JPH01276007A - Surface roughness meter - Google Patents

Surface roughness meter

Info

Publication number
JPH01276007A
JPH01276007A JP10392888A JP10392888A JPH01276007A JP H01276007 A JPH01276007 A JP H01276007A JP 10392888 A JP10392888 A JP 10392888A JP 10392888 A JP10392888 A JP 10392888A JP H01276007 A JPH01276007 A JP H01276007A
Authority
JP
Japan
Prior art keywords
light
measured
optical
roughness meter
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10392888A
Other languages
Japanese (ja)
Other versions
JP2533611B2 (en
Inventor
Kazuto Kinoshita
和人 木下
Toshio Akatsu
赤津 利男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63103928A priority Critical patent/JP2533611B2/en
Publication of JPH01276007A publication Critical patent/JPH01276007A/en
Application granted granted Critical
Publication of JP2533611B2 publication Critical patent/JP2533611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To exactly measure irregularity of the surface to be measured even when an optical characteristic of the surface to be measured is varied by providing a polariscope by which an irradiation light to the surface to be measured becomes only an S polarized wave against the surface to be measured. CONSTITUTION:As for an incident light beam whose passing range has been regulated 5, its polarization direction becomes 45 deg. against the radial direction, and said incident light is divided into a reflected light beam and a transmission light beam by a beam splitter 3. The surface 1 to be measured is irradiated with the reflected light by an objective lens 2a, and its reflected light is subjected to a phase variation in accordance with irregularity of the surface 1 and a complex index of refraction of the surface 1 and passes through a lens 2a again, and goes into the splitter 3. A reference mirror 4 is irradiated with the transmission light by an objective lens 2b, and the reflected light passes through a lens 2b again and goes into the splitter 3. The mirror 4 is attached to a mirror fine adjustment 28 and its reflected light can vary optical path length, and by a light shielding plate 6 which has been attached to a slide device 26, the reflected light of the mirror 4 is brought to light shielding. A light beam which has passed through the splitter among the light beams from the surface 1 and a light beam which has transmitted through only a prescribed polarization direction by a variable polariscope 7 among the light beams from the mirror 4 are brought to image formation on an image pickup element by an image forming lens 8.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は金属、半導体等の導電性表面を持つ物質の表面
あらさを光を利用して測定する表面あらさ計に関する。 〔従来の技術〕 従来の光を用いた表面あらさ計については「被接触方式
による精密加工表面の性状評価刃 (編著者: (社)
精機学会、発行日:1985年9月)第50頁から第1
12頁において論じられている。 光を用いた測定法としては、光切断法、顕微干渉法、光
プローブ法等がある。このうち、高精度な方法としては
顕微干渉法と光プローブ法の一部(非点収差法、臨界角
法等)がある。これからの方法は対物レンズにより表面
の光学的反射面を観測しており、¥m微干渉法は、対物
レンズ視野内のあらさを干渉縞として測定し、光プロー
ブ法は一点の面外方向変位として測定している。なお、
この種のあらさ計として関連するものには特許昭63−
728号が挙げられる。 〔発明が解決しようとする課題〕 上記、従来技術は被測定面の光学的特性が変化する場合
については配慮がなされておらず、たとえば、ガラス表
面の一部に金属を蒸着し、その厚さを測定しようとした
場合、ガラス表面では実表面と光学的反射面が一致して
いるが、金属のように複素屈折率を持つ表面では反射光
が位相変化を受け、実表面と光学的反射面が一致しなく
なり、その量により測定誤差が生じる。また、同−金属
面においても、その複素屈折率が場所により変化する場
合には上記現象により、測定誤差が生じるという問題点
がある。 本発明の目的は、上記、従来の問題点を解決し、金属、
半導体等の表面の複素屈折率が変化した場合の測定誤差
を低減した表面あらさ計を提供することにある。 〔課題を解決するための手段〕 上記目的は被測定面に対する入反射光のうち、被測定面
に対してS偏光波のみを使用し、また、その入反射角を
一定にすることにより、実表面と光学的反射面との差を
少なくするとともに、被測定面の複素屈折率を測定し、
上記、誤差を補正することにより達成される。 〔作用〕 物体表面の反射光は、その偏光方向、入射角および物体
の屈折率により変化する8その内、P偏光波は入射角に
より大きく変化し、特に上記問題点で述べた位相変化は
最大180度になり、実表面と光学的反射面との差を大
きくシ、測定誤差の要因となる。しかし5.S偏光波は
ガラスのような誘電体の場合には全ての入射角で位相変
化がOであるし、金属のように複素屈折率を持つ場合で
も入射角0では複素屈折率により決まる若干の位相変化
はあるものの、入射角の増加とともに減少し、入射角9
0度では位相変化はOになるやしかし。 実際の測定では、入射角90度のS偏光波のみを使用す
ることはできないので、若干の1定誤差は残る。そこで
、一定の入射角のS偏光波で測定した被測定面の光学的
反射面の凹凸のデータを、被測定面の複素屈折率を測定
し、その実表面と光学的反射面との差を算出し補正する
ことにより、実表面の凹凸を正確に測定できる。また、
上記複素屈折率から被測定面の光学的性状も測定できる
。 〔実施例〕 光が物体の表面に入射したとき反射および屈折が起こり
、物体が誘電体と導電体では異なる。以下、その様子を
説明する。 入射光、反射光および屈折光はいずれも物体表面の法線
を含む平面内にあり、この面内で振動する光の成分をP
偏光波1面と直角に振動する光の成分をS偏光波と呼ぶ
。この2つの成分の光は入射角により異なった反射をす
る。 物体が誘電体の場合、入射角を01.屈折角を02とす
ると、P偏光波の反射係数Rp 、S偏光波の反射係数
R3は次式で表される。 ここで、θ2は誘電体の屈折率をnとすると、スネルの
法則から次式となる。 sinθ2=sinθt/n         ・・・
(3)第1−式、第2式に第3式を代入すると、次式を
得る。 ここで、第5式はn > 1とπ/2≧θヱ≧Oの条件
では分母2分子とも正であるため、Rsは正である。し
かし、第4式は上記条件内では分母は正であるが、分子
は0を含む正負の値を取り得るので、RPは0を含む正
負の値を取る* Rp =0となる入射角の偏光角ある
いはブルースター角と言う、第13図は入射角θlに対
するRp e Rsの変化を反射係数の絶対値と位相変
化に分けて示す(n=1.5)、P偏光波の反射係数は
θlの増加とともに減少し、偏光角でOとなる。さらに
θ1が増加すると増加し、θ1=90度で1となる。P
偏光波の位相変化はθlが偏光角より小さい場合はOで
あるが、偏光角を超えると位相が反転し180度となる
。またS偏光波の反射係数はθlの増加とともに増加し
、θ1=90度で1となる。S偏光波の位相変化はP偏
光波と異なり常に0である。なお、θ1=O度ではS偏
光波、P偏光波とも反射係数0.2、位相変化Oである
が、これは垂直な入射であり、P偏光波、S偏光波の区
別が無くなるためである。これらのことから、誘電体表
面の光の反射では偏光角を超えない範囲であれば位相の
変化が無いため、実表面と光学的反射面は一致し、測定
誤差は発生しない。 物体が導電性の場合、誘電体における屈折率nを複素屈
折率n (1+ik)[kは吸収係数と呼ばれる。また
、iは虚数を表すコに置き換えればよい、したがって、
第3式のnをn (1+ik)に置き換え第1式、第2
式に代入すると反射係数Rp ? Rsは次式となる ・・・(6) ・・・(7) ここで、第6式、第7式は分母9分子とも複素数である
ためRp 、Rsは複素数になる。つまり、誘電体の反
射では、その位相変化が0か180度であったが、導電
