JPH01276775A - Manufacture of insb planar photovoltaic device - Google Patents

Manufacture of insb planar photovoltaic device

Info

Publication number
JPH01276775A
JPH01276775A JP63104011A JP10401188A JPH01276775A JP H01276775 A JPH01276775 A JP H01276775A JP 63104011 A JP63104011 A JP 63104011A JP 10401188 A JP10401188 A JP 10401188A JP H01276775 A JPH01276775 A JP H01276775A
Authority
JP
Japan
Prior art keywords
film
diffusion
substrate
insb
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63104011A
Other languages
Japanese (ja)
Other versions
JP2708175B2 (en
Inventor
Toshiro Sakamoto
坂本 敏朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63104011A priority Critical patent/JP2708175B2/en
Publication of JPH01276775A publication Critical patent/JPH01276775A/en
Application granted granted Critical
Publication of JP2708175B2 publication Critical patent/JP2708175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a practical PV element by coating a substrate of B face of a specified face orientation with a diffusion mask film and then performing thermal treatment. CONSTITUTION:A face orientation (211) B face is selected as a substrate 11, thermal CVD temperature is set below 250 deg.C, and an SiO2 film 12 film is selected to 1000-2000Angstrom as a practical range. Then, a substrate 22 after coating SiO2 is selected to the diffusion temperature or up to 500 deg.C in inactive gas or vacuum, and then thermal treatment is performed for 5 minutes or more. As a result, an InSb planar PV element is formed by the mask diffusion method of Cd with an SiO2 film 12 which is the easiest as a semiconductor process being as a mask material.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明はInSbプレーナ光起電力形素子の製造方法
にかかり、3〜5μm帯赤外線の検知に適用される光起
電方形素子の製造に適用される。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an InSb planar photovoltaic element, which is a photovoltaic rectangular element applied to the detection of infrared rays in the 3-5 μm band. Applied to device manufacturing.

(従来の技術) 従来、InSbプレーナ光起電力形素子(以下、光起電
方形素子をpv素子と略記する)の製造方法として、I
nSb基板に封管法により不純物を熱拡散し、p型半導
体層を形成する技術が知られている。そして、その不純
物原子としてはCd、 Znがあるが、Cdの方が拡散
制御性が良く、表面荒れが少いところから多く用いられ
ている。
(Prior Art) Conventionally, as a method for manufacturing an InSb planar photovoltaic element (hereinafter, a photovoltaic square element is abbreviated as a PV element), I
A technique is known in which impurities are thermally diffused into an nSb substrate by a sealed tube method to form a p-type semiconductor layer. The impurity atoms include Cd and Zn, but Cd is often used because it has better diffusion control and less surface roughness.

マスク拡散により同一平面内に選択的にρ−n接合を形
成する、いわゆるプレーナー化技術はCdの拡散に於い
ては完成されていない。これはCdの拡散を阻止する膜
としてはSin、 SiO2. SiN等があるものの
、膜の被着工程、開孔加工技術を考慮した時に一番容易
な熱CVD SiO□膜の場合、横方向拡散が異常に大
きい上にバラツキが大きく、接合面積を制御出来ないた
めである。また、SiOの場合には、被着工程が真空蒸
着又はスパッタリングとなるが、半導体表面上に直接前
記工程で被着した膜では十分な清浄度が保てず、その後
の熱拡散工程時に不所望な不純物を導入する欠点がある
。又SiNの場合現在では光CVD技術により低温での
膜被着が可能であることから非常に有望であるが、膜の
開孔加工技術に問題がある。すなわち、Sin、のよう
に弗酸系で常温でフォト・レジストを用いた選択エツチ
ングが出来ない事、SiN/SiO□の膜構造とし上側
のSiO□は弗酸系のエツチング剤で選択エツチングし
、SiO□をマスクとして熱リン酸により下側のSiN
をエツチングする事は可能であるが、InSbの場合、
熱リン酸により露出したInSb表面にスティン膜が形
成される事、乾式エツチング(ドライエツチング方式の
CD[E (ケミカルドライエツチング)、RIE(リ
アクティブイオンエツチング)等では、エツチングのラ
ジカルが結晶に損傷を与えるため、熱アニールで回復し
きれず、その履歴が最終まで残る欠点がある。
The so-called planarization technique, which selectively forms ρ-n junctions in the same plane by mask diffusion, has not been perfected for Cd diffusion. This is because the films used to prevent Cd diffusion include Sin, SiO2. Although there are SiN, etc., in the case of thermal CVD SiO□ film, which is the easiest when considering the film deposition process and hole processing technology, the lateral diffusion is abnormally large and the variation is large, making it difficult to control the bonding area. This is because there is no In addition, in the case of SiO, the deposition process is vacuum evaporation or sputtering, but a film deposited directly on the semiconductor surface in the above process cannot maintain sufficient cleanliness, resulting in undesirable problems during the subsequent thermal diffusion process. It has the disadvantage of introducing some impurities. Furthermore, in the case of SiN, it is currently very promising because it is possible to deposit a film at low temperatures using photo-CVD technology, but there are problems in the technology for forming holes in the film. In other words, selective etching using a hydrofluoric acid-based photoresist at room temperature like Sin cannot be performed, and the film structure is SiN/SiO□, and the upper SiO□ is selectively etched using a hydrofluoric acid-based etching agent. Using SiO□ as a mask, remove the lower SiN using hot phosphoric acid.
However, in the case of InSb,
A stain film is formed on the exposed InSb surface by hot phosphoric acid, and in dry etching methods such as CD[E (chemical dry etching) and RIE (reactive ion etching), etching radicals damage the crystal. It has the disadvantage that thermal annealing cannot fully recover the damage, and the history remains until the final stage.

