JPH0518991B2 - - Google Patents

Info

Publication number
JPH0518991B2
JPH0518991B2 JP63102941A JP10294188A JPH0518991B2 JP H0518991 B2 JPH0518991 B2 JP H0518991B2 JP 63102941 A JP63102941 A JP 63102941A JP 10294188 A JP10294188 A JP 10294188A JP H0518991 B2 JPH0518991 B2 JP H0518991B2
Authority
JP
Japan
Prior art keywords
building
vibration
vibration damping
damping device
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63102941A
Other languages
Japanese (ja)
Other versions
JPH01275867A (en
Inventor
Takuji Kobori
Mitsuo Sakamoto
Shunichi Yamada
Koji Ishii
Isao Nishimura
Atsushi Tagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP10294188A priority Critical patent/JPH01275867A/en
Priority to US07/343,085 priority patent/US5022201A/en
Publication of JPH01275867A publication Critical patent/JPH01275867A/en
Publication of JPH0518991B2 publication Critical patent/JPH0518991B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は地震や風等の外力により建物に生じ
る振動を低減させるための能動式制震装置を用い
た建物の制震方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a method of damping vibrations in a building using an active damping device to reduce vibrations generated in the building due to external forces such as earthquakes and wind. .

〔従来の技術〕[Conventional technology]

出願人は特開昭62−268478号および特開昭63−
78974号公報等において、建物頂部等に付加質量
とアクチユエーターからなる制震装置を設け、建
物が地震あるいは風等の外力を受けたとき、アク
チユエーターの作動を制御することにより、付加
質量としての重りに反力をとつて、建物本体にそ
の振動を制御するような力を加える能動式制震装
置を開示している。
The applicant is JP-A-62-268478 and JP-A-63-
In Publication No. 78974, etc., a vibration control device consisting of an additional mass and an actuator is installed at the top of a building, etc., and when the building receives an external force such as an earthquake or wind, the additional mass is reduced by controlling the operation of the actuator. This disclosure discloses an active vibration control device that applies a force to the building body to control vibration by taking a reaction force from a weight.

第2図は能動式制震装置の概要を示したもの
で、例えば建物1の頂部に建物1と実質的に切り
離した形で、付加質量としての重り2を設け、重
り2と建物1の一部との間にアクチユエーター3
としての油圧シリンダーを介在させてある。地震
や風等が作用し、建物1に振動が生じると、その
振動を建物1に設けたセンサー4bが感知し、信
号を制御回路に送り、建物1の振動に応じた出力
信号をアクチユエーター3に接続したサーボ弁に
送り、アクチユエーター3の制御を行う。なお、
アクチユエーター3側にもセンサー4aを設ける
ことにより、アクチユエーター3の動きをフイー
ドバツクして制御することができる。また、以上
は閉ループでの制御であるが、広域、狭域の地震
計等から送られてくる地震波の解析により、建物
の応答を予測し、制御を行う開ループの制御と組
み合わせることもできる。
Figure 2 shows an outline of an active vibration damping system. For example, a weight 2 is provided as an additional mass on the top of a building 1, substantially separate from the building 1, and the weight 2 and the building 1 are combined. actuator 3 between
A hydraulic cylinder is interposed. When vibrations occur in the building 1 due to earthquakes, wind, etc., the sensor 4b installed in the building 1 senses the vibrations, sends a signal to the control circuit, and outputs a signal corresponding to the vibration of the building 1 to the actuator. 3 to control the actuator 3. In addition,
By providing the sensor 4a also on the actuator 3 side, the movement of the actuator 3 can be controlled by feedback. Additionally, although the above is closed-loop control, it can also be combined with open-loop control, which predicts and controls the building's response by analyzing seismic waves sent from wide-area and narrow-area seismometers.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、アクチユエーター3として油圧シリ
ンダー等を用いた場合、制御の方向が限られるた
め、建物の一方向について振動を抑制することが
できても、他方向の振動を抑制をすることができ
ない。
By the way, when a hydraulic cylinder or the like is used as the actuator 3, the direction of control is limited, so even if vibrations in one direction of the building can be suppressed, vibrations in the other direction cannot be suppressed.