体の反射では種々の位相変化を取り得ることになる。第
14図に金属のRp、 Rsの一例を示す(n=1.4
4.に=5.23)、第13図と同様、Rp 、Rsの
変化を反射係数の絶対値と位相変化に分けて示す、θ1
;0のときはRp t Rsとも反射係数0.953.
位相変化が14.6度である。この位相変化は光学的反
射面が実表面より内側に入って入ることを示しており、
この場合、その値は12.8nm (光の波長632.
8nmのとき)に相当する。つぎに、θ1を大きくして
いくと、Rp 、Rsは異なった動きをし、Rpの反射
係数は誘電体と似た動きをし、最初減少した後増加に転
じ、θ1=90度では1となる。 しかし、反射係数の最低値がOとならない点が誘電体と
異なる。また、RPの位相変化はθ1の増加とともに増
加し、θ1=90度では180度となり、実表面と光学
的反射面の差は158nm相当になる。これに対して、
Rsの反射係数はθ1の増加とともに増加し、θ1=9
0度では1となる。また1位相変化はθlの増加ととも
に減少し、θ1=90度では0となる。したがって、光
学式あらさ計で対物レンズ内の全ての光を使用している
場合には、θ1=0から対物レンズの開口数に相当する
角度までのP偏光波、S偏光波が反射光に含まれ、その
積分値が、実表面と光学的反射面の差を決定している。 このため、複素屈折率が一定の場合には、上述の差が一
定であるため測定誤差は生じないが、複素屈折率が変化
する場合には、その差が変化し測定誤差が生じる。そこ
で1反射光のうちS偏光波のみを使用し、その入射角を
一定の範囲に規制すれば実表面と光学的反射面の差を小
さくでき、測定誤差を低減できる。 しかし、このままでは誤差が残るため、物体表面の複素
屈折率を設定し、上記誤差を補正する必要がある。 つぎに複索屈折率の測定方法を示す、入射光の偏光状態
を入反射光を含む被測定面に垂直な面に対して45度の
偏光面を持つ直線偏光(S偏光波。 P偏光波とも同じ振幅としその位相差をO)とすると、
その反射光は複素屈折率の影響を受は楕円偏光になる。 いま、第1式、第2式を反射係数の絶縁値rP 、 I
’sと位相変化ΦP、ΦSにより表すと次式になる。 Rp=  I’ p ・ exp(i  Φp)   
               ・・(3)Rs= I
” s ・5xp(iΦS)         −(9
)これを利用すると楕円偏光は A−exp(iΔ) (A=I”s/ Fp:Δ=ΦP−ΦS)で表される。 以下、このA、Δを求める方法を説明する、 入射光のP偏光波、S偏光波の光強度をIoとし11反
射光のうち、P偏光波のみを透過させたときのIp−8
偏光波のみを透過させたときの光強度をXS、その間中
の45度方向の光のみを透過させたときの光強度をI 
4s、 I +8の方向と90度ずれた方向、つまり1
,35度方向の光のみを透過させたときの光強度を11
118とすると、各光強度は次式となる。 I p−: rp” ・I o           
 −(10)I s= r” +2.I o     
           −(11)I41+=(r”p
”+I’s”+2・I’p−r”5−eosΔ)・Io
/2・・・(12) I 188= D’ p”+ I’ +2−2 ・r’
 p−r5−cosΔ)・■o/2・・・(13) これを用いてA、Δを求めると次式となる。 A257石7        ・・・(14)なお、Δ
はIp t Is v I41Sのみを使用してもと求
めることもできる。 そこで、S偏光波の反射状態を示す第7式のうち、複素
屈折率の影響を受ける分母1分子の第1項目は楕円偏光
を表すA、Δを用いると次式で表される。 1 + A−exp(iΔ) ・・・(16)
[Industrial Field of Application] The present invention relates to a surface roughness meter that uses light to measure the surface roughness of materials having conductive surfaces, such as metals and semiconductors. [Conventional technology] Regarding the conventional surface roughness tester using light, please refer to “Contact type method for evaluating the properties of precision machined surfaces” (Editor: (Company)
Japan Society of Precision Machinery Engineers, Publication Date: September 1985) Pages 50 to 1
Discussed on page 12. Measurement methods using light include optical cutting methods, microinterference methods, optical probe methods, and the like. Among these, highly accurate methods include microscopic interference method and some optical probe methods (astigmatism method, critical angle method, etc.). Future methods will use an objective lens to observe the optically reflective surface of the surface, the microinterference method will measure the roughness within the field of view of the objective lens as interference fringes, and the optical probe method will measure the out-of-plane displacement of a single point. Measuring. In addition,
Related to this type of roughness meter is the patent issued in 1983-
No. 728 is mentioned. [Problems to be Solved by the Invention] The above-mentioned conventional technology does not take into account the case where the optical characteristics of the surface to be measured change. When trying to measure , the real surface and the optically reflective surface of a glass surface match, but for a surface with a complex refractive index, such as a metal, the reflected light undergoes a phase change, and the real surface and the optically reflective surface match. will no longer match, and this amount will cause a measurement error. Further, even on the same metal surface, if the complex refractive index changes depending on the location, there is a problem in that measurement errors occur due to the above phenomenon. The purpose of the present invention is to solve the above-mentioned conventional problems and to
An object of the present invention is to provide a surface roughness meter that reduces measurement errors when the complex refractive index of the surface of a semiconductor or the like changes. [Means for solving the problem] The above purpose can be achieved by using only the S-polarized light wave for the surface to be measured out of the light incident and reflected from the surface to be measured, and by keeping the angle of incidence and reflection constant. In addition to reducing the difference between the surface and the optically reflective surface, it also measures the complex refractive index of the surface to be measured,
The above is achieved by correcting the error. [Function] The light reflected from the surface of an object changes depending on its polarization direction, angle of incidence, and refractive index of the object.8Among these, P-polarized light changes greatly depending on the angle of incidence, and in particular, the phase change mentioned in the above problem is the largest. The angle becomes 180 degrees, which greatly increases the difference between the actual surface and the optically reflective surface, which causes measurement errors. But 5. For S-polarized light, the phase change is O at all incident angles in the case of a dielectric material such as glass, and even in the case of a material with a complex refractive index such as a metal, there is a slight phase change determined by the complex refractive index at an incident angle of 0. Although there is a change, it decreases as the incident angle increases, and the incident angle 9