従って、現在市販されているCd拡散を行ったInSb
赤外検知用Pv素子はメサ型構造となっている。
Therefore, currently commercially available InSb with Cd diffusion
The infrared detection Pv element has a mesa type structure.

しかし、メサ型構造の場合、メサエッチ後の凹凸により
その後のプロセスに問題が生じる事が多い。
However, in the case of a mesa-type structure, problems often arise in subsequent processes due to unevenness after mesa etching.

この問題は同じPv素子で形成される赤外撮像用デバイ
スであるフォトダイオードアレイでは更に深刻であり、
米国を中心としてイオン注入法によるプレーナー化の検
討が広範囲に行われた経緯がある。
This problem is even more serious in photodiode arrays, which are infrared imaging devices formed using the same Pv elements.
Planarization using ion implantation has been extensively studied mainly in the United States.

ところで、現在迄のところ、イオン注入法によるプレー
ナー化は構造的には完成したものの、PV素子の性能指
数であるR8A値(零バイアス時のダイオード抵抗と接
合面積の積で単位はΩ−d)は、Cd拡散メサ型の10
6Ω−d台(77k)に対し、10’Ω−d台(77k
)と−桁悪いのが実状である。
By the way, to date, although planarization using the ion implantation method has been completed structurally, the R8A value (product of diode resistance at zero bias and junction area, unit: Ω-d), which is the figure of merit of the PV element, has been completed. is a Cd diffused mesa type 10
10'Ω-d level (77k) compared to 6Ω-d level (77k)
), the reality is that it is an order of magnitude worse.

このイオン注入プレーナー型素子のR6A値の悪い理由
は、InSb結晶特有の脆いことと軟かいことにある。
The reason why the R6A value of this ion-implanted planar type element is poor is that the InSb crystal is brittle and soft.

すなわち、p層を形成するためのイオン注入時に出来る
結晶の損傷が、SiやGaAs等に較べはるかに大きく
、注入後のアニールにおいて損傷が消滅しきれない事に
よる結晶内のキャリアライフタイムの低下によるもので
ある。前記現象によるR8A値の低下は、p層を形成す
るイオン種を一番質量の小さいBeを選んだ上での結果
であり、RoA値をCd拡散メサ型と同等にするには、
更に経費を必要とする上に時間を要し、経済的負担は大
きい。
In other words, the damage to the crystal that occurs during ion implantation to form the p-layer is much greater than that of Si, GaAs, etc., and the damage is not completely eliminated during post-implantation annealing, resulting in a reduction in carrier lifetime within the crystal. It is something. The decrease in R8A value due to the above phenomenon is the result of selecting Be, which has the smallest mass, as the ion species forming the p-layer, and in order to make the RoA value equivalent to that of the Cd diffused mesa type,
Furthermore, it requires expense and time, and is a heavy economic burden.

(発明が解決しようとする課題) 以上述べたようにプレーナ型Pv素子を形成する場合、
RoA値がメサ型pv素子より悪く実用的な素子を得る
ことが困難であった。
(Problems to be Solved by the Invention) When forming a planar type Pv element as described above,
The RoA value was worse than that of the mesa type PV element, and it was difficult to obtain a practical element.

そこでこの発明は上記欠点を除去するものであり、実用
的なPv素子を得ることを目的とする。
Therefore, the present invention aims to eliminate the above-mentioned drawbacks and to obtain a practical Pv element.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) この発明はInSbnSbブレーナ素子の製造方法にか
かり、n型InSb基板にCdを熱拡散させ選択的にp
in接合を形成するに際し、 n型InSb基板の主面
に面方位が(211)でB面の基板を用意する工程と。
(Means for Solving the Problems) The present invention relates to a method for manufacturing an InSbnSb brainer element, in which Cd is thermally diffused into an n-type InSb substrate and selectively p
When forming an in-junction, a step of preparing an n-type InSb substrate with a main surface having a B-plane orientation (211).