また、建物の設計によつては一方向のみの制御
でも比較的大きな効果が得られる場合も多いが、
地震、風等の外力は不確定な外力であり、偏心し
た建物等においては、ねじれ振動成分を抑制する
ことにより、さらに効果的な制震が可能となる。
Furthermore, depending on the design of the building, relatively large effects can often be obtained even with control in only one direction.
External forces such as earthquakes and wind are uncertain external forces, and in eccentric buildings, more effective vibration damping can be achieved by suppressing torsional vibration components.

このようなねじれ振動成分の抑制に関しては、
実開昭59−11315号公報に、平面内で自由に動く
付加質量に対し、付加質量の慣性中心からの距離
が略等しい2つの位置にアクチユエーターを設け
て、水平振動とねじれ振動の双方を制御するよう
に構成した能動式の振動制御装置が記載されてい
る。
Regarding suppression of such torsional vibration components,
In Japanese Utility Model Application Publication No. 59-11315, for an additional mass that moves freely in a plane, actuators are installed at two positions approximately equal in distance from the center of inertia of the additional mass, and both horizontal vibration and torsional vibration are generated. An active vibration control device configured to control is described.

しかし、実開昭59−11315号公報記載の装置の
場合、1つの付加質量に対し、2つのアクチユエ
ーターを設け、付加質量体の回転慣性質量を反力
としており、付加質量を回転可能に支持する他、
アクチユエータとの連結部についても付加質量の
回転に追従できるような構造とする必要があり、
装置の構造が複雑になる。また、構造的な複雑さ
に加え、水平振動とねじれ振動を同時に制御する
複雑さもあり、構造及び制御の両面から、誤差や
制御遅れ、これらに伴う発振等の悪影響が考えら
れる。
However, in the case of the device described in Japanese Utility Model Application Publication No. 59-11315, two actuators are provided for one additional mass, and the rotational inertial mass of the additional mass is used as a reaction force, making the additional mass rotatable. In addition to supporting
The connection part with the actuator must also have a structure that can follow the rotation of the additional mass.
The structure of the device becomes complicated. Furthermore, in addition to the structural complexity, there is also the complexity of controlling horizontal vibration and torsional vibration simultaneously, and adverse effects such as errors, control delays, and accompanying oscillations can be considered from both the structural and control perspectives.

この発明は能動式制震装置を用いた建物の制震
方法における上述のような課題の解決を図つたも
のである。
This invention aims to solve the above-mentioned problems in a method of damping a building using an active damping device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明で使用する能動式制御装置は建物の振
動速度に比例した制御力を出すのを基本とし、建
物に設けた振動検知手段からの信号を増幅回路で
増幅し、出力された制御信号によりアクチユエー
ターを制御し、重りに反力をとつてアクチユエー
ターから建物に制御力を加えることにより、建物
の振動を抑制することができる。
The active control device used in this invention basically outputs a control force proportional to the vibration speed of the building, and the signal from the vibration detection means installed in the building is amplified by an amplifier circuit, and the output control signal is activated. By controlling the yuator and applying a control force to the building by applying a reaction force to the weight, the vibration of the building can be suppressed.

この発明では制御しようとする建物に上述の制
震装置として、主制震装置を建物の平面中央に設
置し、補助制震装置を建物の平面端部に主制震装
置と同方向に設置する。
In this invention, as the above-mentioned vibration damping devices in the building to be controlled, a main vibration damping device is installed at the center of the plane of the building, and an auxiliary vibration damping device is installed at the end of the building in the same direction as the main vibration damping device. .

主制震装置は従来の能動式制震装置の制御方法
をそのまま適用することができ、主制震装置によ
り建物の特定方向の水平振動を抑制し、主制震装
置の制御方向に対する建物のねじれ振動成分に対
して補助制震装置を制御することで、建物の振動
を効率良く抑制することができる。
The control method of conventional active vibration damping devices can be applied to the main vibration damping device as is, and the main vibration damping device suppresses the horizontal vibration of the building in a specific direction, causing the building to twist in the direction controlled by the main vibration damping device. By controlling the auxiliary vibration damping device for vibration components, it is possible to efficiently suppress building vibrations.