However, at 0 degrees, the phase change is O. In actual measurements, it is not possible to use only the S-polarized light wave with an incident angle of 90 degrees, so some one-constant error remains. Therefore, the complex refractive index of the surface to be measured is measured based on the data of the unevenness of the optically reflective surface of the surface to be measured measured with S-polarized light at a constant angle of incidence, and the difference between the actual surface and the optically reflective surface is calculated. By correcting this, it is possible to accurately measure the unevenness of the actual surface. Also,
The optical properties of the surface to be measured can also be measured from the above complex refractive index. [Example] When light enters the surface of an object, reflection and refraction occur, and this is different if the object is a dielectric or a conductor. The situation will be explained below. Incident light, reflected light, and refracted light all lie within a plane that includes the normal to the object surface, and the component of light that oscillates within this plane is P.
A component of light that vibrates at right angles to one plane of polarized light is called an S-polarized wave. These two components of light are reflected differently depending on the angle of incidence. If the object is a dielectric, the incident angle is set to 01. When the refraction angle is 02, the reflection coefficient Rp of the P polarized light wave and the reflection coefficient R3 of the S polarized light wave are expressed by the following equations. Here, θ2 is expressed by the following equation based on Snell's law, where n is the refractive index of the dielectric. sinθ2=sinθt/n...
(3) Substituting the third equation into the first equation and the second equation, the following equation is obtained. Here, in the fifth equation, under the conditions of n>1 and π/2≧θヱ≧O, both denominators and numerators are positive, so Rs is positive. However, in the fourth equation, the denominator is positive within the above conditions, but the numerator can take positive and negative values including 0, so RP takes positive and negative values including 0 * Polarization at the angle of incidence where Rp = 0 Figure 13 shows the change in Rp e Rs with respect to the incident angle θl, divided into the absolute value of the reflection coefficient and the phase change (n = 1.5).The reflection coefficient of the P-polarized light wave is θl. decreases as the polarization angle increases, and becomes O at the polarization angle. It increases as θ1 further increases, and becomes 1 when θ1=90 degrees. P
The phase change of the polarized light wave is O when θl is smaller than the polarization angle, but when it exceeds the polarization angle, the phase is reversed and becomes 180 degrees. Further, the reflection coefficient of S-polarized light increases as θl increases, and becomes 1 when θ1=90 degrees. The phase change of the S-polarized light wave is always 0, unlike that of the P-polarized light wave. Note that when θ1 = O degree, the reflection coefficient is 0.2 and the phase change is O for both S-polarized light wave and P-polarized light wave, but this is because the incidence is perpendicular and there is no distinction between P-polarized light wave and S-polarized light wave. . For these reasons, in the reflection of light on the dielectric surface, there is no change in phase within a range that does not exceed the polarization angle, so the real surface and the optical reflection surface match, and no measurement error occurs. If the object is conductive, the refractive index n in the dielectric is the complex refractive index n (1+ik) [k is called the absorption coefficient. Also, i can be replaced with ko representing an imaginary number, therefore,
Replace n in the third equation with n (1+ik), the first equation, and the second equation
Substituting into the equation, the reflection coefficient Rp? Rs is the following equation (6)...(7) Here, since the denominator and 9 numerators of equations 6 and 7 are both complex numbers, Rp and Rs are complex numbers. In other words, in the case of reflection from a dielectric material, the phase change is either 0 or 180 degrees, but in the case of reflection from a conductor, various phase changes are possible. Figure 14 shows an example of metal Rp and Rs (n=1.4
4. = 5.23), and similarly to Fig. 13, the changes in Rp and Rs are shown divided into the absolute value of the reflection coefficient and the phase change, and θ1
; When 0, both Rp t and Rs have a reflection coefficient of 0.953.