CVD法・により250℃以下で膜厚がtooo〜20
QO人の範囲にあるSiO2の拡散マスク膜を被着する
工程と、前記拡散マスク膜被着後に不活性ガス雰囲気中
または真空中において拡散温度以上且つ500℃未満で
熱処理を施す工程を含むものである。
The film thickness is too~20℃ at 250℃ or less by CVD method.
The method includes a step of depositing a diffusion mask film of SiO2 within the range of QO2, and a step of performing heat treatment at a temperature higher than the diffusion temperature and lower than 500° C. in an inert gas atmosphere or in a vacuum after depositing the diffusion mask film.

(作 用) この発明は、第1にInSb基板の面方位を選択する点
、第2に熱CVO法によるSin、膜の被着条件と膜厚
を選択する点、および、第3にS io、膜被着後。
(Function) This invention has the following advantages: firstly, the plane orientation of the InSb substrate is selected; secondly, the deposition conditions and film thickness of the Si film formed by the thermal CVO method are selected; and thirdly, the SiO , after membrane deposition.

基板に熱処理を加えその条件を選択する点によって、S
iO□膜の簡便性とCdの拡散性能の優れた点を利用し
たInSbnSbブレーナ素子の改良された製造方法を
提供するものである。
By applying heat treatment to the substrate and selecting the conditions, S
The present invention provides an improved method for manufacturing an InSbnSb brainer element that takes advantage of the simplicity of the iO□ film and the excellent diffusion performance of Cd.

(実施例) 以下、この発明の達成を至る種々の実験、検討の経過と
結果についてまず説明する。
(Example) Hereinafter, the progress and results of various experiments and studies that led to the achievement of this invention will be described first.

(1) InSb基板の面方位に対する検討。(1) Examination of the plane orientation of the InSb substrate.

一般にInSb基板の面方位は(111)、面はB面を
用いることが多い。なお、上記面について■−■族化合
物半導体の場合、2種の元素の化合物でなるために、ウ
ェハーについては面方位(ioo)以外の面方向ではウ
ェハーの表裏に■族、■族の元素の性質が強く表われる
。この場合、A面はIII族側。
Generally, the plane orientation of an InSb substrate is (111), and the B plane is often used. Regarding the above-mentioned surface, in the case of a ■-■ group compound semiconductor, it is a compound of two types of elements. Character is strongly expressed. In this case, side A is the group III side.

B面は■族側を意味する。面方位(111)はA面。Side B means the ■ group side. The plane orientation (111) is A plane.

B面の特徴が最も明確で、例えば、この基板を用いて液
相エピタキシャル法によりエピタキシャル ′層を形成
した場合に、A、B面とも表面モロフォロジの良いエピ
タキシャル層が得られる。そして。
The characteristics of the B-plane are the most obvious, and for example, when an epitaxial layer is formed using this substrate by the liquid phase epitaxial method, an epitaxial layer with good surface morphology can be obtained for both the A and B-planes. and.

3面は各方位ともA面よりも基板形成段階での研磨に対
し、傷が発生しにくいという特徴がある。
The three surfaces have the characteristic that scratches are less likely to occur in each direction when polished during the substrate formation stage than the A side.

さらに、3面を用いてPv素子を形成した場合、1/f
雑音が少いという特徴もある。
Furthermore, when a Pv element is formed using three surfaces, 1/f
Another feature is that there is less noise.

従って、面に関して明らかに3面を用いるのが有利であ
るが、液相法によるエピタキシャル層を用いない素子で
は面方位(111)を用いる利点は特に見当らない。
Therefore, it is clearly advantageous to use three planes, but there is no particular advantage in using the (111) plane orientation in an element that does not use an epitaxial layer formed by a liquid phase method.

発明者の実験によれば、InSb基板上に基板温度30
0℃にて被着した熱CVD SiO□膜3000人 を
マスクとした400℃のCd封管拡散に於いては、基板
への拡散深さXJを0.5μmとした時に、SiO□マ
スク開孔端部から横方向へ侵入する拡散長XLは、面方
位(111)3面に対し18〜150μmと大きく、ば
らつきも大きかった。同一比較において面方位(100
)に対しては13〜15μm1面方位(211) 3面
に対しては8〜9μmであった。また、面方位(100
) 、面方位(211) 3面に対しては拡散時間tを
変えた時にほぼGの法則に従う事が判明した。
According to the inventor's experiments, a substrate temperature of 30°C was applied on an InSb substrate.
In Cd sealed tube diffusion at 400°C using a thermal CVD SiO□ film deposited at 0°C as a mask, when the diffusion depth XJ into the substrate was set to 0.5 μm, the SiO□ mask opening The diffusion length XL that penetrates from the end in the lateral direction was as large as 18 to 150 μm for three (111) planes, and the variation was large. In the same comparison, the surface orientation (100
), it was 13 to 15 μm for one plane orientation (211), and 8 to 9 μm for three planes. Also, the surface orientation (100
), plane orientation (211) For three planes, it was found that G's law is approximately followed when the diffusion time t is changed.

