JPH01275867A - Vibration control method for building - Google Patents

Vibration control method for building

Info

Publication number
JPH01275867A
JPH01275867A JP10294188A JP10294188A JPH01275867A JP H01275867 A JPH01275867 A JP H01275867A JP 10294188 A JP10294188 A JP 10294188A JP 10294188 A JP10294188 A JP 10294188A JP H01275867 A JPH01275867 A JP H01275867A
Authority
JP
Japan
Prior art keywords
building
vibration
control
vibration damping
damping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10294188A
Other languages
Japanese (ja)
Other versions
JPH0518991B2 (en
Inventor
Takuji Kobori
小堀 鐸二
Mitsuo Sakamoto
光雄 坂本
Shunichi Yamada
俊一 山田
Koji Ishii
石井 孝二
Isao Nishimura
功 西村
Atsushi Tagami
淳 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP10294188A priority Critical patent/JPH01275867A/en
Priority to US07/343,085 priority patent/US5022201A/en
Publication of JPH01275867A publication Critical patent/JPH01275867A/en
Publication of JPH0518991B2 publication Critical patent/JPH0518991B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to control buildings' complex vibration and to improve vibration control effect, by installing a plurality of active type vibration control devices which control weights, capable of making relative movement against the building in accordance with vibration of the building, and by realizing simultaneous control by a plurality of vibration control devices. CONSTITUTION:One of the methods proposed by this description is that a vibration control device AMD1 which controls vibrations in the X direction and vibration control device AMD2 which controls vibrations in the Y direction are arranged so that they are placed at right angles each other. Sensors S1-S4 made of accelerometers are arranged at weights 2 and a building body 1. Detected signals are transmitted to a control device, and levels of the signals at synthesization with amplified response signals of the weight 2 is controlled by an automatic gain control circuit. One of the methods to control vibration is that with reaction taken at the building 1, control force is applied to the building 1 through the weight 2 and, at the same time, simultaneous control by a plurality of vibration control devices is applied. By the above-mentioned methods, complex vibration of the building can be controlled and vibration control effect can be improved, too.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は地震や風等の外力により建物に生じる振動を
低減させるための能動式制震装置を用いた建物の制震方
法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method of damping vibrations in a building using an active damping device to reduce vibrations generated in the building due to external forces such as earthquakes and wind. .

〔従来の技術〕[Conventional technology]

出願人は特開昭62−268478号および特開昭63
−78974号公報等において、建物頂部等に付加質量
とアクチュエーターからなる制震装置を設け、建物が地
震あるいは風等の外力を受けたとき、アクチュエーター
の作動を制御することにより、付加質量としての重りに
反力をとって、建物本体にその振動を制御するような力
を加える能動式制震装置を開示している。
The applicant is JP-A-62-268478 and JP-A-63
- In Publication No. 78974, etc., a vibration control device consisting of an additional mass and an actuator is installed at the top of a building, etc., and when the building receives an external force such as an earthquake or wind, by controlling the operation of the actuator, the weight as an additional mass is installed. This disclosure discloses an active vibration damping device that takes a reaction force and applies a force to the building body to control the vibration.

第4図は能動式制震装置の概要を示したもので、例えば
建物1の頂部に建物1と実質的に切り離した形で、付加
質量としての重り2を設け、重り2と建物1の一部との
間にアクチエエータ−3としての油圧シリンダーを介在
させである。地震や風等が作用し、建物1に振動が生じ
ると、その振動を建物1に設けたセンサー4aが感知し
、信号を制御回路に送り、建物1の振動に応じた出力信
号をアクチュエーター3に接続したサーボ弁に送り、ア
クチュエーター3の制御を行う。なお、アクチュエータ
ー3側にもセンサー4bを設けることにより、アクチュ
エーター3の動きをフィードバックして制御することが
できる。また、以上は閉ループでの制御であるが、広域
、狭域の地震計等から送られてくる地震波の解析により
、建物の応答を予測し、制御を行う間ループの制御と組
み合わせるごともできる。
Figure 4 shows an outline of an active vibration damping system. For example, a weight 2 is provided as an additional mass on the top of a building 1, substantially separate from the building 1, and the weight 2 and the building 1 are combined. A hydraulic cylinder as an actuator 3 is interposed between the actuator and the actuator. When vibrations occur in the building 1 due to earthquakes, wind, etc., the sensor 4a installed in the building 1 senses the vibrations, sends a signal to the control circuit, and sends an output signal corresponding to the vibration of the building 1 to the actuator 3. The signal is sent to the connected servo valve to control the actuator 3. Note that by providing a sensor 4b also on the actuator 3 side, the movement of the actuator 3 can be controlled by feeding back. In addition, although the above is closed-loop control, it is also possible to predict the response of the building by analyzing seismic waves sent from wide-area and narrow-area seismometers, and combine it with loop control during control.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、アクチュエーター3として油圧シリンダー等
を用いた場合、制御の方向が限られるため、建物の一方
向について振動を抑制することができても、他方向の振
動を抑制することができない。
By the way, when a hydraulic cylinder or the like is used as the actuator 3, the direction of control is limited, so even if vibrations in one direction of the building can be suppressed, vibrations in the other direction cannot be suppressed.

また、建物の設計によっては一方向のみの制御でも比較
的大きな効果が得られる場合も多いが、地震、風等の外
力は不確定な外力であり、偏心した建物等においては、
ねじれ振動成分を抑制することにより、さらに効果的な
制置が可能となる。
Also, depending on the design of the building, relatively large effects can often be obtained even with control in only one direction, but external forces such as earthquakes and wind are uncertain external forces, and in eccentric buildings, etc.
By suppressing torsional vibration components, more effective control becomes possible.

さらに、高層あるいは超高層の建物では2次振動成分が
大きくなる場合もあるため、2次振動成分を抑制するこ
とにより、制置効果を向上させることができる。
Furthermore, since secondary vibration components may become large in high-rise or super-high-rise buildings, the restraining effect can be improved by suppressing the secondary vibration components.

この発明は能動式制震装置を用いた建物の制震方法にお
ける上述のような問題点の解決を図ったものである。
This invention aims to solve the above-mentioned problems in a method of damping a building using an active damping device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明で使用する能動式制震装置は建物の振動速度に
比例した制御力を出すのを基本とし、建物に設けた振動
検知手段からの信号を増幅回路で増幅し、出力された制
御信号によりアクチュエーターを制御し、重りに反力を
とってアクチュエーターから建物に制御力を加えること
により、建物の振動を抑制することができる。
The active vibration control device used in this invention is basically to output a control force proportional to the vibration speed of the building, and the signal from the vibration detection means installed in the building is amplified by an amplifier circuit, and the output control signal is used to By controlling the actuator and applying a control force to the building by applying a reaction force to the weight, it is possible to suppress vibrations in the building.

この発明では制御しようとする建物に上述の制震装置を
複数設け、複数台の制震装置を同時に制御することによ
り建物の複雑な振動を制御するようにしている。これら
、複数台の制震装置は1つの油圧源を共用するようにし
、設備の簡略化を図ることもできる。
In this invention, a plurality of the above-mentioned vibration damping devices are provided in a building to be controlled, and complex vibrations of the building are controlled by simultaneously controlling the plurality of vibration damping devices. A plurality of these vibration damping devices can share one hydraulic power source, thereby simplifying the equipment.

具体的には2台の制震装置で、互いに直交する方向の制
御を行うことにより、建物の平面形状に応じた制御を行
うことができる(第1図参照)。
Specifically, by using two vibration damping devices to perform control in directions orthogonal to each other, it is possible to perform control according to the planar shape of the building (see Figure 1).

また、特定の振動方向の制御を主とする場合は主の制震
装置を建物の平面中央に設置し、補助の制震装置を建物
の平面端部に主の制震装置と同方向に設置することによ
り、補助の制震装置で建物のねじれ振動成分を制御する
ことができる(第2図参照)。
In addition, if the main purpose is to control vibration in a specific direction, the main vibration damping device should be installed at the center of the plane of the building, and the auxiliary vibration damping device should be installed at the edge of the building in the same direction as the main vibration damping device. By doing so, it is possible to control the torsional vibration component of the building with an auxiliary vibration damping device (see Figure 2).

また、高層の建物あるいは超高層の建物に対しては、建
物頂部に設けた主の制震装置に加え、2次振動モードに
おける腹の部分となる階に補助の制震装置を設置し、両
者を同時に制御することにより、建物の2次振動成分を
補助の制震装置により制御することができる(第3図参
照)。
In addition, for high-rise buildings or super high-rise buildings, in addition to the main vibration damping device installed at the top of the building, an auxiliary vibration damping device is installed on the floor that is the antinode in the secondary vibration mode, and both By controlling these simultaneously, the secondary vibration components of the building can be controlled by an auxiliary vibration damping device (see Figure 3).

〔実施例〕〔Example〕

次に、具体的な実施例について説明する。 Next, specific examples will be described.

第1図は建屋の頂部に2台の制震装置を直交する方向に
設置し、建物のX、Y2方向について制御するようにし
たものである。図中、X方向の制震装置をAMDI (
AMDはActive Mass Driverの略)
、Y2方向の制震装置をAMD2としている。直交する
2台の制震装置を制御することにより全方向の振動に対
し、制御を行うことができる。
In Figure 1, two vibration damping devices are installed at the top of a building in orthogonal directions to control the building in two directions, X and Y. In the figure, the X-direction vibration damping device is AMDI (
AMD stands for Active Mass Driver)
, the vibration damping device in the Y2 direction is AMD2. By controlling two orthogonal vibration control devices, vibrations in all directions can be controlled.

なお、図中S1〜S4は振動検知手段としての加速度計
の配置を示したものである。
Note that S1 to S4 in the figure indicate the arrangement of accelerometers as vibration detection means.

第2図の実施例は2台の制震装置を建物頂部の中央と端
部に同方向に設置し、主となる中央の制震装置(図中、
AMD I )で主の制御を行い、補助的な端部の制震
装置(図中、AMD2)でねじれ振動成分の制御を行う
ようにしたものである。
In the embodiment shown in Figure 2, two vibration control devices are installed in the same direction at the center and end of the top of the building, and the main vibration control device (in the figure) is installed in the same direction.
AMD I) performs main control, and an auxiliary vibration damping device (AMD2 in the figure) at the end controls torsional vibration components.

第3図は高層建物について、1次振動成分は建屋頂部の
制震装置(図中、AMD 1 ’)で制御し、2次振動
成分は2次振動モードの腹の位置に相当する階に設けた
制震装置(図中、AMD2)で制御するようにしたもの
である。
Figure 3 shows a high-rise building where the primary vibration component is controlled by a damping device (AMD 1' in the figure) at the top of the building, and the secondary vibration component is installed on the floor corresponding to the antinode position of the secondary vibration mode. It is controlled by a vibration damping device (AMD2 in the figure).

第5図は能動式制震装置の信号油圧系統の概念図であり
、制震装置(AMD)の重りと建屋にそれぞれセンサー
としての加速度計(31,S2)を設け、応答信号を制
御信号発生回路に送っている。
Fig. 5 is a conceptual diagram of the signal hydraulic system of the active damping device. Accelerometers (31, S2) are installed as sensors in the weight of the damping device (AMD) and the building, respectively, and response signals are generated as control signals. sending it to the circuit.

後述するように制御信号発生回路で位相調整および増幅
を行った後、制御信号が比較回路へ送られる。一方、重
りの動きを感知するセンサーS1からは比較回路へも出
力信号が送られ、フィードバック制御を行っている。
After phase adjustment and amplification are performed by the control signal generation circuit as described later, the control signal is sent to the comparison circuit. On the other hand, an output signal is also sent from the sensor S1 that detects the movement of the weight to the comparison circuit, thereby performing feedback control.

比較回路を経た制御信号は油圧シリンダーに取り付けた
油圧サーボ弁に送られ、油圧サーボ弁の制御を行う。油
圧系統は油圧タンク、油圧ポンプ、油圧サーボ弁および
油圧シリンダーからなる循環経路を構成し、油圧ポンプ
と油圧サーボ弁の間にはアキュームレーターを設けであ
る。
The control signal passed through the comparison circuit is sent to the hydraulic servo valve attached to the hydraulic cylinder, and the hydraulic servo valve is controlled. The hydraulic system constitutes a circulation path consisting of a hydraulic tank, a hydraulic pump, a hydraulic servo valve, and a hydraulic cylinder, and an accumulator is provided between the hydraulic pump and the hydraulic servo valve.

油圧サーボ弁の制御により油圧シリンダーが作動し、建
屋に反力をとって、制震装置の重りに建屋の振動を抑制
するような力を加えることができる。
A hydraulic cylinder is operated under the control of a hydraulic servo valve, which takes a reaction force to the building and applies force to the weight of the vibration damping device to suppress the vibrations of the building.

第6図は第2図の実施例、すなわち主となる制震装置(
AMDI)の他に、建屋の端部に補助の制震装置(AM
D2)を設置し、補助の制震装置でねじれ振動成分を制
御するようにした場合の制御信号発生回路の一例をブロ
ック図として示したものである。
Figure 6 shows the embodiment of Figure 2, that is, the main vibration damping device (
In addition to AMDI), an auxiliary vibration damping device (AMDI) is installed at the end of the building.
D2) is installed and an auxiliary damping device is used to control torsional vibration components.

第6図中、入力1はセンサーSl(第2図参照)で感知
される建屋の頂部中央に設置した主の制震装置の重りの
加速度、入力2および入力4はセンサーS2で感知され
る建屋頂部中央の加速度、入力3はセンサーS3で感知
される建屋の頂部端部に設置した補助の制震装置の重り
の加速度、入力5はセンサーS4で感知される建屋頂部
端部の加速度である。
In Figure 6, input 1 is the acceleration of the weight of the main vibration control device installed at the center of the top of the building, which is sensed by sensor Sl (see Figure 2), and input 2 and input 4 are the acceleration of the weight of the main vibration control device installed at the center of the top of the building, which is sensed by sensor S2. The acceleration at the center of the top, input 3, is the acceleration of the weight of the auxiliary damping device installed at the top end of the building, which is sensed by sensor S3, and input 5 is the acceleration at the top end of the building, which is sensed by sensor S4.

入力1はローパスフィルターで微小振動成分やノイズが
除かれ、増幅された後、積分回路を経由して、または直
接位相調整器に送られる。入力1は加速度であり、速度
と90’位相がずれているが、油圧シリンダー等の機械
部分については摩擦その他による機械的遅れがあるため
、必要に応じ積分回路で位相を90°調整し、さらに位
相調整器で0〜90°の範囲の調整を行う。その後、増
幅器で信号レベルの調整が行われる。
Input 1 is passed through a low-pass filter to remove minute vibration components and noise, amplified, and then sent to the phase adjuster via an integrating circuit or directly. Input 1 is acceleration, which is 90' out of phase with velocity, but since mechanical parts such as hydraulic cylinders have mechanical delays due to friction and other factors, the phase is adjusted by 90° using an integral circuit as necessary. Adjustment is performed in the range of 0 to 90° using a phase adjuster. The signal level is then adjusted by an amplifier.

入力2は同様に微小振動成分やノイズを除き、位相を調
整した後、自動利得調整回路を通すことにより信号レベ
ルをあらかじめ設定したレベルにもってゆく。なお、制
御信号は建屋の振動と位相が90°ずれたものとなる。
Similarly, the input 2 has minute vibration components and noise removed, the phase is adjusted, and then the signal level is brought to a preset level by passing through an automatic gain adjustment circuit. Note that the control signal is 90° out of phase with the vibration of the building.

入力1と入力2は上述のような並列の増幅回路を経て合
成される。
Input 1 and input 2 are combined through parallel amplifier circuits as described above.

制震装置の重りの振動は、装置の能力内で行われなけれ
ばならず、振幅には限度があるのに対し、建屋側の振動
は地震の規模に応じ、小さい加速度のものから大きい加
速度のものまである。そのため、建屋側について、自動
利得調整回路を設けであるが、建屋側の加速度が小さい
ときは建屋側の回路における増幅率が大きく、建屋側の
加速度が大きくなるにつれ、建屋側の回路における増幅
率が小さくなる。その結果、建屋側の加速度が小さいと
きは建屋の振動に応じ、これと位相が90゜ずれた制御
が行われるのに対し、建屋側の加速度が大きくなると重
りの動きに近づく制御となり、建屋側の加速度が大きい
ことからほぼ建屋の振動と同調するような制御、すなわ
ち油圧シリンダーが作動せず、重りが建屋に対し、相対
的に停止したような状態となる。建屋側の加速度が小さ
くなると、再び建屋側の回路における増幅率が大きくな
り、建屋の振動減衰を早めることができる。
The vibration of the weight of a seismic damping device must be within the capacity of the device, and there is a limit to its amplitude, whereas the vibration of the building side varies depending on the scale of the earthquake, ranging from small accelerations to large accelerations. There are even things. Therefore, an automatic gain adjustment circuit is installed on the building side, but when the acceleration on the building side is small, the amplification factor in the building side circuit increases, and as the acceleration on the building side increases, the amplification factor in the building side circuit increases. becomes smaller. As a result, when the acceleration on the building side is small, control is performed that is 90° out of phase with the vibration of the building, whereas when the acceleration on the building side is large, control approaches the movement of the weight, and the control is performed on the building side. Since the acceleration is large, the control is performed almost in sync with the vibration of the building, that is, the hydraulic cylinder does not operate, and the weight appears to be stationary relative to the building. When the acceleration on the building side decreases, the amplification factor in the circuit on the building side increases again, making it possible to accelerate vibration damping of the building.

また、並列した増幅回路を経て合成された合成信号は、
さらに利得調整回路を通過することによりあらかじめ設
定されたレベルで出力され、制震装置の能力範囲内で重
りの動きを制御するようになっている。
In addition, the composite signal synthesized through parallel amplifier circuits is
Furthermore, by passing through a gain adjustment circuit, the signal is output at a preset level, and the movement of the weight is controlled within the capability of the vibration damping device.

入力3は補助の制震装置の重りの加速度であり、上述の
入力1と同様な増幅回路で調整が行われる。
Input 3 is the acceleration of the weight of the auxiliary damping device, and is adjusted by the same amplifier circuit as input 1 above.

入力4と人力5はそれぞれ建屋中央と建屋端部の加速度
であり、ローパスフィルターおよび緩衝増幅器を通過し
た後、合成増幅器で差をとり、ねじれ振動成分について
、上述の入力2と同様の調整操作を行い、増幅回路を経
た入力3の信号と合成され、自動利得調整回路を経て、
補助の制震装置の重りに対する制御信号が出力される。
Input 4 and human power 5 are the accelerations at the center of the building and at the edges of the building, respectively. After passing through a low-pass filter and a buffer amplifier, the difference is taken by a synthesis amplifier, and the same adjustment operation as input 2 above is applied to the torsional vibration component. is combined with the input 3 signal that has passed through the amplifier circuit, and then passes through the automatic gain adjustment circuit.
A control signal for the weight of the auxiliary damping device is output.

この実施例では建物側の応答信号を増幅するための増幅
回路に自動利得調整回路を設けたことにより、増幅され
た重り側の応答信号と合成する際の信号のレベルが調整
される。従って、建物の振動がそれほど大きくない範囲
では、建物側の応答信号の増幅率が大きいため、建物の
振動に応じた制御となる。そして、建物の振動が太き(
なるにつれ、建物側の応答信号の増幅率は下がり、制御
における重り側の動きの寄与率が大きくなる。その状態
では建物の振動が大きいのに対し、制震装置は一定の能
力範囲で制御を行っているため、重りの振動は次第に建
物の振動に近づき、制御も建物の振動に近づけるような
制御となる。結局、揺れの大きい間は重りは建物と略一
体に動き(建物に対し相対的に静止した状態)、建物か
ら大きな力を受けることなく、装置の安全が保たれる。
In this embodiment, an automatic gain adjustment circuit is provided in the amplifier circuit for amplifying the response signal from the building side, so that the level of the signal when combined with the amplified response signal from the weight side is adjusted. Therefore, in a range where the vibration of the building is not so large, the amplification factor of the response signal on the building side is large, so that control is performed in accordance with the vibration of the building. And the vibration of the building is strong (
As the weight increases, the amplification factor of the response signal from the building side decreases, and the contribution rate of the movement of the weight side to the control increases. In this state, the vibration of the building is large, but since the vibration damping device is controlling within a certain range of capability, the vibration of the weight gradually approaches the vibration of the building, and the control is also controlled to bring it closer to the vibration of the building. Become. As a result, during times of strong shaking, the weight moves almost integrally with the building (staying stationary relative to the building), and the safety of the device is maintained without receiving large forces from the building.

地震等がおさまり建物の振動が小さくなってくると、再
び自動利得調整回路の作用により建物側の応答信号の増
幅率が大きくなり、建物の振動と逆向きの振動を与えて
、振動の減衰を早めるような制御を行うことができる。
When the earthquake, etc. subsides and the vibration of the building becomes smaller, the amplification factor of the response signal on the building side increases again due to the action of the automatic gain adjustment circuit, giving vibration in the opposite direction to the vibration of the building and damping the vibration. Control can be performed to speed up the process.

さらに、合成信号の出力については、合成信号の出力レ
ベルをさらに自動利得調整回路で調整するため、建物の
過大な振動に対しても、制震装置が過剰な動作をするこ
とがない。すなわち、制震装置の能力以上の建物の振動
に対しては、制震装置の能力の範囲内で制御することと
し、さらに大きな振動に対しては重りの動きを建物の動
きに近づけることにより装置の安全が図れる。
Furthermore, as for the output of the composite signal, the output level of the composite signal is further adjusted by an automatic gain adjustment circuit, so that the vibration control device does not operate excessively even in response to excessive vibrations of the building. In other words, if the vibration of the building exceeds the ability of the vibration damping device, it will be controlled within the range of the vibration damping device's ability, and if the vibration is even larger, the vibration of the building will be controlled by bringing the movement of the weight closer to the movement of the building. safety can be ensured.

第1図の実施例および第3図の実施例については、上述
した第6図における建屋中央の制震装置(AMDI)用
の制御回路を2つ設け、別々に制御するようにすればよ
い。
Regarding the embodiment shown in FIG. 1 and the embodiment shown in FIG. 3, two control circuits for the vibration damping device (AMDI) in the center of the building shown in FIG. 6 described above may be provided and controlled separately.

〔発明の効果] この発明では能動式制震装置を複数台同時に制御し、建
物の振動を抑制することとしているため、以下のような
種々の制御を容易に行うことができる。
[Effects of the Invention] In the present invention, since a plurality of active damping devices are controlled simultaneously to suppress vibrations in a building, various types of control such as those described below can be easily performed.

■ 2台の制震装置を直交方向に用いることにより両方
向制御が可能となる。
■ Bidirectional control is possible by using two damping devices in orthogonal directions.

■ 1台の主制震装置で水平方向振動を制御し、もう1
台の補助制震装置でねじれ振動を抑えることにより、偏
心した建物にも適用できる。
■ One main damping device controls horizontal vibration, and the other
By suppressing torsional vibration with an auxiliary vibration damping device on the base, it can be applied to eccentric buildings.

■ 建物の中間階にも設置することにより、建物頂部の
主制震装置とともに、1次、2次の振動成分を同時に制
御することができる。
■ By installing it on the intermediate floor of a building, it is possible to simultaneously control the primary and secondary vibration components together with the main vibration control device at the top of the building.

■ 上記■〜■の組み合わせも可能である。■ Combinations of the above ■ to ■ are also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ異なる実施例における制震装
置の配置例を示したもので、第1図および第2図は平面
図、第3図は立面図、第4図は能動式制震装置の概要を
示す説明図、第5図は能動式制震装置の信号油圧系統の
概念図、第6図は第2図の実施例における能動式制震装
置の信号発生回路の一例を示すブロック図である。 1・・・建物本体、2・・・重り、3・・・油圧シリン
ダー、4a、4b・・・センサー 第1図 第3図 第2図 第4図 劫1
Figures 1 to 3 show examples of the arrangement of vibration damping devices in different embodiments. Figures 1 and 2 are plan views, Figure 3 is an elevation view, and Figure 4 is an active type vibration damping device. An explanatory diagram showing an overview of the vibration damping system, Figure 5 is a conceptual diagram of the signal hydraulic system of the active vibration damping system, and Figure 6 shows an example of the signal generation circuit of the active vibration damping system in the embodiment shown in Figure 2. FIG. 1...Building body, 2...Weight, 3...Hydraulic cylinder, 4a, 4b...Sensor Figure 1 Figure 3 Figure 2 Figure 4 Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)建物に対し相対移動可能な重りと、該重りと建物
間に介在させたアクチュエーターと、建物の振動に応じ
、前記アクチュエーターを制御するための制御信号を発
生する制御回路とからなる能動式制震装置を複数設け、
複数台の制震装置を同時に制御することにより建物の振
動を制御することを特徴とする建物の制震方法。
(1) Active type consisting of a weight that is movable relative to the building, an actuator interposed between the weight and the building, and a control circuit that generates a control signal to control the actuator in response to vibrations of the building. Install multiple vibration control devices,
A method for damping vibrations in a building, characterized by controlling vibrations in the building by controlling multiple vibration damping devices simultaneously.
(2)制震装置はそれぞれのアクチュエーターが直交す
る方向に2台配置し、互いに直交する方向の制御を行う
ことを特徴とする請求項1記載の建物の制震方法。
(2) The method of damping vibrations in a building according to claim 1, characterized in that two vibration damping devices are arranged in directions whose actuators are perpendicular to each other, and control is performed in directions perpendicular to each other.
(3)2台の制震装置のアクチュエーターは共通の1つ
の油圧源により駆動される請求項2記載の建物の制震方
法。
(3) The method for damping vibrations in a building according to claim 2, wherein the actuators of the two vibration damping devices are driven by one common hydraulic power source.
(4)制震装置は主制震装置と補助制震装置の2台から
なり、主制震装置を建物の平面中央に設置し、補助制震
装置を建物の平面端部に主制震装置と同方向に設置し、
主制震装置の制御方向に対する建物のねじれ振動成分を
補助制震装置により制御することを特徴とする請求項1
記載の建物の制震方法。
(4) The vibration damping device consists of two devices, a main vibration damping device and an auxiliary vibration damping device.The main vibration damping device is installed in the center of the plane of the building, and the auxiliary vibration damping device is installed at the edge of the plane of the building. Install it in the same direction as
Claim 1 characterized in that the torsional vibration component of the building relative to the control direction of the main vibration damping device is controlled by the auxiliary vibration damping device.
Seismic control methods for the listed buildings.
(5)制震装置は主制震装置と補助制震装置の2台から
なり、主制震装置を建物頂部に設置し、補助制震装置を
建物の中間階に設置し、建物の2次振動成分を補助制震
装置により制御することを特徴とする請求項1記載の建
物の制震方法。
(5) The vibration control device consists of two devices, a main vibration control device and an auxiliary vibration control device.The main vibration control device is installed at the top of the building, the auxiliary vibration control device is installed on the middle floor of the building, and the secondary vibration control device 2. The method of damping vibrations in a building according to claim 1, wherein the vibration components are controlled by an auxiliary vibration damping device.
JP10294188A 1988-04-26 1988-04-26 Vibration control method for building Granted JPH01275867A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10294188A JPH01275867A (en) 1988-04-26 1988-04-26 Vibration control method for building
US07/343,085 US5022201A (en) 1988-04-26 1989-04-25 Apparatus for accelerating response time of active mass damper earthquake attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294188A JPH01275867A (en) 1988-04-26 1988-04-26 Vibration control method for building

Publications (2)

Publication Number Publication Date
JPH01275867A true JPH01275867A (en) 1989-11-06
JPH0518991B2 JPH0518991B2 (en) 1993-03-15

Family

ID=14340855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294188A Granted JPH01275867A (en) 1988-04-26 1988-04-26 Vibration control method for building

Country Status (1)

Country Link
JP (1) JPH01275867A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533799A (en) * 1991-01-22 1993-02-09 Ebara Res Co Ltd Resonance restraining device
JPH0726784A (en) * 1993-07-08 1995-01-27 Kajima Corp Vibration suppressing method for active dynamic vibration absorber
US5442883A (en) * 1991-05-29 1995-08-22 Kajima Corporation Vibration control device for structure
US5447001A (en) * 1991-06-07 1995-09-05 Kajima Corporation Vibration control device for structure
US5592791A (en) * 1995-05-24 1997-01-14 Radix Sytems, Inc. Active controller for the attenuation of mechanical vibrations
US5765313A (en) * 1994-01-28 1998-06-16 Research Foundation Of State University Of New York Method and apparatus for real-time structure parameter modification
JP2004084812A (en) * 2002-08-27 2004-03-18 Kajima Corp Rolling pendulum, and vibration isolation device and vibration control device using the same
JP2020070620A (en) * 2018-10-31 2020-05-07 国立大学法人 東京大学 Seismic vibration control device and seismic vibration control method using the same
JP2021017932A (en) * 2019-07-19 2021-02-15 株式会社大林組 Vibration control system of structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911315U (en) * 1982-07-08 1984-01-24 三菱電機株式会社 vibration control device
JPS5954237U (en) * 1982-10-04 1984-04-09 三菱電機株式会社 Vibration control device
JPS59161565A (en) * 1983-03-07 1984-09-12 三菱電機株式会社 Vibration control apparatus
JPS60109472A (en) * 1983-11-17 1985-06-14 三菱電機株式会社 Vibration controller of structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911315B2 (en) * 1976-07-16 1984-03-14 三洋電機株式会社 SECAM color television receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911315U (en) * 1982-07-08 1984-01-24 三菱電機株式会社 vibration control device
JPS5954237U (en) * 1982-10-04 1984-04-09 三菱電機株式会社 Vibration control device
JPS59161565A (en) * 1983-03-07 1984-09-12 三菱電機株式会社 Vibration control apparatus
JPS60109472A (en) * 1983-11-17 1985-06-14 三菱電機株式会社 Vibration controller of structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533799A (en) * 1991-01-22 1993-02-09 Ebara Res Co Ltd Resonance restraining device
US5442883A (en) * 1991-05-29 1995-08-22 Kajima Corporation Vibration control device for structure
US5447001A (en) * 1991-06-07 1995-09-05 Kajima Corporation Vibration control device for structure
JPH0726784A (en) * 1993-07-08 1995-01-27 Kajima Corp Vibration suppressing method for active dynamic vibration absorber
US5765313A (en) * 1994-01-28 1998-06-16 Research Foundation Of State University Of New York Method and apparatus for real-time structure parameter modification
US5592791A (en) * 1995-05-24 1997-01-14 Radix Sytems, Inc. Active controller for the attenuation of mechanical vibrations
JP2004084812A (en) * 2002-08-27 2004-03-18 Kajima Corp Rolling pendulum, and vibration isolation device and vibration control device using the same
JP2020070620A (en) * 2018-10-31 2020-05-07 国立大学法人 東京大学 Seismic vibration control device and seismic vibration control method using the same
JP2021017932A (en) * 2019-07-19 2021-02-15 株式会社大林組 Vibration control system of structure

Also Published As

Publication number Publication date
JPH0518991B2 (en) 1993-03-15

Similar Documents

Publication Publication Date Title
EP0586701B1 (en) Vibration control device for structure
EP0587891B1 (en) Vibration control device for structure
US5866861A (en) Elevator active guidance system having a model-based multi-input multi-output controller
JPH01275867A (en) Vibration control method for building
US5022201A (en) Apparatus for accelerating response time of active mass damper earthquake attenuator
US5239789A (en) Vibration damping system
US5233797A (en) Vibration damping system
JPH01275869A (en) Active type vibration control device
JPH01275866A (en) Active type vibration control device
JPH0143177B2 (en)
JPH0472094B2 (en)
JPH0213667A (en) Damping device
JPH0431606Y2 (en)
JP3786489B2 (en) Vibration control device
JPH0131714Y2 (en)
JPH01207574A (en) Vibrationproof device for construction
JPH03153939A (en) Vibration control device for parallelly located structures
JP4239362B2 (en) Active vibration control method
JPS62268478A (en) Earthquakeproof method of building
JP2003014034A (en) Vibration damping device
JPS58221038A (en) Vibration-proof device
JPH0221634Y2 (en)
JPS6288837A (en) Earthquake vibration damper
JPH0219846Y2 (en)
JPH0431607Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees