JPH0127591B2 - - Google Patents

Info

Publication number
JPH0127591B2
JPH0127591B2 JP55067641A JP6764180A JPH0127591B2 JP H0127591 B2 JPH0127591 B2 JP H0127591B2 JP 55067641 A JP55067641 A JP 55067641A JP 6764180 A JP6764180 A JP 6764180A JP H0127591 B2 JPH0127591 B2 JP H0127591B2
Authority
JP
Japan
Prior art keywords
photoconductor
electrode
solid
charge
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55067641A
Other languages
Japanese (ja)
Other versions
JPS56162886A (en
Inventor
Yutaka Myata
Takao Chikamura
Takuo Shibata
Shinji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6764180A priority Critical patent/JPS56162886A/en
Publication of JPS56162886A publication Critical patent/JPS56162886A/en
Publication of JPH0127591B2 publication Critical patent/JPH0127591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14672Blooming suppression

Description

【発明の詳細な説明】 本発明は、表面に光導電体を有する固体撮像装
置に関するもので、光導電体で光生成したキヤリ
アによるMOSトランジスタ(以下MOSFETとす
る)のゲート電位変化を、上記MOSFETのソー
ス―ドレイン間に流れる電流変化に変換しこの電
流変化を光信号とすることにより、ブルーミング
がなく、光導電体のキズ歩留まりを向上した固体
撮像装置を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid-state imaging device having a photoconductor on its surface. The object of the present invention is to provide a solid-state imaging device that does not cause blooming and improves the yield of scratches on photoconductors by converting the changes in current flowing between the source and drain of the photoconductor and using this current change as an optical signal.

従来、光導電体とCCD,BBD等の電荷転送素
子とMOSFETを組みあわせた構造の固体撮像装
置(例えば特開昭51−95720号参照)が提案され
ているが、この場合、光生成した信号電荷は、一
度半導体基板中に形成したダイオード容量に蓄積
し、MOSFETにより、読み込み期間に電荷転送
段へ移していた。つまり、光生成した電荷を直接
光情報としていたわけであり、見方を変えると信
号の読み込みは、上記ダイオードと光導電体に逆
バイアスを印加することに等しい。従つて、信号
読み込み期間中も光導電体は光感度をもち、電荷
転送段に電荷が流入する。通常の場合、上記信号
読み込み期間に発生する電荷は無視できるが、強
い入射光がある場合や、光導電体の一部分でリー
ク電流の大きい場合(キズ等)には、上記信号読
み込み期間中に電荷転送段に流入する電荷は、電
荷転送段にオーバーフローしたり、隣接絵素に電
荷が流入する。この結果、強いスポツト光が固体
撮像装置の一部に照射された場合、縦方向及び横
方向にスポツト光がひろがりブルーミングとな
る。キズのある場合も同様である。
Conventionally, solid-state imaging devices have been proposed that combine photoconductors, charge transfer elements such as CCDs and BBDs, and MOSFETs (for example, see Japanese Patent Application Laid-Open No. 51-95720). Charge was once accumulated in a diode capacitor formed in a semiconductor substrate, and transferred to a charge transfer stage using a MOSFET during the read period. In other words, the photogenerated charge was directly used as optical information, and from another perspective, reading a signal is equivalent to applying a reverse bias to the diode and photoconductor. Therefore, even during the signal reading period, the photoconductor remains photosensitized and charges flow into the charge transfer stage. In normal cases, the charge generated during the above signal reading period can be ignored, but if there is strong incident light or if there is a large leakage current in a part of the photoconductor (such as a scratch), the charge generated during the above signal reading period may be ignored. Charges flowing into the transfer stage overflow into the charge transfer stage or flow into adjacent picture elements. As a result, when a part of the solid-state imaging device is irradiated with strong spot light, the spot light spreads in the vertical and horizontal directions, resulting in blooming. The same applies if there are scratches.

以上のことから明らかなように、上記のブルー
ミングおよびキズのひろがりは、光導電体あるい
は半導体基板中のダイオードで生成した電荷を直
接信号とすることに起因する。従つて、光導電体
のない場合はもちろん、光導電体とX―Yアドレ
ス型を組みあわせた構造(例えば等開昭49−
91116号)の場合にも本質的に除去できないもの
である。上記の様な構成の固体撮像装置の欠点を
克服するために光導電体の一方の電極を
MOSFETのゲート電極とし、このゲート電極を
もう一つのMOSFETのソース部分に接続し、後
者のMOSFETにて光導電体に逆バイアスを印加
する構成の固体撮像装置が提案されているが(例
えば特開昭51−3223号公報)、一絵素あたり、2
つのMOSFETが必要となるため、より高解像度
の固体撮像装置を作るには問題が多かつた。
As is clear from the above, the above-mentioned blooming and spread of scratches are caused by using electric charges generated by a diode in a photoconductor or a semiconductor substrate as a direct signal. Therefore, it is possible not only to use a structure without a photoconductor, but also a structure that combines a photoconductor and an XY address type (for example,
91116), it is essentially irremovable. In order to overcome the drawbacks of solid-state imaging devices with the above configuration, one electrode of the photoconductor is
Solid-state imaging devices have been proposed in which the gate electrode of a MOSFET is connected to the source of another MOSFET, and a reverse bias is applied to the photoconductor in the latter MOSFET (for example, Publication No. 51-3223), per picture element, 2
Because two MOSFETs were required, there were many problems in creating a higher-resolution solid-state imaging device.

本発明は、光導電体で光生成した電荷を直接信
号電荷とすることなく、光生成した電荷によるゲ
ート電位変化によるMOSFETのソース、ドレイ
ン間に流れる電流の変化を光情報とすることによ
り上述したブルーミングやキズのひろがりを起こ
さない固体撮像装置をより簡単な構成により提供
するものである。
The present invention does not directly use charges photogenerated in a photoconductor as signal charges, but instead uses changes in the current flowing between the source and drain of a MOSFET due to changes in gate potential due to photogenerated charges as optical information. To provide a solid-state imaging device with a simpler configuration that does not cause blooming or spreading of scratches.

以下図面に従つて本発明を実施例に基いて説明
する。
The present invention will be described below based on examples with reference to the drawings.

第1図はMOSFETのゲート電極に電気的に接
続するように形成した光導電体とからなる本発明
の固体撮像装置の一実施例の一絵素の断面図を示
したものである。p型半導体基板10にn+型領
域11,12を設け、それぞれソース・ドレイン
とし、Al等により15,16の配線する。13,
14は、それぞれゲート酸化膜およびゲート電極
である。以上で一つのMOSFETを構成する。1
7は絶縁体層であり、ゲート電極14の一部を除
いて第一電極18と上記MOSFETと絶縁する。
19は(ZnxCd1-xTe)1-y(In2Te3yよりなる光
導電体であり、その上に透明電極20が形成さ
れ、入射光21が透明電極側から照射される。
FIG. 1 shows a cross-sectional view of one pixel of an embodiment of the solid-state imaging device of the present invention, which includes a photoconductor formed to be electrically connected to the gate electrode of a MOSFET. N + type regions 11 and 12 are provided on a p-type semiconductor substrate 10 and used as sources and drains, respectively, and wirings 15 and 16 are formed using Al or the like. 13,
14 are a gate oxide film and a gate electrode, respectively. The above constitutes one MOSFET. 1
Reference numeral 7 denotes an insulator layer, which insulates the first electrode 18 and the MOSFET except for a part of the gate electrode 14.
19 is a photoconductor made of (Zn x Cd 1-x Te) 1-y (In 2 Te 3 ) y , on which a transparent electrode 20 is formed, and incident light 21 is irradiated from the transparent electrode side. .

第2図は、第1図の固体撮像素子の一単位を複
数個形成した場合の回路図を示したもので、31
〜34および35〜38は、それぞれ第1図にお
けるMOSFETおよび光導電体に対応する。39
〜42は透明電極に対応する。43,44は垂直
走査回路の出力パルスによりONするMOSFET
で、定電圧電源45がソース領域に接続される。
46,47は、水平帰線期間毎に48からのパル
スによりONするMOSFETである。なお詳細に
ついては後述する。
FIG. 2 shows a circuit diagram when a plurality of units of the solid-state image sensor shown in FIG. 1 are formed.
-34 and 35-38 correspond to the MOSFET and photoconductor in FIG. 1, respectively. 39
42 corresponds to transparent electrodes. 43 and 44 are MOSFETs that are turned on by the output pulse of the vertical scanning circuit.
A constant voltage power supply 45 is connected to the source region.
46 and 47 are MOSFETs that are turned ON by a pulse from 48 every horizontal retrace period. The details will be described later.

上記実施例の固体撮像装置に第3図a〜dに示
した駆動パルスを印加する。Y1,Y2は垂直走査
パルスであり43,44のMOSスイツチを駆動
し、時間T1,T5においてONすると、電源45
より49,50の水平ラインに電流が供給され
る。光導電体で光生成した電子・正孔対のうち、
電子は透明電極側へ・正孔は第一電極に移動し、
光生成した電荷に比例して第一電極の電位は上昇
する。従つて、31〜34のMOSFETに流れる
電流は、光生成した電荷数、すなわち光強度に比
例し、時間T2において、第3図bのパルスに対
応してMOSFET46,47がONすると電荷は
水平シフトレジスタに移動し、その後、時系列で
出力される。水平シフトレジスタに電荷を移動さ
せた後、時間T3において、第3図cのパルスZ1
Z2により透明電極の電位は下げられ光導電体はそ
れまでの逆バイアス状態(蓄積状態)から順バイ
アス状態におかれるため、第一電極の電位も下げ
られリセツトが完了する。インタレースのために
透明電極は、水平絵素群ごとに絶縁され、フレー
ム蓄積の場合は、第3図に示したように各水平絵
素群ごとに別々のパルスが印加される。このパル
スは、シフトレジストにより容易に得られる。ま
た、フイールド蓄積を行なう場合は、パルスは2
種類でよく、一フイールドごとに光導電体をリセ
ツトすればよい。
The driving pulses shown in FIGS. 3a to 3d are applied to the solid-state imaging device of the above embodiment. Y 1 and Y 2 are vertical scanning pulses that drive MOS switches 43 and 44, and when turned on at times T 1 and T 5 , the power supply 45
Current is supplied to horizontal lines 49 and 50. Of the electron-hole pairs photogenerated in the photoconductor,
Electrons move to the transparent electrode side, holes move to the first electrode,
The potential of the first electrode increases in proportion to the photogenerated charge. Therefore, the current flowing through MOSFETs 31 to 34 is proportional to the number of photogenerated charges, that is, the light intensity, and at time T2 , when MOSFETs 46 and 47 are turned on in response to the pulse shown in Figure 3b, the charges become horizontal. It is moved to a shift register and then output in chronological order. After transferring the charge to the horizontal shift register, at time T 3 the pulses Z 1 ,
The potential of the transparent electrode is lowered by Z2 and the photoconductor is changed from the previous reverse bias state (accumulation state) to a forward bias state, so the potential of the first electrode is also lowered and the reset is completed. For interlacing, the transparent electrode is isolated for each horizontal pixel group, and for frame accumulation, a separate pulse is applied for each horizontal pixel group as shown in FIG. This pulse can be easily obtained using a shift resist. Also, when performing field accumulation, the pulse is 2
It is sufficient to reset the photoconductor for each field.

上記のような構成の固体撮像素子の場合、信号
読み込み期間に光導電体はリセツトされることは
なく、強い入射光やキズのある場合も、
MOSFETのゲート電極18は、透明電極電位に
保持されたままであり、この期間に電荷がさらに
発生することはない。従つて、不必要な電荷が出
力されることはなくスポツト光や点キズが縦方向
にひろがることはない。また、MOSFETのソー
ス部の電位設定または垂直走査のパルス期間を変
化させることにより、出力を増巾可能であるか
ら、出力部に通常必要な前置増巾器は必要ない。
さらに透明電極電位は十分高くすることが可能
で、Knee特性を有する光導電体を用いたときも、
焼きつけ等の発生することはなく、また透明電極
電位を変化させることにより、ダイナミツクレン
ジを可変にできる。
In the case of a solid-state image sensor with the above configuration, the photoconductor is not reset during the signal reading period, and even if there is strong incident light or scratches, the photoconductor will not be reset.
The gate electrode 18 of the MOSFET remains at the transparent electrode potential and no further charge is generated during this period. Therefore, unnecessary charges are not output, and spot lights and point scratches do not spread in the vertical direction. Furthermore, since the output can be amplified by changing the potential setting of the source section of the MOSFET or the pulse period of vertical scanning, there is no need for a preamplifier that is normally required for the output section.
Furthermore, the transparent electrode potential can be made sufficiently high, and even when using a photoconductor with knee characteristics,
Burn-in and the like do not occur, and the dynamic range can be made variable by changing the transparent electrode potential.

以上は、垂直転送をバス線にて行ない、水平転
送をCCD等の電荷転送素子で説明したが、
MOSFETのドレイン部12をCCD,BBD等の電
荷転送段とし、これを用いて垂直転送を行なつて
もかまわない。また光導電体として(ZnxCd1-x
Te)1-y(In2Te3yを用いたが別の光導電体(たと
えばアモルフアスSi等)を用いても全くさしつか
えない。
In the above, vertical transfer is performed using a bus line, and horizontal transfer is performed using a charge transfer element such as a CCD.
The drain portion 12 of the MOSFET may be used as a charge transfer stage such as a CCD or BBD to perform vertical transfer. Also as a photoconductor (Zn x Cd 1-x
Although Te) 1-y (In 2 Te 3 ) y was used, it is perfectly acceptable to use another photoconductor (for example, amorphous Si, etc.).

以上述べてきたことから明らかなように、本発
明を用いるなら、簡単な構成により、強いスポツ
ト光が入射した場合や、光導電体にキズ等があり
リーク電流が大きい場合も、縦方向に信号がひろ
がることは全くない。
As is clear from what has been described above, if the present invention is used, the simple structure allows the signal to be transmitted in the vertical direction even when strong spot light is incident or when there is a large leakage current due to scratches on the photoconductor. It does not spread at all.

また、各絵素ごとに増巾可能であるから、出力
部の前置増巾器の必要がないとともに、低照度の
場合も高い感度を得ることができる。従つてその
産業上の意義は極めて大きい。
Further, since it is possible to amplify each pixel, there is no need for a preamplifier in the output section, and high sensitivity can be obtained even in low illuminance. Therefore, its industrial significance is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す要素構成図、
第2図は本発明の等価回路図、第3図a〜dは上
記実施例の動作説明図である。 10……半導体基板、11,12……n+型領
域、13……ゲート酸化膜、14……ゲート電
極、18……第1電極、19……光導電体、20
……第2電極。
FIG. 1 is an elemental configuration diagram showing an embodiment of the present invention;
FIG. 2 is an equivalent circuit diagram of the present invention, and FIGS. 3 a to 3 d are explanatory diagrams of the operation of the above embodiment. DESCRIPTION OF SYMBOLS 10... Semiconductor substrate, 11, 12... N + type region, 13... Gate oxide film, 14... Gate electrode, 18... First electrode, 19... Photoconductor, 20
...Second electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 電荷走査機能を有する回路素子が形成された
半導体基板と、前記半導体基板上に絵素毎に形成
された第1の電極を介して設けられた光導電体
と、前記光導電体上に形成された第2の電極とを
備え、前記回路素子が光導電体で生成された電荷
を読み込むMOS型電界効果トランジスタで構成
されるとともに、前記MOS型電界効果トランジ
スタの制御電極と前記第1の電極とが電気的に接
続され、光情報読み込み動作期間に、前記第2の
電極に、前記光導電体を逆バイアスにするパルス
電圧を加え、光情報読み込み動作終了後、前記第
2の電極に、前記光導電体を逆バイアス状態から
順バイアス状態にするためのパルス電圧を加える
ことを特徴とする固体撮像装置。
1. A semiconductor substrate on which a circuit element having a charge scanning function is formed, a photoconductor provided via a first electrode formed for each picture element on the semiconductor substrate, and a photoconductor formed on the photoconductor. a control electrode of the MOS field effect transistor and a second electrode of the MOS field effect transistor that reads the charge generated by the photoconductor; are electrically connected to each other, a pulse voltage that reverse biases the photoconductor is applied to the second electrode during an optical information reading operation period, and after the optical information reading operation is completed, a pulse voltage is applied to the second electrode, A solid-state imaging device characterized in that a pulse voltage is applied to change the photoconductor from a reverse bias state to a forward bias state.
JP6764180A 1980-05-20 1980-05-20 Solid state image pickup device Granted JPS56162886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6764180A JPS56162886A (en) 1980-05-20 1980-05-20 Solid state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6764180A JPS56162886A (en) 1980-05-20 1980-05-20 Solid state image pickup device

Publications (2)

Publication Number Publication Date
JPS56162886A JPS56162886A (en) 1981-12-15
JPH0127591B2 true JPH0127591B2 (en) 1989-05-30

Family

ID=13350824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6764180A Granted JPS56162886A (en) 1980-05-20 1980-05-20 Solid state image pickup device

Country Status (1)

Country Link
JP (1) JPS56162886A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5919370A (en) * 1982-07-23 1984-01-31 Canon Inc Semiconductor device
JPH0669088B2 (en) * 1984-03-30 1994-08-31 株式会社東芝 Image input device
JPS63250171A (en) * 1987-04-06 1988-10-18 Sharp Corp Contact type image sensor

Also Published As

Publication number Publication date
JPS56162886A (en) 1981-12-15

Similar Documents

Publication Publication Date Title
US7545425B2 (en) Solid-state image pickup device and camera system
US8390714B2 (en) Solid-state imaging device and camera system
US4672453A (en) Contact type image sensor and driving method therefor
JPH11122532A (en) Solid-state image pickup element and its drive method
JP3278243B2 (en) Photoelectric conversion device
JPH0992807A (en) Photoelectric converter and its drive method and x-ray photographing equipment
EP0022323B1 (en) Solid-state imaging device
TW201448600A (en) Solid-state imaging device
US4223330A (en) Solid-state imaging device
US10680032B2 (en) Photoelectric conversion element and solid-state image pickup device
CA1125422A (en) Solid-state imaging device
JPH0453149B2 (en)
JP2000077642A (en) Solid-state image pickup element
JPH07264485A (en) Image pickup device
JP3630832B2 (en) Photoelectric conversion device
JP2003110940A (en) Solid-state image pickup device
JPH0127591B2 (en)
JPH09168117A (en) Solid state image pickup element
JP3424360B2 (en) Solid-state imaging device
JPS59108460A (en) Solid-state image pickup device
JP3053721B2 (en) Solid-state imaging device
JPH02181470A (en) Solid-state image pick-up element
JP2001346104A (en) Solid-state image pickup device and image pickup device using it
JPH07115182A (en) Photoelectric transducer having memory function and solid-state image pickup device
JPS6048109B2 (en) Driving method of solid-state imaging device