([1)熱CVD法によるSiO□膜の被着条件と膜厚
に対する検討。
([1) Examination of deposition conditions and film thickness of SiO□ film by thermal CVD method.

次に熱CVD法によるSiO2膜被着条件と膜厚に対す
るCdの横方向拡散の関係について調べて次の結果が得
られた。
Next, the relationship between the deposition conditions of the SiO2 film by the thermal CVD method and the lateral diffusion of Cd with respect to the film thickness was investigated, and the following results were obtained.

(i) 300℃近傍の基板温度で被着したCVD S
iO2膜では、膜厚をtooo〜4000人の範囲で変
化させても、Cd拡散時のXLはほとんど変わらない。
(i) CVD S deposited at a substrate temperature around 300°C
In the iO2 film, even if the film thickness is changed in the range of 4,000 to 4,000, the XL during Cd diffusion hardly changes.

また、膜厚が4000人の膜ではCd拡散時にSiO□
膜にクラックを生じる。
In addition, in a film with a thickness of 4000, SiO□ during Cd diffusion
Cracks occur in the membrane.

(i)いわゆる低温CvDと称される250℃以下の成
膜条件の場合、膜厚が2000Å以上ではCd拡散時の
XLに変化は見られないが、2000Å以下の膜厚では
面方位(211) 3面に対してのみ前記と同一拡散条
件でXLは5〜6μmに減少する。
(i) In the case of film formation conditions of 250°C or less, which is called low-temperature CvD, no change is observed in XL during Cd diffusion when the film thickness is 2000 Å or more, but when the film thickness is 2000 Å or less, the plane orientation (211) Under the same diffusion conditions as above only for three sides, XL is reduced to 5-6 μm.

しかし、このXI値ではまだ多すぎるといわざるを得な
い。すなわち、接合面積を確定するだけならば5〜6μ
mという値は比較的大面積のPv素子では問題にならな
い、が、横方向拡散が大きいという事はプレーナ接合部
の断面を考えた時、接合終端部(表面で終端する)に向
って接合深さが浅くなる事を意味して居り、接合終端部
のp−n境界が不明確となり、接合特性を損う一因にな
るからである。従って、横方向拡散長xLと拡散深さX
Jの比XI/XJは極力小さくする必要がある。ここで
はXJ 0.5μmニ対しX15〜6μa+でXI/X
Jは10を超えて居り、プレーナ化が完成したとはいえ
ない。
However, it must be said that this XI value is still too high. In other words, if you just decide on the bonding area, 5~6μ
The value m is not a problem for relatively large-area Pv elements, but the large lateral diffusion means that when considering the cross section of a planar junction, the junction depth increases toward the junction termination (terminating at the surface). This means that the p-n boundary at the end of the junction becomes unclear, which becomes a cause of deterioration of the junction characteristics. Therefore, the lateral diffusion length xL and the diffusion depth
The ratio of J, XI/XJ, must be made as small as possible. Here, XJ is 0.5μm and X15~6μa+ is XI/X
J is over 10, so it cannot be said that planarization has been completed.

なお、上記面方位(211)3面に対してのみxLが減
少する理由は現在確定されないが、恐ら< InSbと
SiO2膜との熱膨張係数の差に起因する熱歪址が方位
、面によって異るものと解釈される。
The reason why xL decreases only for the three planes with the above-mentioned plane orientation (211) is not determined at present, but it is probably due to thermal strain due to the difference in thermal expansion coefficient between the InSb and SiO2 films depending on the orientation and plane. be interpreted as different.

(1) SiO□膜被着後の基板熱処理温度範囲の検討
(1) Consideration of substrate heat treatment temperature range after SiO□ film deposition.

前記I (b)と同一条件のSin2被着基板をSin
、の開孔形成以前の段階で熱処理を試みた。
A Sin2-adhered substrate under the same conditions as I (b) above was
, heat treatment was attempted at a stage prior to the formation of pores.

この実験から、Cd拡散温度と同一、またはそれ以上め
温度(ただしInSbの融点は525℃なので500℃
以下に限定される)で加熱する事により、面方位(21
1)3面に対すルxLは2 μm、 XL/X、y比5
以下に減じる事が判明した。この効果は他の方位に対し
ても認められるが1面方位(211) B面程顕著では
ない。また、前記した高温でのCVD膜、及び、低温C
VDでも、2000人を超える膜厚のものでも、効果は
あるものの大きくはない。
From this experiment, we found that the temperature is the same as or higher than the Cd diffusion temperature (however, the melting point of InSb is 525°C, so it is 500°C).
(limited to below), the surface orientation (21
1) Le xL for 3 sides is 2 μm, XL/X, y ratio 5
It was found that the reduction was as follows. This effect is also observed in other orientations, but it is not as pronounced as in the 1-plane orientation (211) B-plane. In addition, the above-mentioned high-temperature CVD film and low-temperature C
Even VD and those with a film thickness of more than 2,000 people have an effect, but it is not great.