The phase change is 14.6 degrees. This phase change indicates that the optical reflective surface is moving inside the real surface.
In this case, the value is 12.8 nm (the wavelength of light is 632 nm).
8 nm). Next, as θ1 is increased, Rp and Rs behave differently, and the reflection coefficient of Rp behaves similar to that of a dielectric, decreasing at first, then increasing, and reaching 1 at θ1 = 90 degrees. Become. However, it differs from a dielectric material in that the lowest value of the reflection coefficient is not O. Moreover, the phase change of RP increases as θ1 increases, and when θ1=90 degrees, it becomes 180 degrees, and the difference between the real surface and the optical reflection surface becomes equivalent to 158 nm. On the contrary,
The reflection coefficient of Rs increases with the increase of θ1, and θ1=9
At 0 degrees, it becomes 1. Further, the one phase change decreases as θl increases, and becomes 0 when θ1=90 degrees. Therefore, when using all the light in the objective lens with an optical roughness meter, the reflected light includes P-polarized waves and S-polarized waves from θ1=0 to the angle corresponding to the numerical aperture of the objective lens. The integral value determines the difference between the real surface and the optically reflective surface. Therefore, when the complex refractive index is constant, no measurement error occurs because the above-mentioned difference is constant, but when the complex refractive index changes, the difference changes and a measurement error occurs. Therefore, by using only the S-polarized light wave out of one reflected light and regulating its incident angle within a certain range, the difference between the real surface and the optical reflection surface can be reduced, and measurement errors can be reduced. However, if this continues, errors will remain, so it is necessary to set the complex refractive index of the object surface and correct the above errors. Next, we will show how to measure the bifurcated refractive index by measuring the polarization state of the incident light by linearly polarized light (S-polarized light wave, P-polarized light wave) with a polarization plane of 45 degrees with respect to the plane perpendicular to the surface to be measured, including the incident reflected light. If both have the same amplitude and their phase difference is O), then
The reflected light becomes elliptically polarized light under the influence of the complex refractive index. Now, the first equation and the second equation are expressed as the insulation value rP of the reflection coefficient, I
's and phase changes ΦP and ΦS, the following equation is obtained. Rp=I'p・exp(iΦp)
...(3)Rs=I
” s ・5xp(iΦS) −(9
) Using this, elliptically polarized light is expressed as A-exp(iΔ) (A=I”s/Fp:Δ=ΦP-ΦS). Below, we will explain how to find these A and Δ. Ip-8 when only P polarized light is transmitted among the 11 reflected lights, assuming that the light intensity of P polarized light wave and S polarized light wave is Io.
XS is the light intensity when only polarized waves are transmitted, and I is the light intensity when only the light in the 45 degree direction is transmitted.
4s, a direction 90 degrees off from the direction of I +8, that is, 1
, the light intensity when only the light in the 35 degree direction is transmitted is 11
118, each light intensity becomes the following formula. I p-: rp” ・I o
−(10)I s= r” +2.I o
−(11)I41+=(r”p
"+I's"+2・I'p-r"5-eosΔ)・Io
/2...(12) I 188= D'p"+I' +2-2 ・r'
p-r5-cosΔ)・■o/2 (13) Using this to find A and Δ, the following equation is obtained. A257 stone 7 ... (14) In addition, Δ
can also be determined using only Ipt Is v I41S. Therefore, in the seventh equation showing the reflection state of the S-polarized light wave, the first item of one numerator in the denominator that is affected by the complex refractive index is expressed by the following equation using A and Δ representing elliptically polarized light. 1 + A-exp(iΔ) ... (16)

【7たがって、4つの光強度Ip、 Is* Is8゜
I z+seを求めることにより、第14式、第15式
。 第16式、第7式から、S偏光波の実表面と光学的反射
面との差が求まり、光学的反射面の測定結果を補正する
ことにより実表面の凹凸を誤差なく測定できる。 また、A、Δと入射角θlから、複素屈折率を浸す定数
n、kを求めると次式となる。 k、=tan2  ψ ’e08Δ         
           −(18)(ただし、φ= a
retan A )以下、本発明を実施例に基づいて説
明する。 第1図に本発明の一実施例を示す、入射光はスP< 、
(ラル偏光器5により通過範囲を規制するととしに偏光
方向を半径方向に対して45度にし、ビームスプリッタ
3により反射光と透過光に分けらシ1.る 反射光は対
物レンズ2aにより被測定面1に照射され、その反射光
は被測定面1の凹凸および被測定面1の光学定数(複素
屈折率)に応じて位相変化を受は再び対物レンズ2aを
通り、ビームスプリッタ3に入る。透過光は対物レンズ
2bにより参照ミラー4に照射され、その反射光は再び
対物レンズ2bを通りビームスプリッタ3し7人る□参
照ミラー4はミラー微動装置28に取付けられており1
反射光の光路長を可変できる。また。 ビームスプリッタ3と対物レンズ2bとの間にはスライ
ド装置26に取付けた遮光板6があり、必要に応じての
参照ミラー4の反射光を遮光できる。 被測′ホ面】からの光のうちビームスプリッタ3を透過
1また光と、参照ミラー4からの光のうちビート、:l
Sfリッタ3で反射した光は回転装置27に取付けたa
f変変光光器7より所定の偏光方向のみを透;h、(仕
、結像レンズ8により擬像素子7に結像する5、 第2図L:可変偏光器7の詳細を示す、可変偏光器′7
L:は第10式から第13式の光強度の測定に使用する
円形S偏光器102円形P偏光器11、。 スパイラル偏光器1.2.13が取付けられ、それぞれ
の偏光方向に応じて使いわける。そわぞれの偏光器は被
測定面1の反射光の偏光状態に対応させるため、光軸を
中心とした半径方向に対して偏光方向が目的に応じた角
度になっていた。また、使用する反射光の反射角度を規
制するため、それぞれの偏光器の中心部には遮光部14
a〜14dが設けである。 つぎに各偏光器の構造について述べる。第3図にスパイ
ラ偏光器5,12の詳細を示す、これは直線偏光板15
a〜15pと遮光部14cとから出来ており遮光部14
cの回りに扇形をした直線偏光板15a〜tspをその
偏光方向が半径方向に対して時計回りに45度傾けて並
べることにより構成できる。第4図に円形S偏光器10
の構造を示す、これも遮光部14aの回りに扇形をした
直線偏光板16a〜16pを並べであるがその偏光方向
が円の接線方向を向いている。第5図に円形P偏光器1
1の構造を示す、これも遮光部14bの回りに扇形をし
た直線偏光板17a〜17pを並べであるがその偏光方
向が円の半径方向を向いている。なお、スパイラル偏光
器13については図示しないが、スパイラ偏光器5,1
2の偏光方向を半径方向に対して反時計回りに45度傾
けて並べることにより構成できる。これらの偏光器は直
線偏光板を使用した簡易的なもので、扇形の分割数を無
限大にしないと理想的なものにならないが、実用上は充
分である。 第6図から第9図に他の方法を用いた偏光器を示す、第
6図、第7図に誘電体偏光膜を使用した円形S偏光器を
示す、原理的には第6図と第7図は同じものなので第6
図について説明する0円形プリズム18a、18bは上
下面が平行で内外周面が90度の頂角を持つ円錐面とな
っていて外周面には誘電体偏光膜19a、19bが全面
に付けである。2つの円形プリズム18a、18bを円
錐の底面どうしで重ね、上方から光を入射すると円形プ
リズム18aの内周面で全反射され、外周面に向い、外
周面で反射されるとき、外周面に付けである誘電体偏光
膜19aの作用により、S偏光波のみ反射されP偏光波
は透過してしまう、したがって、円形プリズム18bに
入射する光はS偏光波のみになっており1円形プリズム
18b円では円形プリズム18aの逆を通り、最終的に
はS偏光波のみが透過する。なお、誘電体偏光膜19a
、19bのどちらかは省略してもよいし。 光の透過半径が変化してもよい場合は円形プリズム18
bを省略できる。第8図に誘電体偏光膜を使用した円形
P偏光器を示す0円形プリズム20a、2Qbは断面が
直角二等辺三角形の円筒上で、その2つの円形プリズム
20a、20bの接する45度の面には誘電体偏光膜1
9が付けである。 この状態で、上方から光を入射すると、誘電体偏光膜1
9によりP偏光波のみ透過し、S偏光波は反射され、円
形P偏光器となる。なお、第6図から第8図の偏光器に
ついても遮光部は必要である。 第9図にスパイラル偏光器の他の一例を示す、これは円
形S偏光器10と円形P偏光器11により得られたS偏
光波、P偏光波を重ねたもので位相補償板22により両
波の位相を調整するとスパイラル状の直線偏光となる。 ただし、この偏光器はスパイラル偏光器12.13には
使用出来ない。 第10図に本実施例の回路図を示す、スライド装置26
9回転装[27,ミラー微動装置28は制御袋[30に
より所定の位置にセットされる。 撮像素子9からの画像信号はA/D変換器29によりデ
ジタル化した後、フレームメモリ31に取り込む、なお
、フレームメモリ31は複数の画像を記憶するため必要
数用意している。演算回路32はフレームメモリ31の
各画素毎に所定の演算を行い測定結果を出力する。なお
、測定結果はフレームメモリ内に記憶しておくこともで
きる。 つぎに測定方法について説明する。まず、被測定面1の
光学的測定面の測定では、遮光板6を第1図における実
線の位置に置き、被測定面1からの反射光と参照ミラー
4からの反射光とを撮像素子9上で干渉させる。このと
き、可変偏光器7は円形S偏光器10にしておく、これ
により、撮像素子9上の干渉縞はS偏光波によるものの
みとなる。干渉縞による凹凸の解析には、参照ミラー4
をミラー微動装置28により光軸方向に1/4波長ステ
ツプで4回微動し、各ステップ毎に干渉縞の各画素の光
強度を測定し演算により凹凸を算出する。縞走査法を用
いれば、撮像素子9の各画素毎に高精度に求まる。 つぎに第10式から第15式によるA、Δの測定につい
て述べる。まず、遮光板6を図中、破線の位置に置き、
参照ミラー4への光を遮断し、撮像素子9への光を被測
定面1からの反射光のみとする。この状態で可変偏光器
7を回転させ、各々の偏光器10から13に対応する透
過光強度を撮像索子9の各画素毎に測定する。この測定
値から各画素毎に第14式、第15式の演算を行い、A
。 Δを求め、第16式、第7式から被測定面1の実表面と
光学的反射面の差を求め、上記、干渉縞による光学的反
射面の測定結果を補正することにより、実表面の凹凸を
高精度に求めることができる。 また、第17式、第18式から各画素毎にn、kを求め
れば被測定面1の光学定数を測定できる。 第11図に本発明の他の実施例を示す。これは非点収差
法に本発明を適用したもので、ここでは非点収差法の詳
細な説明は省略する。ビームスプリッタ3aを通った光
をビームスプリッタ3bにより2つに分け、透過した光
は円形S偏光器1゜によりS偏光波のみにした後、非点
収差法により、被測定面1の光学的反射面を測定する。 一方、ビームスブリップ3bで反射した光はビームスプ
リッタ30〜3eにより4つの光に分けられ、それぞれ
の光は4種類の偏光器10b、11,12゜13を通っ
た後、結像レンズ8b〜8eにより光センサ25a〜2
5dに集光され、光強度を検出する。第12図に測定回
路を示す、光センサ25a〜25dの光強度を入力し、
誤差演算回路34で第14式、第15式、第16式、第
7式の計算を行い、被測定面1の実表面と光学的反射面
の差を求める。上述の非点収差法による測定は非点収差
法演算回路33で行う0回路33の測定値は、誤差演算
回路34の出力と共に減算器に与えられる。 減算器35では、非点収差法による測定値がら誤差分を
差し引き、誤差の少ない被測定面】の実表面の凹凸の測
定結果を出力する。また、誤差演算回路34では第17
式、第18式の演算も行い被測定面1の光学定数も出力
する。 〔発明の効果〕 本発明によれば、被測定面の光学特性の変化による実表
面と光学的反射面との差の変化による測定誤差を補正で
きるので、上記変化がある場合でも被測定面の凹凸を正
確に測定できるという効果がある。
[7 Therefore, by finding the four light intensities Ip, Is* Is8°I z+se, Equations 14 and 15 are obtained. From Equations 16 and 7, the difference between the real surface of the S-polarized light wave and the optical reflection surface can be found, and by correcting the measurement result of the optical reflection surface, the unevenness of the real surface can be measured without error. Further, when constants n and k that submerge the complex refractive index are calculated from A, Δ and the incident angle θl, the following equations are obtained. k, = tan2 ψ 'e08Δ
−(18) (where φ= a
(retan A) Hereinafter, the present invention will be explained based on Examples. FIG. 1 shows an embodiment of the present invention, where the incident light is S P<,
(The passing range is restricted by the radial polarizer 5, the polarization direction is set at 45 degrees with respect to the radial direction, and the beam splitter 3 separates the reflected light and transmitted light. The reflected light is measured by the objective lens 2a. The reflected light is irradiated onto the surface 1, and the reflected light undergoes a phase change according to the unevenness of the surface 1 to be measured and the optical constant (complex refractive index) of the surface 1 to be measured, passes through the objective lens 2a again, and enters the beam splitter 3. The transmitted light is irradiated onto the reference mirror 4 by the objective lens 2b, and the reflected light passes through the objective lens 2b again and is sent to the beam splitter 3.