〔実施例〕〔Example〕

次に、具体的な実施例について説明する。 Next, specific examples will be described.

第1図はこの発明の一実施例を示したもので、
2台の制震装置を建物頂部の中央と端部に同方向
に設置し、主となる中央の制震装置(図中、
AMD1)で特定方向の水平振動の制御を行い、
補助的な端部の制震装置(図中、AMD2)でね
じれ振動成分の制御を行うようにしたものである
(AMDはActive Mass Driverの略)。なお、図
中S1〜S4は振動検知手段としての加速度計の
配置を示したものである。
FIG. 1 shows an embodiment of this invention.
Two vibration control devices are installed in the same direction at the center and end of the top of the building, with the main vibration control device in the center (in the figure)
AMD1) controls horizontal vibration in a specific direction,
The torsional vibration component is controlled by an auxiliary vibration damping device (AMD2 in the figure) at the end (AMD is an abbreviation for Active Mass Driver). Note that S1 to S4 in the figure indicate the arrangement of accelerometers as vibration detection means.

第3図は能動式制震装置の信号油圧系統の概念
図であり、制震装置(AMD)の重りと建屋にそ
れぞれセンサーとしての加速度計S1,S2を設け、
応答信号を制御信号発生回路に送つている。
Figure 3 is a conceptual diagram of the signal hydraulic system of the active vibration damping system. Accelerometers S1 and S2 are installed as sensors on the weight of the vibration damping system (AMD) and the building, respectively.
A response signal is sent to the control signal generation circuit.

後述するように制御信号発生回路で位相調整お
よび増幅を行つた後、制御信号が比較回路へ送ら
れる。一方、重りの動きを感知するセンサーS1
からは比較回路へも出力信号が送られ、フイード
バツグ制御を行つている。
After phase adjustment and amplification are performed by the control signal generation circuit as will be described later, the control signal is sent to the comparison circuit. On the other hand, sensor S1 that detects the movement of the weight
An output signal is also sent to the comparator circuit, which performs feedback control.

比較回路を経た制御信号は油圧シリンダーに取
り付けた油圧サーボ弁に送られ、油圧サーボ弁の
制御を行う。油圧系統は油圧タンク、油圧ポン
プ、油圧サーボ弁および油圧シリンダーからなる
循環経路を構成し、油圧ポンプと油圧サーボ弁の
間にはアキユムレーターを設けてある。
The control signal passed through the comparison circuit is sent to the hydraulic servo valve attached to the hydraulic cylinder, and the hydraulic servo valve is controlled. The hydraulic system constitutes a circulation path consisting of a hydraulic tank, a hydraulic pump, a hydraulic servo valve, and a hydraulic cylinder, and an accumulator is provided between the hydraulic pump and the hydraulic servo valve.

油圧サーボ弁の制御により油圧シリンダーが作
動し、建屋に反力をとつて、制震装置の重りに建
屋の振動を抑制するような力を加えることができ
る。
A hydraulic cylinder is operated under the control of a hydraulic servo valve, which applies a reaction force to the building and applies a force to the weight of the vibration damping device to suppress the vibrations of the building.

第4図は第1図の実施例、すなわち主となる制
震装置(AMD1)の他に、建屋の端部に補助の
制震装置(AMD2)を設置し、補助の制震装置
でねじれ振動成分を制御するようにした場合の制
御信号発生回路の一例をブロツク図として示した
ものである。第4図中、入力1はセンサーS1
(第2図参照)で感知される建屋の頂部中央に設
置した主の制震装置の重りの加速度、入力2およ
び入力4はセンサーS2で感知される建屋頂部中
央の加速度、入力3はセンサーS3で感知される
建屋の頂部端部に設置した補助の制震装置の重り
の加速度、入力5はセンサーS4で感知される建
屋頂部端部の加速度である。
Figure 4 shows the embodiment shown in Figure 1, in which in addition to the main vibration damping device (AMD1), an auxiliary vibration damping device (AMD2) is installed at the end of the building, and the auxiliary vibration damping device is used to generate torsional vibrations. This is a block diagram showing an example of a control signal generation circuit for controlling components. In Figure 4, input 1 is sensor S1
(See Figure 2) The acceleration of the weight of the main vibration control device installed at the center of the top of the building is sensed by Input 2 and Input 4 are the acceleration of the center of the top of the building sensed by sensor S2, Input 3 is the acceleration of the center of the top of the building sensed by sensor S3 Input 5 is the acceleration of the weight of the auxiliary damping device installed at the top end of the building, which is sensed by sensor S4, and input 5 is the acceleration of the top end of the building sensed by sensor S4.