なお、熱処理の雰囲気はアルゴンに限らず、他の不活性
ガス、真空中でも同様な効果が得られる。
Note that the heat treatment atmosphere is not limited to argon, and similar effects can be obtained using other inert gases or vacuum.

そして加熱処理もSiO□被着直後という事はなく。Moreover, the heat treatment is not performed immediately after the SiO□ deposition.

加熱時間も5分以上行なえば十分であった。It was sufficient that the heating time was 5 minutes or more.

また、ここまでの説明は一拡散条件(XJ= 0.5μ
m基1)で説明して来たがXJ、 XL共共演法則従う
ので、拡散条件を変え、XJを変えても、Xt、 / 
X、y比を損う事はない。
Also, the explanation so far is based on one diffusion condition (XJ = 0.5μ
As explained in terms of m group 1), since the XJ and XL co-coarticulation laws are followed, even if the diffusion conditions and XJ are changed, Xt, /
There is no loss of X, y ratio.

以上の結果を拡大撮影した写真を模写して第5図(a)
〜(d)に示す。
Figure 5 (a) is a reproduction of an enlarged photograph of the above results.
- Shown in (d).

第5図(a)は基板温度300℃でSiO2膜を膜厚3
000人に被着した面方位(111) 3面に約100
μm角の開孔を設け、これからCd拡散を施したものの
横方向拡散例を倍率250倍で示す。a工は横方向拡散
長である。
Figure 5(a) shows a SiO2 film with a thickness of 3 at a substrate temperature of 300°C.
Surface orientation (111) covered on 000 people Approximately 100 on 3 surfaces
An example of lateral diffusion is shown at a magnification of 250 times, where a μm square opening is provided and Cd is diffused from the hole. a is the lateral diffusion length.

第5図(b)は、基板が面方位(211) 3面である
点を除き他の条件は上記(a)と変わらず、横方向拡数
例を倍率500倍で示す。横方向拡散長Q2は前記(a
)におけるQl(250倍)に比し、倍率の割に極めて
少ない。
FIG. 5(b) shows an example of lateral enlargement at a magnification of 500 times, with the other conditions being the same as in (a) above, except that the substrate has three planes with a (211) plane. The lateral diffusion length Q2 is the above (a
) is extremely small compared to the Ql (250 times) for the magnification.

第5図(c)は基板温度225℃でSun、膜1750
人を被着した面方位(211) 8面に42μm角の開
孔を設け、ここにCd拡散を施したものの横方向拡散例
を倍率500倍で示す。υ3は横方向拡散長である。
Figure 5(c) shows Sun, film 1750 at a substrate temperature of 225°C.
An example of lateral diffusion is shown at 500x magnification, with 42 μm square openings provided on 8 sides (211) and Cd diffusion applied thereto. υ3 is the lateral diffusion length.

第5図(d)は基板温度225℃でSiO2膜を被着し
く上記(C)と同じ)、次いでアルゴン中に420℃、
30分間熱処理を施した面方位(211) 8面に38
μm角の開孔を設け、ここにCd拡散を施したものの横
方向拡散例を倍率500倍で示す。Q4は横方向拡散長
で、上記Q3に比し、極めて僅少になっている。
Figure 5(d) shows the deposition of a SiO2 film at a substrate temperature of 225°C (same as above (C)), followed by deposition at 420°C in argon.
Surface orientation (211) heat treated for 30 minutes 38 on 8 surfaces
An example of lateral diffusion is shown at a magnification of 500 times, where a μm square opening is provided and Cd is diffused therein. Q4 is the lateral diffusion length, which is extremely small compared to Q3 above.

以上の説明のように、基板として面方位(211)8面
を選択する事、熱CvD温度を250℃以下の条件とし
、SiO□iO□実用範囲として1000〜2000人
を選択する事、SiO□被着後被着板を不活性ガス又は
真空中にて拡散温度と同じか、それ以上〜500℃の範
囲を選択し5分間以上熱処理する事により。
As explained above, it is necessary to select 8 planes with (211) orientation as the substrate, to set the thermal CvD temperature to 250°C or less, to select 1000 to 2000 SiO□iO□ as the practical range, and to select SiO□ After adhesion, the adhered plate is heat-treated in an inert gas or vacuum at a temperature equal to or higher than the diffusion temperature of 500°C for 5 minutes or more.

半導体プロセス上一番容易なSiO2膜をマスク材とし
てCdのマスク拡散法によるInSbプレーナPv素子
の形成が可能となった。
It has become possible to form an InSb planar Pv element by a Cd mask diffusion method using a SiO2 film, which is the easiest in semiconductor processing, as a mask material.

以下、本発明の一実施例を図面を参照して説明する。Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

本実施例は説明を簡単にする為に一単素子のInSbプ
レーナPv素子として記述する。
In order to simplify the explanation, this embodiment will be described as a single-element InSb planar Pv element.

第1図(a)〜(i)は本実施例の製造方法を工程順に
示すいずれも断面図、第2図は電極形成後、分割を施し
て得られた素子の上面図である。
FIGS. 1(a) to (i) are cross-sectional views showing the manufacturing method of this example in the order of steps, and FIG. 2 is a top view of the element obtained by dividing after electrode formation.

まず、キャリア濃度1014〜10”/cjのn型面方
位(211)基板11の8面に公知の方法で研摩−エツ
チングを施す(第1図(a))。
First, eight surfaces of an n-type (211) oriented substrate 11 with a carrier concentration of 1014 to 10''/cj are polished and etched by a known method (FIG. 1(a)).

次に、ベルジャ型の低温CVD装置にて基板温度225
℃、N22,5R/min、5%5iH4(N2ベース
)100cc/min、0.10cc/In1nの条件
で1750人のSiO2膜12を8面上に被着する(第
1図(b))。
Next, the substrate temperature was 225°C using a bell jar type low temperature CVD device.
1750 SiO2 films 12 were deposited on eight surfaces under the conditions of 100 cc/min, 0.10 cc/In1n, 5% 5iH4 (N2 base), 5 R/min, and 5%5iH4 (N2 base) (FIG. 1(b)).

次に、アルゴン雰囲気の横型炉にて420℃30分の熱
処理を施す。
Next, heat treatment is performed at 420° C. for 30 minutes in a horizontal furnace in an argon atmosphere.

次に、公知のりソグラフィ技術により、SiO2膜12
に選択的に開孔部13を設ける(第1図(C))。本実
施例では有効受光領域が径lll1mなる開孔とし、第
2図の上面図に示すように電極取出し部を設けるために
涙滴型になっている。また、5iOz l摸12の選択
エッチは通常用いられるNH4F・I−IF液を用いて
いる。
Next, the SiO2 film 12 is
Apertures 13 are selectively provided in (FIG. 1(C)). In this embodiment, the effective light-receiving area is an aperture with a diameter of 111 m, and as shown in the top view of FIG. 2, it is shaped like a teardrop to provide an electrode extraction portion. Further, the selective etching of the 5iOzl sample 12 uses a commonly used NH4F.I-IF solution.

次に、第3図に示すようなソース仕切室21aを設けた
石英の封管アンプル21内に、上記工程を終了した基板
22とCdを1wt%含むIn−8b−cdのアロイソ
ース23を真空封入し、400℃にて1.5時間拡散し
、p型領域14を形成する(第1図(d))。アンプル
の封じ切り時に於ける真空度は5X10−4パスカル以
下である。また上記拡散条件における拡散深さXJは2
500人である。
Next, in a sealed quartz ampoule 21 provided with a source partition 21a as shown in FIG. It is sealed and diffused at 400° C. for 1.5 hours to form a p-type region 14 (FIG. 1(d)). The degree of vacuum at the time of sealing the ampoule is 5×10 −4 Pascal or less. In addition, the diffusion depth XJ under the above diffusion conditions is 2
There are 500 people.

拡散後アンプルを開封し、弗酸によりマスク材として用
いたSiO□膜12を除去する(第1図(e))。
After the diffusion, the ampoule is opened and the SiO□ film 12 used as a mask material is removed with hydrofluoric acid (FIG. 1(e)).

次に、接合表面(表面の接合終端部の意)にパッシベー
ション膜を設ける(第1図(f))。パッシベーション
膜として一例の膜厚200人の陽極酸化膜15を適用し
た。また、陽極酸化膜の保護膜として、200℃の低温
CVD法によるSin、膜16を2000〜2500人
の膜厚に被着した。
Next, a passivation film is provided on the bonding surface (meaning the bonding end portion of the surface) (FIG. 1(f)). As an example of a passivation film, an anodic oxide film 15 having a thickness of 200 yen was used. Further, as a protective film for the anodic oxide film, a film 16 of Sin was deposited to a thickness of 2,000 to 2,500 layers by low-temperature CVD at 200°C.

次いで、第2図の上面図に示す電極取出し部に、フォト
リソグラフィにより電極用開孔部17を設ける(第1図
(g))。
Next, an electrode opening 17 is provided by photolithography in the electrode extraction portion shown in the top view of FIG. 2 (FIG. 1(g)).

次に、フォトレジストによるリフトオフ法により電極1
8を形成する(第1図(h))。ここでの電極金属層は
Cr−Auとし、膜厚は各々300人、1μmとした。
Next, the electrode 1 is
8 (Fig. 1(h)). The electrode metal layers here were made of Cr-Au, and the film thickness was 300 and 1 μm, respectively.

次に、素子を分割し、電極19.20を設けたサファイ
アチップキャリア30に銀ペーストにて素子をマウント
、金線の超音波ボンディングにより素子電極からの配線
31及び外部リード32.33の導出を行なって検知素
子として完成させる(第1図(i))。
Next, the device is divided and mounted on a sapphire chip carrier 30 provided with electrodes 19, 20 using silver paste, and the wiring 31 and external leads 32, 33 are led out from the device electrodes by ultrasonic bonding of gold wire. This process completes the sensing element (FIG. 1(i)).

その後、検知素子をデユア型の試験用容器に組込み冷却
手段を経て、素子のダイオード抵抗、赤外特性が評価さ
れる。
Thereafter, the sensing element is assembled into a dual-type test container, passed through cooling means, and the diode resistance and infrared characteristics of the element are evaluated.

第4図に本実施例にて作成したInSbnSbブレーナ
素子と、[3eイオン注入したInSbnSbブレーナ
素子のR6Aの温度特性の対比を示す。
FIG. 4 shows a comparison of the R6A temperature characteristics of the InSbnSb brainer element fabricated in this example and the InSbnSb brainer element implanted with [3e ions.

第4図かられかるように、赤外検知器としての実用温度
範囲77に一100kにおいて、本実施例のCd拡散プ
レーナ素子がBeイオン注入プレーナ素子に較べR0A
値として1桁以上良好である。また、本実施例の素子の
R,A値、赤外特性は市販されているcd拡散メサ型素
子に較べても遜色のないものが得られた。
As can be seen from FIG. 4, in the practical temperature range of 77 to 100 K as an infrared detector, the Cd diffused planar element of this example has a higher R0A than the Be ion-implanted planar element.
The value is one order of magnitude better. Furthermore, the R, A values, and infrared characteristics of the device of this example were comparable to those of commercially available CD diffusion mesa type devices.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、新規な設備を導入す
る事なしに容易にプレーナ素子が得られ、経済的価値は
大なるものがある。
As described above, according to the present invention, a planar element can be easily obtained without introducing new equipment, and has great economic value.

なお、上記実施例では単素子にて説明したが、赤外撮像
用素子であるフォトダイオードアレイには当然適用出来
、むしろフォトダイオードアレイに適用する事で本発明
の特徴を充分に発揮出来るものである。
Although the above embodiment has been explained using a single element, it can naturally be applied to a photodiode array, which is an infrared imaging element, and the features of the present invention can be fully demonstrated by applying it to a photodiode array. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は(a)〜(i)は本発明にかかる一実施例のp
v素子の製造方法を工程順に示すいずれも断面図。 第2図はPv素子の上面図、第3図はCd拡散を説明す
るための封管アンプルの断面図、第4図はR6A値の温
度特性を示す線図、第5図(a)〜(d)は素子におけ
る横方向拡散長を説明するためのいずれも上面図である
。 11−−−−−−−−−− n型(211)基板12−
一−−−−−−−−5iO□膜 13−−−−−−m−−−(SiO□膜の)開孔部14
−−−−−−−−−− p型領域 15−−−−−−−−−一陽極酸化膜(パッシベーショ
ン膜)16−−−−−−−−−−SiO,膜(パッシベ
ーション膜)18−−−−−−−−−一電極 21−−−−−−−−−一封管アンプル23−−−−−
−−−−−アロイソース代理人 弁理士 大 胡 典 
夫 11:n 型(xuyL↑6と 72 : 5L(72月莫 /3  :  (sio2月61] 開3Lip/4:
F型@工或 汀 l 国 (ンの1) I7:雷J&用開拓部 (L) f’l、20:’tk    31:mLa3Z、33
:!’rJrp+)−ビ30: 寸フフイアナップbリ
ヱ &i   1  1!l  (’1*Z)第  2  
凶 21: 圭1ノ管アンプル 2/cL:  ソー又ヅ土
を刃立22: 層重gL      23  :  ?
oイソース第  3  図 第  4  図 第 5 図  (¥t)rl) <d) ItzE+:J方間4広憑 第  5  図 (イのZ)
In FIG. 1, (a) to (i) are p of an embodiment according to the present invention.
All are sectional views showing the manufacturing method of the V element in order of steps. Figure 2 is a top view of the Pv element, Figure 3 is a cross-sectional view of a sealed ampoule for explaining Cd diffusion, Figure 4 is a diagram showing the temperature characteristics of the R6A value, and Figures 5 (a) to ( d) is a top view for explaining the lateral diffusion length in the element. 11--------- N-type (211) substrate 12-
1--------5iO□ film 13-------m--(SiO□ film) opening 14
------------- P-type region 15 --------- One anodic oxide film (passivation film) 16 -------- SiO, film (passivation film) 18 ------------ One electrode 21 --------- One sealed tube ampoule 23 ---
−−−−−Alloy Sauce Agent Patent Attorney Norihiro Ogo
Husband 11: n type (xuyL↑6 and 72: 5L (72 month Mo/3: (sio February 61) Open 3 Lip/4:
Type F @ Engineering/Kuni (N1) I7: Rai J & Development Department (L) f'l, 20: 'tk 31: mLa3Z, 33
:! 'rJrp+)-B30: Dimensions Fufianaup b Lie&i 1 1! l ('1*Z) 2nd
Evil 21: Kei 1 no tube ampoule 2/cL: Somatazu earth blade stand 22: Layer weight gL 23: ?
o E source Figure 3 Figure 4 Figure 5 (¥t)rl) <d) ItzE+: J direction 4 Hirotsu Figure 5 (Z of A)

Claims (1)

【特許請求の範囲】[Claims]  n型InSb基板にCdを熱拡散させ選択的にp−n
接合を形成するに際し、n型InSb基板の主面に面方
位が(211)でB面の基板を用い、CVD法により2
50℃以下で、膜厚が1000〜2000Åの範囲にあ
るSiO_2の拡散マスク膜を被着する工程と、前記拡
散マスク膜被着後に不活性ガス雰囲気中または真空中に
おいて拡散温度以上且つ500℃未満で熱処理を施す工
程を含むInSbプレーナ光起電力形素子の製造方法。
Selectively p-n by thermally diffusing Cd onto an n-type InSb substrate
When forming a bond, an n-type InSb substrate with a (211) B-plane main surface is used, and 2
A step of depositing a diffusion mask film of SiO_2 with a film thickness in the range of 1000 to 2000 Å at 50°C or less, and a step of depositing a diffusion mask film of SiO_2 with a film thickness in the range of 1000 to 2000 Å, and after depositing the diffusion mask film, a temperature higher than the diffusion temperature and less than 500°C in an inert gas atmosphere or in vacuum. A method for manufacturing an InSb planar photovoltaic device, including a step of performing heat treatment.
JP63104011A 1988-04-28 1988-04-28 Method for manufacturing InSb planar photovoltaic element Expired - Lifetime JP2708175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104011A JP2708175B2 (en) 1988-04-28 1988-04-28 Method for manufacturing InSb planar photovoltaic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104011A JP2708175B2 (en) 1988-04-28 1988-04-28 Method for manufacturing InSb planar photovoltaic element

Publications (2)

Publication Number Publication Date
JPH01276775A true JPH01276775A (en) 1989-11-07
JP2708175B2 JP2708175B2 (en) 1998-02-04

Family

ID=14369327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104011A Expired - Lifetime JP2708175B2 (en) 1988-04-28 1988-04-28 Method for manufacturing InSb planar photovoltaic element

Country Status (1)

Country Link
JP (1) JP2708175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506705A (en) * 2001-10-10 2005-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Etching and doping composites

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121480A (en) * 1984-11-19 1986-06-09 Fujitsu Ltd Photoelectric conversion element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61121480A (en) * 1984-11-19 1986-06-09 Fujitsu Ltd Photoelectric conversion element and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506705A (en) * 2001-10-10 2005-03-03 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Etching and doping composites
JP4837252B2 (en) * 2001-10-10 2011-12-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Etching and doping composites

Also Published As

Publication number Publication date
JP2708175B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US4782028A (en) Process methodology for two-sided fabrication of devices on thinned silicon
JP2980497B2 (en) Method of manufacturing dielectric-isolated bipolar transistor
US3149395A (en) Method of making a varactor diode by epitaxial growth and diffusion
JPS6393144A (en) Transistor construction of epitaxial system layers and manufacture of the same
Wong et al. The poly‐single crystalline silicon interface
CA1250055A (en) Coating of iii-v and ii-vi compound semiconductors
JPH03503946A (en) high efficiency solar cells
US3746587A (en) Method of making semiconductor diodes
US4226649A (en) Method for epitaxial growth of GaAs films and devices configuration independent of GaAs substrate utilizing molecular beam epitaxy and substrate removal techniques
US4180422A (en) Method of making semiconductor diodes
US3636421A (en) Oxide coated semiconductor device having (311) planar face
JPS61285714A (en) Manufacture of semiconductor construction
JP3033655B2 (en) Semiconductor device and method of manufacturing semiconductor device
US3600241A (en) Method of fabricating semiconductor devices by diffusion
US3345222A (en) Method of forming a semiconductor device by etching and epitaxial deposition
JPS62123716A (en) Manufacture of semiconductor device
JPH01276775A (en) Manufacture of insb planar photovoltaic device
Elgamel High efficiency polycrystalline silicon solar cells using low temperature PECVD process
Moest The Substrate Orientation Effect on Impurity Profiles of Epitaxial GaAs Films
Choi et al. Graded etching of thermal oxide with various angles using silicafilm
JPH0758304A (en) Manufacture of semiconductor wafer and analysis thereof by sims
EP0383816B1 (en) Process methodology for two-sided fabrication of devices on thinned silicon
JPS5828731B2 (en) All silicon materials available.
JPS63108729A (en) Semiconductor wafer
JPH05206145A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 11