The optical path length of reflected light can be varied. Also. A light shielding plate 6 attached to a slide device 26 is provided between the beam splitter 3 and the objective lens 2b, and can shield light reflected from the reference mirror 4 as necessary. The light from the surface to be measured is transmitted through the beam splitter 3, and the light from the reference mirror 4 is beat: l
The light reflected by the Sf liter 3 is transferred to a
Only a predetermined polarization direction is transmitted through the variable polarizer 7; Variable polarizer'7
L: denotes a circular S polarizer 102 and a circular P polarizer 11, which are used for measuring the light intensity according to equations 10 to 13. Spiral polarizers 1, 2, and 13 are installed and can be used depending on the direction of polarization. In order to correspond to the polarization state of the reflected light from the surface to be measured 1, each polarizer had a polarization direction at an angle corresponding to the purpose with respect to a radial direction centered on the optical axis. In addition, in order to regulate the reflection angle of the reflected light used, a light shielding part 14 is provided at the center of each polarizer.
A to 14d are provided. Next, the structure of each polarizer will be described. FIG. 3 shows details of the spiral polarizers 5 and 12, which are linear polarizers 15 and 12.
The light shielding part 14 is made up of a to 15p and a light shielding part 14c.
It can be constructed by arranging fan-shaped linear polarizing plates 15a to 15tsp around c so that their polarization directions are inclined at 45 degrees clockwise with respect to the radial direction. Figure 4 shows a circular S polarizer 10.
This structure also shows fan-shaped linear polarizing plates 16a to 16p arranged around a light shielding part 14a, but the polarization direction thereof is oriented in the tangential direction of the circle. Figure 5 shows circular P polarizer 1.
1, in which fan-shaped linear polarizing plates 17a to 17p are arranged around a light shielding part 14b, but the polarization direction thereof is oriented in the radial direction of the circle. Although the spiral polarizer 13 is not shown, the spiral polarizers 5 and 1
It can be constructed by arranging the two polarization directions with the polarization directions thereof tilted at 45 degrees counterclockwise with respect to the radial direction. These polarizers are simple ones using linear polarizing plates, and although they are not ideal unless the number of fan-shaped divisions is made infinite, they are sufficient for practical use. Figures 6 to 9 show polarizers using other methods; Figures 6 and 7 show circular S polarizers using dielectric polarizing films; Figure 7 is the same, so it is the 6th figure.
The 0-circular prisms 18a and 18b explained in the figure have parallel upper and lower surfaces, inner and outer circumferential surfaces are conical surfaces with an apex angle of 90 degrees, and dielectric polarizing films 19a and 19b are attached to the entire outer circumferential surface. . Two circular prisms 18a and 18b are overlapped with the bottom surfaces of the cones, and when light enters from above, it is totally reflected on the inner circumferential surface of the circular prism 18a and directed toward the outer circumferential surface. Due to the action of the dielectric polarizing film 19a, only the S-polarized light wave is reflected and the P-polarized light wave is transmitted. Therefore, the light incident on the circular prism 18b is only the S-polarized light wave. The light passes through the opposite direction of the circular prism 18a, and finally only the S-polarized light is transmitted. Note that the dielectric polarizing film 19a
, 19b may be omitted. Circular prism 18 if the light transmission radius can change
b can be omitted. FIG. 8 shows a circular P polarizer using a dielectric polarizing film. The circular prisms 20a and 2Qb are on a cylinder whose cross section is an isosceles right triangle, and the two circular prisms 20a and 20b touch on a 45-degree plane. is dielectric polarizing film 1
9 is attached. In this state, when light is incident from above, the dielectric polarizing film 1
9 allows only P-polarized waves to pass through and reflects S-polarized waves, forming a circular P-polarizer. Note that the light shielding portion is also necessary for the polarizers shown in FIGS. 6 to 8. FIG. 9 shows another example of a spiral polarizer, in which S-polarized light waves and P-polarized light waves obtained by a circular S-polarizer 10 and a circular P-polarizer 11 are superimposed. By adjusting the phase of the light, it becomes spirally linearly polarized light. However, this polarizer cannot be used with spiral polarizers 12 and 13. The slide device 26 whose circuit diagram of this embodiment is shown in FIG.
The 9 rotating device [27] and the mirror fine movement device 28 are set in predetermined positions by the control bag [30]. The image signal from the image sensor 9 is digitized by an A/D converter 29 and then taken into a frame memory 31. Note that a necessary number of frame memories 31 are prepared to store a plurality of images. The calculation circuit 32 performs a predetermined calculation for each pixel of the frame memory 31 and outputs a measurement result. Note that the measurement results can also be stored in the frame memory. Next, the measurement method will be explained. First, in measuring the optical measurement surface of the surface to be measured 1, the light shielding plate 6 is placed at the position indicated by the solid line in FIG. interfere above. At this time, the variable polarizer 7 is replaced by a circular S polarizer 10, so that the interference fringes on the image sensor 9 are only those due to S polarized waves. Reference mirror 4 is used to analyze unevenness caused by interference fringes.
is finely moved four times in 1/4 wavelength steps in the optical axis direction by a mirror fine movement device 28, and at each step, the light intensity of each pixel of the interference fringe is measured and the unevenness is calculated by calculation. If the fringe scanning method is used, it can be determined for each pixel of the image sensor 9 with high precision. Next, the measurement of A and Δ using Equations 10 to 15 will be described. First, place the light shielding plate 6 at the position indicated by the broken line in the figure,
Light to the reference mirror 4 is blocked, and only light reflected from the surface to be measured 1 is transmitted to the image sensor 9. In this state, the variable polarizer 7 is rotated, and the transmitted light intensity corresponding to each of the polarizers 10 to 13 is measured for each pixel of the imaging probe 9. From this measured value, calculate equations 14 and 15 for each pixel, and
. Δ, calculate the difference between the real surface of the surface to be measured 1 and the optically reflective surface from Equations 16 and 7, and correct the measurement result of the optically reflective surface using the interference fringes described above. Unevenness can be determined with high precision. Furthermore, by finding n and k for each pixel from equations 17 and 18, the optical constants of the surface to be measured 1 can be measured. FIG. 11 shows another embodiment of the present invention. This is an application of the present invention to the astigmatism method, and a detailed explanation of the astigmatism method will be omitted here. The light that has passed through the beam splitter 3a is split into two by the beam splitter 3b, and the transmitted light is made into only S-polarized waves by a circular S-polarizer 1°.Then, the optical reflection of the surface to be measured 1 is determined by the astigmatism method. Measure the surface. On the other hand, the light reflected by the beam splitter 3b is divided into four lights by beam splitters 30 to 3e, and each light passes through four types of polarizers 10b, 11, and 12°13, and then passes through imaging lenses 8b to 8e. The optical sensors 25a-2
5d, and the light intensity is detected. Inputting the light intensity of optical sensors 25a to 25d whose measurement circuit is shown in FIG. 12,
The error calculation circuit 34 calculates equations 14, 15, 16, and 7 to determine the difference between the actual surface of the surface to be measured 1 and the optical reflective surface. The above-mentioned measurement by the astigmatism method is performed by the astigmatism calculation circuit 33. The measured value of the 0 circuit 33 is given to the subtracter together with the output of the error calculation circuit 34. The subtracter 35 subtracts the error from the measured value obtained by the astigmatism method, and outputs a measurement result of the irregularities of the real surface of the measured surface with little error. In addition, the error calculation circuit 34
It also calculates the equation 18 and outputs the optical constant of the surface to be measured 1. [Effects of the Invention] According to the present invention, measurement errors caused by changes in the difference between the real surface and the optically reflective surface due to changes in the optical characteristics of the surface to be measured can be corrected, so even when the above-mentioned changes occur, the measurement errors of the surface to be measured can be corrected. This has the effect of accurately measuring unevenness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した図、第2図から第9
図は各種偏光器を示した図、第10図は第1図に示した
実施例の回路図、第11図、第12図は他の実施例を示
した図、第1−3図、第14図は光の反射特性を示した
図である。 1・・・被測定面、2・・・対物レンズ、3・・・ビー
ムスプリッタ、5・・・スパイラル偏光器、7・・・可
変偏光器。 猜 1  図 IS(セ負−木反      Z3 ミラー堀す棗加更
ヱ[不 Z 図 7可変偏光区 10円形5偏尤暮 /4艶り抑 Z 3 図 /6     ’ 第5図 /7 L<縁4鳥兜板 拓 6 肥 第 7 図 會 19  誘電、#R光辰 Z3図 鳶9図 t9 #@−4本イ扁オ巴膜 葛 /ρ 図 1・)定、結果出力 r  /1   図 ′fJ/Z  図 葛 /3 11U 扁 14  図
FIG. 1 is a diagram showing an embodiment of the present invention, and FIGS. 2 to 9
The figures show various polarizers, Figure 10 is a circuit diagram of the embodiment shown in Figure 1, Figures 11 and 12 are diagrams showing other embodiments, Figures 1-3, and FIG. 14 is a diagram showing the light reflection characteristics. DESCRIPTION OF SYMBOLS 1... Surface to be measured, 2... Objective lens, 3... Beam splitter, 5... Spiral polarizer, 7... Variable polarizer. 1 Fig. IS (Separate - Wooden Z3 Mirror Horisu Natsume Kasaraヱ [Non Z Fig. 7 Variable polarization zone 10 Circular 5 Polarization/4 Gloss suppression Z 3 Fig./6' Fig. 5/7 L< Edge 4 Tori Kabuto Taku 6 Hi No. 7 Figure 19 Dielectric, #R Kotatsu Z3 Figure Tobi 9 Figure t9 #@-4 Honi flat Ohame membrane kudzu /ρ Figure 1・) Determination, result output r /1 Figure' fJ/Z Figure Kuzu /3 11U Bian 14 Figure

Claims (1)

【特許請求の範囲】 1、被測定面の凹凸を測定する光学式表面あらさ計にお
いて、被測定面への照射光を被測定面に対してS偏光波
のみとする偏光器を設けたことを特徴とする光学式の表
面あらさ計。 2、被測定の凹凸を測定する光学式表面あらさ計におい
て、被測定面の反射光のうち被測定面に対してS偏光波
のみを透過する偏光器を設けたことを特徴とする光学式
の表面あらさ計。 3、請求項1または2記載の表面あらさ計において、被
測定面への入射角あるいは被測定面からの反射角が一定
の光のみを使用することを特徴とする光学式の表面あら
さ計。 4、請求項1、2または3記載の表面あらさ計において
、被測定面の複素屈折率を設定する手段を設け、複素屈
折率を測定する手段を設け、複素屈折率により生じる被
測定面の実表面と光学的反射面との差を補正し、実表面
のあらさを測定するとともに、複素屈折率から被測定面
の物性変化を測定することを特徴とする光学式の表面あ
らさ計。 5、請求項1、2または3記載の表面あらさ計において
、被測定面に入射する光の偏光面を一定に保つ手段と、
被測定面からの反射光の楕円偏光状態を検出する手段を
設け、楕円偏光状態から複素屈折率により生じる被測定
面の実表面と光学的反射面との差を補正し、実表面のあ
らさを測定するとともに、楕円偏光状態から被測定の物
性変化を測定することを特徴とする光学式の表面あらさ
計。
[Scope of Claims] 1. In an optical surface roughness meter for measuring the unevenness of a surface to be measured, a polarizer is provided to make the light irradiated onto the surface to be measured only S-polarized. Features an optical surface roughness meter. 2. An optical surface roughness meter for measuring the unevenness of a surface to be measured, which is characterized by being equipped with a polarizer that transmits only S-polarized waves to the surface to be measured among the light reflected from the surface to be measured. Surface roughness meter. 3. An optical surface roughness meter according to claim 1 or 2, characterized in that only light having a constant angle of incidence on the surface to be measured or a constant angle of reflection from the surface to be measured is used. 4. The surface roughness meter according to claim 1, 2 or 3, wherein means is provided for setting a complex refractive index of the surface to be measured, and means for measuring the complex refractive index is provided, so that An optical surface roughness meter that measures the roughness of an actual surface by correcting the difference between the surface and an optically reflective surface, and also measures changes in physical properties of the surface to be measured from the complex refractive index. 5. In the surface roughness meter according to claim 1, 2 or 3, means for keeping the polarization plane of the light incident on the surface to be measured constant;
A means for detecting the elliptical polarization state of the reflected light from the surface to be measured is provided, and the difference between the real surface of the surface to be measured and the optical reflective surface caused by the complex refractive index from the elliptical polarization state is corrected, and the roughness of the real surface is corrected. An optical surface roughness meter characterized by measuring changes in the physical properties of the object to be measured based on the state of elliptically polarized light.
JP63103928A 1988-04-28 1988-04-28 Surface roughness measuring device Expired - Fee Related JP2533611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103928A JP2533611B2 (en) 1988-04-28 1988-04-28 Surface roughness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103928A JP2533611B2 (en) 1988-04-28 1988-04-28 Surface roughness measuring device

Publications (2)

Publication Number Publication Date
JPH01276007A true JPH01276007A (en) 1989-11-06
JP2533611B2 JP2533611B2 (en) 1996-09-11

Family

ID=14367092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103928A Expired - Fee Related JP2533611B2 (en) 1988-04-28 1988-04-28 Surface roughness measuring device

Country Status (1)

Country Link
JP (1) JP2533611B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202102A (en) * 1985-03-06 1986-09-06 Hitachi Ltd Light wave interfering microscope
JPS63728A (en) * 1986-06-20 1988-01-05 Matsushita Electric Ind Co Ltd Rule base device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202102A (en) * 1985-03-06 1986-09-06 Hitachi Ltd Light wave interfering microscope
JPS63728A (en) * 1986-06-20 1988-01-05 Matsushita Electric Ind Co Ltd Rule base device

Also Published As

Publication number Publication date
JP2533611B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
US5067817A (en) Method and device for noncontacting self-referencing measurement of surface curvature and profile
US8009292B2 (en) Single polarizer focused-beam ellipsometer
US4672196A (en) Method and apparatus for measuring properties of thin materials using polarized light
KR100742982B1 (en) Focused-beam ellipsometer
JPH0712535A (en) Interferometer
JPH02228505A (en) Interferometer
JP2003050185A (en) Method for absolute calibration of interferometer
JPS59116007A (en) Method of measuring surface
US4932780A (en) Interferometer
US7289222B1 (en) Interferometer apparatus and method of processing a substrate having an optical surface
EP0128183A1 (en) Inspection apparatus and method.
JPH01276007A (en) Surface roughness meter
JP2600461B2 (en) Torque measurement method
JPH02116732A (en) Method and apparatus for optical measurement
JPS62235508A (en) Device for detecting centering error
JP2001227929A (en) Angle measuring method and apparatus
JPH04127004A (en) Ellipsometer and its using method
JPH116784A (en) Device and method for measuring shape of aspherical surface
JPH07113547B2 (en) Sample plane position measuring device
JP2000097657A (en) Interferometer
JPH047446B2 (en)
EP1057081B1 (en) Linear conoscopic holography
JPS60249007A (en) Instrument for measuring film thickness
JPH03111713A (en) Interference type apparatus for detecting tilt or height, reduction stepper and method therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees