した4相PSK変調信号から搬送
波信号を再生し、この再生搬送波信号を用い復調する復
調装置において、再生搬送波信号を狭帯域通過フィルタ
をとおすために、周波数変動により位相変動が生ずるこ
とのないようにして、受信信号の周波数変動があっても
、正しく復調のできる復調装置を提供することにある。
An object of the present invention is to provide a demodulator that regenerates a carrier signal from a received four-phase PSK modulated signal and demodulates using the regenerated carrier signal. It is an object of the present invention to provide a demodulator which can perform correct demodulation even if there is a frequency fluctuation of a received signal without causing the occurrence of the problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の装置は、受信信号を入力し、基準再生搬送波信
号を用いて復調する直交位相復調部と。
The apparatus of the present invention includes a quadrature phase demodulation section that receives a received signal and demodulates it using a reference recovered carrier signal.

該直交位相復調部の出力を入力し、受信信号との演算に
より搬送波信号を再生する再変調部と、再生搬送波信号
を入力し、前記直交位相復調部に基準再生搬送波信号を
供給するAPC部とで閉ループを形成して復調を行なう
a remodulation section which inputs the output of the quadrature phase demodulation section and reproduces a carrier signal by calculation with the received signal; and an APC section which inputs the reproduced carrier signal and supplies a reference reproduction carrier signal to the quadrature phase demodulation section. A closed loop is formed and demodulation is performed.

前記APC部は、入力信号の周波数をダウンする周波数
変換回路と、変換信号をとおす中心周波数可変の狭帯域
通過フィルタと、該狭帯域通過フィルタの入出力信号の
位相差を検出する位相比較回路と、再び周波数をアップ
して出力する周波数変換回路とを有し、前記位相比較回
路の出力を低域通過フィルタを介して前記狭帯域通過フ
ィルタに印加し中心周波数を移動し、入出力信号の位相
差を零とする。
The APC section includes a frequency conversion circuit that reduces the frequency of an input signal, a narrow band pass filter with a variable center frequency that passes the converted signal, and a phase comparison circuit that detects a phase difference between input and output signals of the narrow band pass filter. , and a frequency conversion circuit that increases the frequency again and outputs it, and applies the output of the phase comparator circuit to the narrow band pass filter via a low pass filter to shift the center frequency and change the position of the input/output signal. Let the phase difference be zero.

上記構成のAPC部は、4相PSK変調信号のデータ伝
送レートが高い場合に適用される。再生搬送波信号の周
波数が高いので、一旦周波数変換し低い周波数にしてか
ら、位相制御を行なっている。しかしデータ伝送レート
がそれ程高くない場合には、周波数変換をしないでその
まま位相制御を行なうことができ、回路は簡単になる。
The APC section having the above configuration is applied when the data transmission rate of the 4-phase PSK modulated signal is high. Since the frequency of the reproduced carrier wave signal is high, the frequency is once converted to a lower frequency, and then phase control is performed. However, if the data transmission rate is not so high, phase control can be performed as is without frequency conversion, and the circuit becomes simple.

〔作用〕[Effect]

受信信号の周波数が変化して、そのためAPC部に入力
する再生搬送波信号の周波数が変動すると、APC部の
狭帯域通過フィルタをとおる信号の周波数が中心周波数
からずれる。したがってフィルタの入力信号・出力信号
間に位相差を生ずるが、本装置では上記位相差に応じて
狭帯域通過フィルタの中心周波数を変化し、入力信号が
常にフィルタの中心周波数になるようにするので入出力
信号間の位相差が生じない。このようにして、APC部
をとおり直交位相復調部に入力する基準再生搬送波信号
は、この復調装置の受信信号の周波数の変動があっても
、受信信号と常に正しい位相関係に保持される。
When the frequency of the received signal changes and therefore the frequency of the regenerated carrier signal input to the APC section changes, the frequency of the signal passing through the narrow band pass filter of the APC section deviates from the center frequency. Therefore, a phase difference occurs between the input signal and output signal of the filter, but in this device, the center frequency of the narrow band pass filter is changed according to the above phase difference, so that the input signal always becomes the center frequency of the filter. No phase difference occurs between input and output signals. In this way, the reference recovered carrier signal that passes through the APC section and is input to the quadrature phase demodulation section is always maintained in the correct phase relationship with the received signal even if there is a fluctuation in the frequency of the received signal of this demodulation device.

〔実施例〕〔Example〕

以下、第1図に基づいて、本発明の一実施例につき説明
する。本装置は、再変調部201.直交位相復調部20
2.APC部203よりなっている。受信信号(4相P
SK変畑信号)1は前置増幅器101を経て再変調部2
01と直交位相復調部202に入力する。直交位相復調
部202で復調された復調信号11.12が再変調部2
01に入力され、搬送波信号18を再生する。この再生
搬送波信号18はAPC部203を経て、直交位相復調
部202の基準再生搬送波信号6として入力することで
、ループが形成される。復調信号11.12は出力端子
301,302から出力される。
Hereinafter, one embodiment of the present invention will be described based on FIG. This device includes a remodulator 201. Quadrature phase demodulator 20
2. It consists of an APC section 203. Received signal (4 phase P
SK Henbata signal) 1 is sent to the remodulator 2 via the preamplifier 101.
01 and is input to the quadrature phase demodulation section 202. The demodulated signals 11 and 12 demodulated by the quadrature phase demodulator 202 are sent to the remodulator 2.
01 and reproduces the carrier signal 18. This recovered carrier wave signal 18 passes through the APC section 203 and is input as the reference recovered carrier wave signal 6 to the orthogonal phase demodulation section 202, thereby forming a loop. Demodulated signals 11 and 12 are output from output terminals 301 and 302.

以下、各部の詳細につき説明する。直交位相復調部20
2は、乗算器107,108.低域通過フィルタ109
,110.  リミッタ回路111゜112より構成さ
れ、2分岐路になっている。入力信号2は基準再生搬送
波信号6と、−π/2移相器113で直交差位相にした
信号7との乗算によって直交位相復調され、各分岐路に
復調信号3゜8が得られる。復調信号3,8は乗算の結
果生じた不要成分を低域通過フィルタ109.110で
除去され、リミッタ回路111,112で振幅制限をう
けて復調信号11.’12となる。
The details of each part will be explained below. Quadrature phase demodulator 20
2 are multipliers 107, 108 . Low pass filter 109
, 110. It is composed of limiter circuits 111 and 112, and has two branch paths. The input signal 2 is quadrature phase demodulated by multiplying the reference regenerated carrier signal 6 by the signal 7 which has been made orthogonal in phase by the -π/2 phase shifter 113, and a demodulated signal 3°8 is obtained in each branch. Demodulated signals 3 and 8 have unnecessary components generated as a result of multiplication removed by low-pass filters 109 and 110, and amplitude limited by limiter circuits 111 and 112 to become demodulated signals 11. '12.

復調信号11.12は4相PSK復調信号として出力端
子301,302より出力されるとともに、再変調部2
01に供給される。
The demodulated signals 11 and 12 are output as 4-phase PSK demodulated signals from output terminals 301 and 302, and are also outputted from the remodulator 2.
01.

再変調部201は、遅延回路102.−π/2移相器1
051乗算器103,104.加算器106で構成され
る。前記復調信号11.12はそぞれ乗算器103,1
04に供給され、遅延回路102を経た受信信号14と
、さらに−π/2移相器105を経た受信信号15とそ
れぞれ掛は合わされる。乗算器103,104の出力信
号16゜17は加算器106により加算され変調成分の
無い再生搬送波信号18となり、次段のAPC部203
に供給される。
The remodulator 201 includes a delay circuit 102 . -π/2 phase shifter 1
051 multipliers 103, 104. It is composed of an adder 106. The demodulated signals 11 and 12 are sent to multipliers 103 and 1, respectively.
04, which has passed through the delay circuit 102, and the received signal 15 which has further passed through the -π/2 phase shifter 105. The output signals 16 and 17 of the multipliers 103 and 104 are added together by the adder 106 to become a reproduced carrier wave signal 18 without modulation components, which is then sent to the next stage APC section 203.
supplied to

APC部203は乗算器115,123,120、帯域
通過フィルタ116,124.狭帯域通過フィルタ11
7.リミ・ツタ回路118.可変移相器119,125
.低域通過フィルタ121゜発振器122より構成され
、一種のPLLを形成している。前記再生搬送波信号1
8は乗算器115において発振器122から供給される
信号との乗算により周波数変換が行なわれ、その時に生
じた不要成分を除くため帯域通過フィルタ116に通さ
れる。
The APC section 203 includes multipliers 115, 123, 120, band pass filters 116, 124 . Narrow band pass filter 11
7. Rimi Tsuta circuit 118. Variable phase shifter 119, 125
.. It is composed of a low-pass filter 121 and an oscillator 122, forming a kind of PLL. The regenerated carrier signal 1
8 is subjected to frequency conversion by multiplication with a signal supplied from an oscillator 122 in a multiplier 115, and is passed through a band pass filter 116 to remove unnecessary components generated at that time.

変換周波数は低く設定され、狭帯域通過フィルタ117
.リミッタ回路118等の回路の実現は容易である。再
生搬送波信号18の周波数をfI。
The conversion frequency is set low and narrow band pass filter 117
.. Implementation of circuits such as the limiter circuit 118 is easy. The frequency of the regenerated carrier signal 18 is fI.

発振器122の発振周波数をfo、変換周波数をf2と
すると f2=f、−f。
Letting the oscillation frequency of the oscillator 122 be fo and the conversion frequency f2, f2=f, -f.

の関係になるように設定している。乗算器123は信号
22と発振器122の出力信号との乗算を行ない周波数
変換を行なうものであり帯域通過フィルタ124の出力
信号28の周波数をf3とすると f、=f2+f0 となるように周波数変換を行なう。したがって、削代よ
りf、=f、となり再生搬送波信号18および28の周
波数は同一のものとなり、発振器122の発振周波数に
依存しないことになる。
It is set so that the relationship is as follows. The multiplier 123 performs frequency conversion by multiplying the signal 22 by the output signal of the oscillator 122. If the frequency of the output signal 28 of the band-pass filter 124 is f3, the frequency conversion is performed so that f=f2+f0. . Therefore, from the cutting allowance, f,=f, and the frequencies of the reproduced carrier wave signals 18 and 28 are the same and do not depend on the oscillation frequency of the oscillator 122.

また帯域通過フィルタ116の出力信号20は乗算器1
20および狭帯域通過フィルタ117に供給され、狭帯
域通過フィルタ117の出力信号はリミッタ回路118
により振幅制限された後、可変移相器119および乗算
器123に供給される。乗算器120は前記信号20お
よび可変移相器119の出力信号23との位相比較を行
なうためのものでありその出力信号24は、低域通過フ
ィルタ121を介して狭帯域通過フィルタ117に供給
され、その中心周波数を変化する。可変移相器119は
前記狭帯域通過フィルタ117の中心周波数の設定を基
準周波数の再生搬送波信号18に対してなすものである
。第4図にC/N向上のために必要な特性を有する狭帯
域通過フィルタ117の周波数特性を、中心周波数を変
化した場合をも含めて示したものである。foは基準中
心周波数である。
Further, the output signal 20 of the bandpass filter 116 is transmitted to the multiplier 1
20 and a narrow band pass filter 117, and the output signal of the narrow band pass filter 117 is supplied to a limiter circuit 118.
After the amplitude is limited by , the signal is supplied to variable phase shifter 119 and multiplier 123 . The multiplier 120 is for performing a phase comparison between the signal 20 and the output signal 23 of the variable phase shifter 119, and its output signal 24 is supplied to the narrow band pass filter 117 via the low pass filter 121. , change its center frequency. The variable phase shifter 119 sets the center frequency of the narrow band pass filter 117 with respect to the reproduced carrier signal 18 of the reference frequency. FIG. 4 shows the frequency characteristics of the narrow band pass filter 117 having characteristics necessary for improving the C/N, including the case where the center frequency is changed. fo is the reference center frequency.

狭帯域通過フィルタ117の一例を第5図に示す。図示
のように前段に低出力インピーダンスバッファ501を
、後段に高入力インピーダンスバッファ502を接続し
、Rl+ L l+ Czで共振回路をつくり、さらに
並列に可変容量となるバラクタダイオードD+、Dzを
接続し、信号25により前記ダイオードのバイアスを変
化することで共振周波数を変化する。
An example of the narrow band pass filter 117 is shown in FIG. As shown in the figure, a low output impedance buffer 501 is connected to the front stage, a high input impedance buffer 502 is connected to the rear stage, a resonant circuit is created with Rl+Ll+Cz, and varactor diodes D+ and Dz, which serve as variable capacitors, are connected in parallel. By changing the bias of the diode using the signal 25, the resonant frequency is changed.

APC部203に入力する信号18の周波数が変化し、
周波数変換された信号20の周波数が基準よりずれて狭
帯域通過フィルタ117の入出力信号間に位相差が生ず
ると、PLLにより狭帯域通過フィルタ117に入力す
る信号25が中心用      :波数を変化し、信号
20の周波数と同一とするので位相差がなくなる。この
ように受信信号1、したがってAPC部203の入力信
号18の周波数が変動しても、APCループの位相変動
をなくすことができる。そして帯域通過フィルタ124
の出力信号の位相を第2の可変移相器125を用いて直
交位相復調部202の基準信号となるよう位相調整を行
い基準再生搬送波信号6として出力する。
The frequency of the signal 18 input to the APC section 203 changes,
When the frequency of the frequency-converted signal 20 deviates from the reference and a phase difference occurs between the input and output signals of the narrow band pass filter 117, the PLL causes the signal 25 input to the narrow band pass filter 117 to change the center wave number. , and the frequency of the signal 20, there is no phase difference. In this way, even if the frequency of the received signal 1, and thus the input signal 18 of the APC section 203, fluctuates, the phase fluctuation of the APC loop can be eliminated. and bandpass filter 124
The phase of the output signal is adjusted using the second variable phase shifter 125 so that it becomes a reference signal for the orthogonal phase demodulation section 202, and the output signal is output as a reference recovered carrier signal 6.

次にデータ伝送レートがそれ程高くない場合では、再生
搬送波信号の周波数も低くなるので、APC部203′
としては周波数変換を行なわなくてもよい。したがって
APC部203′の回路構成も第2図のように簡単にな
る。すなわち第1図の2つの周波数変換器を構成する乗
算器115゜123、帯域通過フィルタ116,124
および発振器122を除外した回路になる。第2図のA
PC部203′の動作は全く同一に考えられる。
Next, when the data transmission rate is not so high, the frequency of the recovered carrier signal is also low, so the APC section 203'
Therefore, it is not necessary to perform frequency conversion. Therefore, the circuit configuration of the APC section 203' is also simplified as shown in FIG. That is, the multipliers 115 and 123 and the bandpass filters 116 and 124 that constitute the two frequency converters in FIG.
And the circuit excludes the oscillator 122. A in Figure 2
The operation of the PC section 203' can be considered to be exactly the same.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明においては、逆変換方式
により再変調部から得られる再生搬送波信号を位相ロッ
クループを含むAPC部にて、周波数変換された信号の
周波数に中心周波数可変の狭帯域通過フィルタの中心周
波数が合致するように位相比較回路の出力が制御する。
As explained above, in the present invention, the regenerated carrier signal obtained from the re-modulation section by the inverse conversion method is converted into the frequency of the frequency-converted signal by the APC section including the phase-locked loop, and is converted into a narrow band with a variable center frequency. The output of the phase comparison circuit is controlled so that the center frequencies of the pass filters match.

したがって狭帯域通過フィルタによる位相差が生じない
ので、受信4相PSK変調信号に変動が生じても、直交
位相復調部に正しい位相関係の基準再生搬送波信号を与
えることができる。
Therefore, since no phase difference occurs due to the narrow band pass filter, even if a fluctuation occurs in the received four-phase PSK modulated signal, it is possible to provide the reference reproduced carrier signal with the correct phase relationship to the quadrature phase demodulator.

また、APC部は周波数を低く変換するので、狭帯域通
過フィルタ、リミッタ回路の設計が容易になる。データ
伝送レートが低い場合にはAPC部は周波数変換を行な
わず、直接再生搬送波信号により同様の効果を得ること
ができる。
Furthermore, since the APC section converts the frequency to a lower frequency, it becomes easier to design a narrow band pass filter and a limiter circuit. When the data transmission rate is low, the APC section does not perform frequency conversion, and a similar effect can be obtained by directly regenerating carrier signals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例を示す回路図、第3
図は従来例の回路図、第4図は搬送波信号再生に必要な
狭帯域通過フィルタの特性を示す図、第5図は中心周波
数可変の狭帯域通過フィルタの一例を示す図である。 201−再変調部、 202−直交位相復調部、203
−・APC部、 102−・−遅延回路、 103,104,107,108,115゜120.1
23−・−乗算器、 106・−加算器、 109.110,121・−・低域通過フィルタ、11
6.124・−帯域通過フィルタ、117−  狭帯域
通過フィルタ (中心周波数可変フィルタ)、 105.113・−−−π/2移相器、119.125
−可変移相器、 111.112,118− リミッタ回路、122−発
振器、
Figures 1 and 2 are circuit diagrams showing one embodiment of the present invention, and Figure 3 is a circuit diagram showing an embodiment of the present invention.
This figure is a circuit diagram of a conventional example, FIG. 4 is a diagram showing the characteristics of a narrow band pass filter necessary for carrier wave signal reproduction, and FIG. 5 is a diagram showing an example of a narrow band pass filter with a variable center frequency. 201-remodulation section, 202-quadrature phase demodulation section, 203
-・APC section, 102-・-Delay circuit, 103, 104, 107, 108, 115° 120.1
23--multiplier, 106--adder, 109.110,121--low-pass filter, 11
6.124 - band pass filter, 117 - narrow band pass filter (center frequency variable filter), 105.113 - π/2 phase shifter, 119.125
- variable phase shifter, 111.112, 118- limiter circuit, 122- oscillator,

Claims (2)

【特許請求の範囲】[Claims] (1)4相PSK変調信号を受信信号として入力し、基
準再生搬送波信号を用いて復調する直交位相変調部と、
該直交位相変調部の出力を入力し、受信信号との演算に
より搬送波信号を再生する再変調部と、再生搬送波信号
を入力し、前記直交位相復調部に基準再生搬送波信号を
供給するAPC部とで閉ループを形成して受信信号を復
調する復調装置であって、 前記APC部は、入力信号の周波数をダウンする周波数
変換回路と、変換信号をとおす中心周波数可変の狭帯域
通過フィルタと、該狭帯域通過フィルタの入出力信号の
位相差を検出する位相比較回路と、再び周波数をアップ
して出力する周波数変換回路とを有し、前記位相比較回
路の出力を低域通過フィルタを介して前記狭帯域通過フ
ィルタに印加し中心周波数を移動し、入出力信号の位相
差を零とすることを特徴とする4相PSK復調装置。
(1) a quadrature phase modulation section that inputs a 4-phase PSK modulated signal as a received signal and demodulates it using a reference recovered carrier signal;
a re-modulating section which inputs the output of the quadrature phase modulator and reproduces a carrier signal by calculation with the received signal; and an APC section which inputs the reproduced carrier signal and supplies a reference reproduced carrier signal to the quadrature phase demodulator. A demodulation device that demodulates a received signal by forming a closed loop with the It has a phase comparison circuit that detects the phase difference between the input and output signals of the bandpass filter, and a frequency conversion circuit that increases the frequency again and outputs the same. A 4-phase PSK demodulator characterized in that the phase difference between input and output signals is made zero by applying the voltage to a band-pass filter and moving the center frequency.
(2)4相PSK変調信号を受信信号として入力し、基
準再生搬送波信号を用いて復調する直交位相変調部と、
該直交位相変調部の出力を入力し、受信信号との演算に
より搬送波信号を再生する再変調部と、再生搬送波信号
を入力し、前記直交位相復調部に基準再生搬送波信号を
供給するAPC部とで閉ループを形成して受信信号を復
調する復調装置であって、 前記APC部は、中心周波数可変の狭帯域通過フィルタ
と、該狭帯域通過フィルタの入出力信号の位相差を検出
する位相比較回路とを有し、該位相比較回路の出力を低
域通過フィルタを介して前記狭帯域通過フィルタに印加
し中心周波数を移動し、入出力信号の位相差を零とする
ことを特徴とする4相PSK復調装置。
(2) a quadrature phase modulation section that inputs a 4-phase PSK modulated signal as a received signal and demodulates it using a reference recovered carrier signal;
a re-modulating section which inputs the output of the quadrature phase modulator and reproduces a carrier signal by calculation with the received signal; and an APC section which inputs the reproduced carrier signal and supplies a reference reproduced carrier signal to the quadrature phase demodulator. A demodulation device that demodulates a received signal by forming a closed loop with the APC unit, the APC unit comprising a narrow band pass filter with a variable center frequency and a phase comparison circuit that detects a phase difference between input and output signals of the narrow band pass filter. and applying the output of the phase comparison circuit to the narrow band pass filter via a low pass filter to shift the center frequency and make the phase difference between the input and output signals zero. PSK demodulator.
JP15229185A 1985-07-12 1985-07-12 4-phase psk demodulator Pending JPS6214557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15229185A JPS6214557A (en) 1985-07-12 1985-07-12 4-phase psk demodulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15229185A JPS6214557A (en) 1985-07-12 1985-07-12 4-phase psk demodulator

Publications (1)

Publication Number Publication Date
JPS6214557A true JPS6214557A (en) 1987-01-23

Family

ID=15537315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15229185A Pending JPS6214557A (en) 1985-07-12 1985-07-12 4-phase psk demodulator

Country Status (1)

Country Link
JP (1) JPS6214557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252014A (en) * 1987-04-08 1988-10-19 Kokusai Denshin Denwa Co Ltd <Kdd> Phase locked loop system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523544A (en) * 1975-06-27 1977-01-12 Kobe Steel Ltd Multipleeelectrode mig welding method
JPS5347758A (en) * 1976-10-14 1978-04-28 Nec Corp Demodulation circuit for phase displacement modulation signal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523544A (en) * 1975-06-27 1977-01-12 Kobe Steel Ltd Multipleeelectrode mig welding method
JPS5347758A (en) * 1976-10-14 1978-04-28 Nec Corp Demodulation circuit for phase displacement modulation signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252014A (en) * 1987-04-08 1988-10-19 Kokusai Denshin Denwa Co Ltd <Kdd> Phase locked loop system

Similar Documents

Publication Publication Date Title
JP3647894B2 (en) Intermediate frequency FM receiver using analog oversampling to increase signal bandwidth
US7711336B2 (en) Single sideband mixer and method of extracting single sideband signal
US4622694A (en) Transmission system for TV signals on radio links
US5237287A (en) Demodulating method and apparatus particularly for demodulating a differential phase-shift keying signal
US5757531A (en) Gils for heterodyne receiver having low intermediate frequency
US4493099A (en) FM Broadcasting system with transmitter identification
US3873931A (en) FM demodulator circuits
CA1256171A (en) Four phase psk demodulator
US3378770A (en) System for quadrature modulation of ternary signals with auxiliary oscillation for use in carrier regeneration at receiver
US4445094A (en) SMSK And MSK demodulator
JPS6214557A (en) 4-phase psk demodulator
US5365185A (en) Frequency controlled loop for demodulating OOK and PSK signals
US4097813A (en) Carrier wave recovery circuit
JPS6214556A (en) 4-phase psk demodulator
US3939407A (en) Plural channel communications system
JPS61177054A (en) Receiving circuit of phase modulating signal
EP0182850A1 (en) Circuit for demodulating phase shift keyed signals
JPH05344171A (en) Qpsk signal demodulator
KR860000232B1 (en) Compatible am stereo broadcast system
CN115277345A (en) Carrier phase recovery method in coherent optical communication system based on COSTAS
JPH0693587B2 (en) Bandpass filter
JPS6338140B2 (en)
JPH01276827A (en) Random fm noise decreasing circuit
JPH02241163A (en) Delay detecting type demodulator
JPS6182555A (en) Phase shift keying signal transmitting-receiving system