入力1はローパスフイルターで微小振動成分や
ノイズが除かれ、増幅された後、積分回路を経由
して、または直接位相調整器に送られる。入力1
は加速度であり、速度と90°位相がずれているが、
油圧シリンダー等の機械部分については摩擦その
他による機械的遅れがあるため、必要に応じ積分
回路で位相を90°調整し、さらに位相調整器で0
〜90°の範囲の調整を行う。その後、増幅器で信
号レベルの調整が行われる。
Input 1 is passed through a low-pass filter to remove minute vibration components and noise, amplified, and then sent to the phase adjuster via an integrating circuit or directly. input 1
is the acceleration, which is 90° out of phase with the velocity,
Mechanical parts such as hydraulic cylinders have mechanical delays due to friction and other factors, so if necessary, the phase is adjusted by 90° using an integrating circuit, and then adjusted to zero using a phase adjuster.
Make adjustments in the range of ~90°. The signal level is then adjusted by an amplifier.

入力2は同様に微小振動成分やノイズを除き、
位相を調整した後、自動利得調整回路を通ること
により信号レベルをあらかじめ設定したレベルに
もつてゆく。なお、制御信号は建屋の振動と位相
が90°ずれたものとなる。
Similarly, input 2 removes minute vibration components and noise.
After adjusting the phase, the signal level is brought to a preset level by passing through an automatic gain adjustment circuit. Note that the control signal is 90° out of phase with the building vibration.

入力1と入力2は上述のような並列の増幅回路
を経て合成される。
Input 1 and input 2 are combined through parallel amplifier circuits as described above.

制震装置の重りの振動は、装置の能力内で行わ
れなければならず、振幅には限度があるのに対
し、建屋側の振動は地震の規模に応じ、小さい加
速度のものから大きい加速度のものまである。そ
のため、建屋側について、自動利得調整回路を設
けてあるが、建屋側の加速度が小さいときは建屋
側の回路における増幅率が大きく、建屋側の加速
度が大きくなるにつれ、建屋側の回路における増
幅率が小さくなる。その結果、建屋側の加速度が
小さいときは建屋の振動に応じ、これと位相90°
ずれた制御が行われるのに対し、建屋側の加速度
が大きくなると重りの動きに近づく制御となり、
建屋側の加速度が大きいことからほぼ建屋の振動
と同調するような制御、すなわち油圧シリンダー
が作動せず、重りが建屋に対し、相対的に停止し
たような状態となる。建屋側の加速度が小さくな
ると、再び建屋側の回路における増幅率が大きく
なり、建屋の振動減衰を早めることができる。
The vibration of the weight of a seismic damping device must be within the capacity of the device, and there is a limit to its amplitude.However, the vibration of the building side varies depending on the scale of the earthquake, from small accelerations to large accelerations. There are even things. Therefore, an automatic gain adjustment circuit is installed on the building side, but when the acceleration on the building side is small, the amplification factor in the building side circuit increases, and as the acceleration on the building side increases, the amplification factor in the building side circuit increases. becomes smaller. As a result, when the acceleration on the building side is small, it responds to the vibration of the building and the phase is 90°.
In contrast to deviated control, when the acceleration on the building side increases, control approaches the movement of the weight,
Since the acceleration on the building side is large, the control is performed in synchronization with the vibration of the building, that is, the hydraulic cylinder does not operate, and the weight appears to be stationary relative to the building. When the acceleration on the building side decreases, the amplification factor in the circuit on the building side increases again, making it possible to speed up the vibration damping of the building.

また、並列した増幅回路を経て合成された合成
信号は、さらに利得調整回路を通過することによ
りあらかじめ設定されたレベルで出力され、制震
装置の能力範囲内で重りの動きを制御するように
なつている。
In addition, the composite signal synthesized through parallel amplifier circuits is outputted at a preset level by passing through a gain adjustment circuit, and the movement of the weight is controlled within the capability of the vibration damping device. ing.

入力3は補助の制震装置の重り加速度であり、
上述の入力1と同様な増幅回路で調整が行われ
る。
Input 3 is the weight acceleration of the auxiliary damping device,
Adjustment is performed by an amplifier circuit similar to input 1 described above.

入力4と入力5はそれぞれ建屋中央と建屋端部
の加速度であり、ローパスフイルターおよび緩衝
増幅器を通過した後、合成増幅器で差をとり、ね
じれ振動成分について、上述の入力2と同様の調
整操作を行い、増幅回路を経た入力3の信号と合
成され、自動利得調整回路を経て、補助の制震装
置の重りに対する制御信号が出力される。
Inputs 4 and 5 are the accelerations at the center of the building and at the ends of the building, respectively. After passing through a low-pass filter and a buffer amplifier, the difference is taken by a composite amplifier, and the same adjustment operation as input 2 above is applied to the torsional vibration component. The control signal for the weight of the auxiliary vibration damping device is output via the automatic gain adjustment circuit.

この実施例では建物側の応答信号を増幅するた
めの増幅回路に自動利得調整回路を設けたことに
より、増幅された重り側の応答信号と合成する際
の信号のレベルが調整される。従つて、建物の振
動がそれほど大きくない範囲では、建物側の応答
信号の増幅率が大きいため、建物の振動に応じた
制御となる。そして、建物の振動が大きくなるに
つれ、建物側の応答信号の増幅率は下がり、制御
における重り側の動きの寄与率が大きくなる。そ
の状態では建物の振動が大きいのに対し、制震装
置は一定の能力範囲で制御を行つているため、重
りの振動は次第に建物の振動に近づき、制御も建
物振動に近づけるような制御となる。結局、揺れ
の大きい間は重りは建物と略一体に動き(建物に
対し相対的に静止した状態)、建物から大きな力
を受けることなく、装置の安全が保たれる。地震
等がおさまり建物の振動が小さくなつてくると、
再び自動利得調整回路の作用により建物側の応答
信号の増幅率が大きくなり、建物の振動と逆向き
の振動を与えて、振動の減衰を早めるような制御
を行うことができる。
In this embodiment, an automatic gain adjustment circuit is provided in the amplifier circuit for amplifying the response signal from the building side, so that the level of the signal when combined with the amplified response signal from the weight side is adjusted. Therefore, in a range where the vibration of the building is not so large, the amplification factor of the response signal on the building side is large, so that control is performed in accordance with the vibration of the building. As the vibration of the building increases, the amplification factor of the response signal on the building side decreases, and the contribution rate of the movement of the weight side in control increases. In this state, the vibration of the building is large, but since the vibration damping device is controlling within a certain range of capabilities, the vibration of the weight gradually approaches the vibration of the building, and the control is also controlled so that it approaches the vibration of the building. . As a result, during strong shaking, the weight moves almost integrally with the building (staying stationary relative to the building), and the safety of the device is maintained without receiving large forces from the building. When the earthquake subsides and the vibration of the building becomes smaller,
Again, the automatic gain adjustment circuit increases the amplification factor of the response signal on the building side, and it is possible to perform control such that vibration is applied in the opposite direction to the vibration of the building, thereby speeding up the attenuation of the vibration.

さらに、合成信号の出力については、合成信号
の出力レベルをさらに自動利得調整回路で調整す
るため、建物の過大な振動に対しても、制震装置
が過剰な動作をすることがない。すなわち、制震
装置の能力以上の建物の振動に対しては、制震装
置の能力の範囲内で制御することとし、さらに大
きな振動に対しては重りの動きを建物の動きに近
づけることにより装置の安全が図れる。
Furthermore, as for the output of the composite signal, the output level of the composite signal is further adjusted by an automatic gain adjustment circuit, so that the vibration control device does not operate excessively even in response to excessive vibrations of the building. In other words, if the vibration of the building exceeds the ability of the vibration damping device, it will be controlled within the range of the vibration damping device's ability, and if the vibration is even larger, the vibration of the building will be controlled by bringing the movement of the weight closer to the movement of the building. safety can be ensured.

〔発明の効果〕〔Effect of the invention〕

この発明では能動式制震装置として、主制震装
置と補助制震装置の2台の制震装置を設け、主制
震装置で水平方向振動を制御し、もう1台の補助
制震装置でねじれ振動を抑えることにより、偏心
した建物においても、地震等に対する建物の振動
を効率良く抑制することができる。
In this invention, two vibration damping devices, a main vibration damping device and an auxiliary vibration damping device, are provided as active vibration damping devices.The main vibration damping device controls horizontal vibration, and the other auxiliary vibration damping device controls vibrations in the horizontal direction. By suppressing torsional vibration, even in an eccentric building, vibrations of the building due to earthquakes etc. can be efficiently suppressed.

また、水平振動とねじれ振動を、別々の制震装
置で抑制するため、制御回路が単純化され、これ
らが相互に悪影響を及ぼす恐れが少ない。
Furthermore, since horizontal vibration and torsional vibration are suppressed by separate vibration damping devices, the control circuit is simplified and there is less risk that they will have a negative effect on each other.

ねじれ振動に対しては、建物平面における重心
と補助制震装置との距離である重心距離と慣性質
量との積の形で反力をとつているため、建物平面
端部に設置される補助制震装置の付加質量を小さ
くすることができ、装置全体が小型化される。
The reaction force against torsional vibration is the product of the center of gravity distance, which is the distance between the center of gravity on the building plane and the auxiliary vibration damping device, and the inertial mass. The additional mass of the seismic device can be reduced, and the entire device can be downsized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例における制震装置
の配置例を示す平面図、第2図は能動式制震装置
の概要を示す説明図、第3図は能動式制震装置の
信号油圧系統の概念図、第4図は第1図の実施例
における能動式制震装置の信号発生回路の一例を
示すブロツク図である。 1……建物本体、2……重り、3……アクチユ
エーター、4a,4b……センサー。
FIG. 1 is a plan view showing an example of the arrangement of a vibration damping device in an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an outline of an active vibration damping device, and FIG. 3 is a signal hydraulic pressure of the active vibration damping device. A conceptual diagram of the system, FIG. 4 is a block diagram showing an example of a signal generation circuit of the active damping device in the embodiment of FIG. 1. 1... Building body, 2... Weight, 3... Actuator, 4a, 4b... Sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 建物に対し相対移動可能な重りと、該重りと
建物間に介在させたアクチユエーターと、建物の
振動に応じ、前記アクチユエーターを制御するた
めの制御信号を発生する制御回路とからなる能動
式制震装置を主制震装置と補助制震装置の2台設
け、前記主制震装置を建物の平面中央に設置し、
前記補助制震装置を建物の平面端部に前記主制震
装置と同方向に設置し、前記補助制震装置により
前記主制震装置の制御方向に対する建物のねじれ
振動成分を制御することを特徴とする建物の制震
方法。
1 Consists of a weight that is movable relative to the building, an actuator interposed between the weight and the building, and a control circuit that generates a control signal to control the actuator in response to vibrations of the building. Two active vibration damping devices are provided, a main vibration damping device and an auxiliary vibration damping device, and the main vibration damping device is installed at the center of the plane of the building,
The auxiliary vibration damping device is installed at a planar end of the building in the same direction as the main vibration damping device, and the auxiliary vibration damping device controls torsional vibration components of the building with respect to the control direction of the main vibration damping device. A vibration control method for buildings.
JP10294188A 1988-04-26 1988-04-26 Vibration control method for building Granted JPH01275867A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10294188A JPH01275867A (en) 1988-04-26 1988-04-26 Vibration control method for building
US07/343,085 US5022201A (en) 1988-04-26 1989-04-25 Apparatus for accelerating response time of active mass damper earthquake attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294188A JPH01275867A (en) 1988-04-26 1988-04-26 Vibration control method for building

Publications (2)

Publication Number Publication Date
JPH01275867A JPH01275867A (en) 1989-11-06
JPH0518991B2 true JPH0518991B2 (en) 1993-03-15

Family

ID=14340855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294188A Granted JPH01275867A (en) 1988-04-26 1988-04-26 Vibration control method for building

Country Status (1)

Country Link
JP (1) JPH01275867A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826880B2 (en) * 1991-01-22 1996-03-21 株式会社荏原総合研究所 Resonance suppressor
JPH086493B2 (en) * 1991-05-29 1996-01-24 鹿島建設株式会社 Vibration control device for structures
JPH086494B2 (en) * 1991-06-07 1996-01-24 鹿島建設株式会社 Vibration control device for structures
JPH0726784A (en) * 1993-07-08 1995-01-27 Kajima Corp Vibration suppressing method for active dynamic vibration absorber
US5526609A (en) * 1994-01-28 1996-06-18 Research Foundation Of State University Of New York Method and apparatus for real-time structure parameter modification
US5592791A (en) * 1995-05-24 1997-01-14 Radix Sytems, Inc. Active controller for the attenuation of mechanical vibrations
JP4100095B2 (en) * 2002-08-27 2008-06-11 鹿島建設株式会社 Rolling pendulum, seismic isolation device and damping device using the rolling pendulum
JP7273258B2 (en) * 2018-10-31 2023-05-15 公郎 目黒 Vibration control device and vibration control method using the same
JP2021017932A (en) * 2019-07-19 2021-02-15 株式会社大林組 Vibration control system of structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911315B2 (en) * 1976-07-16 1984-03-14 三洋電機株式会社 SECAM color television receiver
JPS59161565A (en) * 1983-03-07 1984-09-12 三菱電機株式会社 Vibration control apparatus
JPS60109472A (en) * 1983-11-17 1985-06-14 三菱電機株式会社 Vibration controller of structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911315U (en) * 1982-07-08 1984-01-24 三菱電機株式会社 vibration control device
JPS5954237U (en) * 1982-10-04 1984-04-09 三菱電機株式会社 Vibration control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911315B2 (en) * 1976-07-16 1984-03-14 三洋電機株式会社 SECAM color television receiver
JPS59161565A (en) * 1983-03-07 1984-09-12 三菱電機株式会社 Vibration control apparatus
JPS60109472A (en) * 1983-11-17 1985-06-14 三菱電機株式会社 Vibration controller of structure

Also Published As

Publication number Publication date
JPH01275867A (en) 1989-11-06

Similar Documents

Publication Publication Date Title
US5182887A (en) Vibration damping system
US8915340B2 (en) Actuator arrangement for active vibration isolation comprising an inertial reference mass
US5645260A (en) Active piezo-electric vibration isolation and directional bracket
JPH0518991B2 (en)
US5239789A (en) Vibration damping system
US5233797A (en) Vibration damping system
JP5512418B2 (en) Damping apparatus and damping method
JPH037816B2 (en)
JPH0463185B2 (en)
JP2004507689A (en) Method and damping device for absorbing unwanted vibrations
JPH0143177B2 (en)
JPH01275866A (en) Active type vibration control device
JPH0431606Y2 (en)
JPH03247872A (en) Vibration isolator for structure
JPS6057030A (en) Vibration control equipment
JPH0131714Y2 (en)
JP2585551B2 (en) Control method of active vibration isolation support device
JP3298309B2 (en) Control device for vibration suppression device
JP2512957Y2 (en) Structural vibration control device
JPH0431607Y2 (en)
JPH0819783B2 (en) Vibration control method and device
JPH0658012A (en) Vibration isolation structure of building
JP2966146B2 (en) Vibration suppressor with automatic control mechanism
JPS62281779A (en) Oscillation-proofing and controlling method
JPH07224887A (en) Active dynamic vibration absorber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees