JPH0472094B2 - - Google Patents

Info

Publication number
JPH0472094B2
JPH0472094B2 JP57099607A JP9960782A JPH0472094B2 JP H0472094 B2 JPH0472094 B2 JP H0472094B2 JP 57099607 A JP57099607 A JP 57099607A JP 9960782 A JP9960782 A JP 9960782A JP H0472094 B2 JPH0472094 B2 JP H0472094B2
Authority
JP
Japan
Prior art keywords
vibration
additional mass
building
displacement
control force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57099607A
Other languages
Japanese (ja)
Other versions
JPS58217838A (en
Inventor
Hiroshi Morikawa
Yasuji Nakamura
Hideo Tashiro
Shotaro Fujino
Yasushi Maruyama
Heiichi Kurashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57099607A priority Critical patent/JPS58217838A/en
Publication of JPS58217838A publication Critical patent/JPS58217838A/en
Publication of JPH0472094B2 publication Critical patent/JPH0472094B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、建物、高架道路等構造物の低周波
振動を制御する防振装置に関するものである。 一般に、建物、高架道路は低周波の固有振動数
をもつ減衰の小さい振動系として考えられ、風、
地震、走行車両等による外力が加わることにより
固有振動数の振動が励起され、共振現象により大
きな振動レベルとなることが知られている。 この発明は、構造物の振動方向に付加質量体を
付加し構造物の振動に応じて付加質量体に制御力
を発生するアクチユエータを備え、構造物の振動
エネルギーを付加質量体で吸収させることによ
り、構造物の複数の固有振動を制振する防振装置
を提供するものである。 ところで構造物を一つの固有振動数をもつ1自
由度の振動系として考えると第1図のような振動
モデルとなり、このときの構造物の運動方程式は
第(1)式で考えられる。 m11+C0x〓1+K1x1=F ……(1) 但し、 x1・x〓1・x¨1:構造物の振動変位、速度、加速度 m1:構造物の質量 C0: 〃 減衰定数 K1: 〃 バネ定数 F:外力 ここで第(1)式に示す運動方程式で構造物の振動
変位x1を静的変位xs(=F/K1)で正規化した共
振倍率の形で示した周波数特性を第2図に示す。
横軸に振動周波数ω、縦軸に共振倍率x1/xsを示
す。 第2図に示すように、このような1自由度の振
動系は、構造物の固有振同数ω
The present invention relates to a vibration isolating device for controlling low frequency vibrations of structures such as buildings and elevated roads. In general, buildings and elevated roads are considered to be vibration systems with low damping and low natural frequencies.
It is known that vibrations at the natural frequency are excited by the application of external forces such as earthquakes and running vehicles, and that vibration levels increase due to resonance phenomena. This invention includes an actuator that adds an additional mass in the direction of vibration of a structure and generates a control force in the additional mass according to the vibration of the structure, and absorbs the vibration energy of the structure with the additional mass. , provides a vibration isolator that damps multiple natural vibrations of a structure. By the way, if a structure is considered as a vibration system with one degree of freedom and one natural frequency, it becomes a vibration model as shown in Fig. 1, and the equation of motion of the structure in this case can be considered as Equation (1). m 11 +C 0 x〓 1 +K 1 x 1 =F...(1) However, x 1・x〓 1・x¨ 1 : Vibration displacement, velocity, acceleration of the structure m 1 : Mass of the structure C 0 : 〃 Damping constant K 1 : 〃 Spring constant F: External force Here, the vibration displacement x 1 of the structure is normalized by the static displacement x s (=F/K 1 ) using the equation of motion shown in equation (1). Figure 2 shows the frequency characteristics expressed in the form of resonance magnification.
The horizontal axis shows the vibration frequency ω, and the vertical axis shows the resonance magnification x 1 /x s . As shown in Figure 2, such a vibration system with one degree of freedom has the same natural frequency ω of the structure.

【式】でピークをもつ共振特性をも ち、たとえば、ステツプ的な外力に対して、構造
物の固有振動数で、持続振動することが知られて
いる。 このような構造物の振動を制振する対策として
は、従来、構造物にバネを介して付加質量体を支
承して、バネと付加質量体の共振周波数を構造物
の固有振動数に合わせることにより、構造物の振
動を抑えるいわゆる動吸振器が知られている。し
かしこの方式では、外力として構造物の固有振動
数近傍の狭い振動数範囲しか制振効果が得られな
いため、構造物の複数の固有振動数に対し制振効
果が期待できないという問題点がある。 従来、この問題点を解決するための手段として
は、例えば刊行物「JOINT AUTOMATIC
CONTROL CONFERENCE OF THE
AMERICAN AUTOMATIC COUNCIL」
(1973,6月 The Institute Of Electrical and
Electronics Engineers,Inc.発行)に掲載された
「COMPARISON OF OPTIMIZED ACTIVE
AND PASSIVE VIBRATION ABSORBER」
の934頁のFig.3に示されたActive Vibration
Absorber(振動吸収器)がある。この振動吸収器
は外力を受けて振動する建物と付加質量体にそれ
ぞれ振動検出器を設けて、建物と付加質量体にそ
れぞれ生ずる振動加速度を検出した後、それぞれ
の加速度を積分してそれぞれ振動速度信号を得、
またその振動速度信号を積分して振動変位信号を
得、さらに建物の振動変位と付加質量体の振動変
位から相対変位を得るようにし、建物の振動速度
信号、建物の振動変位信号、付加質量体の振動速
度信号および相対変位信号からなる、それぞれゲ
インK1〜K4を通して作られた4種類の信号に基
づいて建物に設置したアクチユエータを制御し、
付加質量体を駆動することにより建物を制振する
ものである。 ところで上記刊行物は振動吸収器の最適化に関
するもので、フイードバツクと定数すべてをPI
(Performance index)と呼んでいる積分値を最
小にするという条件で定めようとするものであ
る。これについて以下に説明する。PIについて
は上記刊行物の934頁の(9)式で示されている。こ
れを以下に示す。なおここでは建物の振動変位を
x1、付加質量体の振動変位をx2とした。 PI=∫ 0(x12 +ρ2(x2−x12+ρu2u2)dt 上式でρとρuは定数で、ウエイテイングフアク
ターと呼ばれる。すなわちPIの中では建物の振
動変位をx1、付加質量体と建物の間の相対変位
(x2−x1)、制御力uの3つがとりあげられている
が、これら3つのうちどれを重視した設計とする
かはρとρuの2つのパラメータの大きさを任意に
選ぶことにより決められる。つまりρを大きくす
れば相対変位(x2−x1)が小さくなるようなゲイ
ンK1、K2、K3、K4が選ばれ、ρuを大きくすれば
制御力uが小さくなるように、また建物の振動変
位x1を小さくするには逆にρとρuを小さくすれば
良い。しかしながらこのようにしてPIを決める
ためにゲインK1、K2、K3、K4を具体的に決めよ
うとする場合には、積分のt=0からt=∞まで
の振動系の運動が外力を含めて予め予想されてい
なければ適用できず、また振動系が予想と異なつ
た運動をした場合には期待した制振効果が得られ
ないという問題がある。 またPIを使つた最適制御系を現実のハードウ
エアに用いようとする場合に、制御をしようとす
る系の状態量すべて(本例では建物の振動変位、
速度および付加質量体の振動変位、速度)がすべ
てわかつていなくてはならない(これら4つにそ
れぞれフイードバツクゲインK1〜K4がかかつて
いるのだから自由)という制約がある。この例で
は、これらをすべて建物と付加質量体につけた加
速度計の出力の積分によつているが、現実には、
このようなことを行なう上では、積分を行なう際
の初期値をどのように与えるか、また積分を行な
うたびに発生する積分誤差をどのように抑えるか
などの困難がある。 また、本例では建物が単に1自由度の振動系で
表現されているが、1自由度の振動系の場合、振
動系の独立変数は2N+2(Nは建物の自由度の数
で1)であり、詳しくは建物の独立変数が2、付
加質量体の独立変数が2で合わせて4の独立変数
をもつ。したがつてPIを使つて最適制御するた
めに観測すべき変数は4つであり、それぞれにゲ
イン(K1〜K4)が付加されるからゲインも4つ
必要となる。 したがつて本例のものを、多自由度の振動系に
適用しようとするる場合、その独立変数の合計は
例えばNが2、3、4、5……のとき6、8、
10、12……となり、自由度の数Nが増えるにした
がつてゲインも同様に増えることになるため複数
の固有振動数をもつ建物への適用にはさらに困難
さがある。 なお上記刊行物には付加質量体の共振周波数を
建物の固有振動数よりも低く設定する点が記載さ
れていないが、PIを使つた最適制御系において、
例えばゲインK1〜K4のうちゲインK2、K4の2つ
のパラメータを選択したとしても、多自由度の振
動系の制振を4つのパラメータを用いて困難であ
つたものを単にK2、K4の2つにしたからと言つ
て、それによる制振効果は何ら期待できるもので
もない。 この発明はこのような問題点を解決するために
なされたもので、従来に比べ実現しやすい方法で
複数の固有振動数に対する振動低減効果を得よう
とするものである。 以下図によりこの発明を詳述する。 第3図は、構造物に付加質量体を付加し、構造
物の振動に応じて、付加質量体と構造物の間に制
御力を作用させることにより、構造物の減衰を大
きくし、振動を制振するこの発明による防振装置
の一実施例を示したもので、以下構造物として建
物を例にして説明する。 図中、1は建物、2は建物の振動方向に自由に
動く付加質量体、3は建物の振動加速度を検出す
る加速度計、4は建物と付加質量体の相対変位を
検出する変位計、5は加速度計3、変位計4の信
号を受けて、アクチユエータを駆動する制御装
置、6は制御装置5の出力信号を受けて付加質量
体2と建物の間に制御力を作用させるリニアモー
タ等で代表されるアクチユエータである。 第4図は、第3図の制御装置の構成の実施例を
示すもので、図中、51は加速度信号を速度信号
に変換する積分器、52は速度信号増幅器、53
は変位信号増幅器、54は速度信号と変位信号を
加算する加算器、55はアクチユエータ6を駆動
する電力増幅器である。 この発明の防振装置において、建物1に風とか
地盤を経由して外力Fが作用すると建物1に振動
が励起される。建物1の振動加速度は、加速度計
3により検出され、制御装置5に送られ、積分器
51、速度信号増幅器52、電力増幅器55を経
由して、アクチユエータ6に与えられる。アクチ
ユエータ6では、付加質量体2と建物1との間に
建屋速度に対応した制御力、例えば建屋速度に比
例した制御力を発生し、建物1の振動減衰を大き
くする役目をもつている。 又、建物1と付加質量体2間には、相対変位を
検出する変位計4があり、この相対変位信号は、
制御装置5内の変位信号増幅器53を経由して、
加算器54に入力され、上記速度信号と同様、ア
クチユエータ6で付加質量体2と建物1の相対変
位に対応した制御力、例えば上記相対変位に比例
した制御力を作用させている。すなわち相対変位
に比例した制御力を発生させることにより、建物
1と付加質量体2の間に機械的バネを設置したこ
とと等価になり、変位信号増幅器53のゲインを
変えることにより、任意のバネ定数をもつ電気的
バネが構成される。またこの発明では、付加質量
体2と電気的バネのバネ定数から決定される付加
質量体2の共振周波数は、建物1の固有振動数よ
り低い値が選択される。 第5図は、この発明による構成を振動モデルで
表わしたものであり、図中、m1、K1、C0はそれ
ぞれ建物1の質量、バネ定数、減衰定数を示し、
m2は付加質量体2の質量、C20は付加質量体2の
摩擦等で代表される減衰定数、Uは、建物1と付
加質量体2の間に作用させる制御力である。 第5図の振動モデルの運動方程式は、次式で与
えられる。 m11+C0x〓1+K1x1=F−U ……(2) m22+C20(x〓2−x〓1)=U ……(3) U=Kn(x1−x2)+Cnx〓1 ……(4) ここで、 F:建物に加わる外力 x2,x〓2,x¨2:付加質量体、速度、加速度Kn変位
信号増幅器のゲインで決まる定数 Cn:速度信号増幅器のゲインで決まる定数 第(4)式で示すように、制御力Uは、電気的バネ
の役目をするKn(x1−x2)と、建物1に減衰を与
えるCn・x〓1の二つの制御力を加え合わせたもの
で表わされる。 防振装置の制御系を考える場合は、アクチユエ
ータ6の制御力Uから建物1の振動加速度x¨1まで
の周波数特性及び建物1の振動加速度x¨1から制御
力Uまでの周波数特性が制御の安定性、振動制御
効果について重要な要素となる。 ここで、制御力Uから振動加速度x¨1の周波数特
性は建物1の特性を示すもので、振動加速度x¨か
ら制御力Uの周波数特性は防振装置の特性を示
す。 第(2)式から、制御力Uから振動加速度x¨1の伝達
関数Zs(s)は次式で与えられる。 Zs(s)=X1(s)/U(s)=s2/m1s2+C0s+K1
…(5) ここで s:ラプラス演算子 U(s):制御力Uをラプラス変換した関数 X¨1(s):振動加速度x¨1をラプラス変換した関数 また、第(3)、(4)式から、振動加速度x¨1から制御
力Uまでの伝達関数Zc(s)は Zc(s)=U(s)/X1(s)=m2(Cns+Kn)/m2s2
+C20s+Kn……(6) で表わされる。 第6図は、第(2)、(3)、(4)式で示される防振装置
の制御ブロツク線図を示す。 今、第(6)式の伝達関数Zc(s)を、建物1の振
動速度x¨1に比例する制御力Uになるようにした場
合の制御系の伝達関数CM(s)は第(7)式で表わさ
れる。 CM(s)=s・Zc(s)=m2・s・(Cns+Kn)/m2
s2+C20s+Kn=m2・s・{s/(Kn/Cn)+1}/1+
20[s/ω2]+[s/ω22……(7) ここで ω2:付加質量体の共振周波数
It has a resonance characteristic with a peak at [Formula], and is known to vibrate sustainably at the natural frequency of the structure in response to a step-like external force, for example. Conventionally, as a countermeasure for suppressing vibrations of such a structure, an additional mass body is supported on the structure via a spring, and the resonant frequency of the spring and the additional mass body is matched to the natural frequency of the structure. Therefore, so-called dynamic vibration absorbers are known that suppress vibrations of structures. However, with this method, the damping effect can only be achieved in a narrow frequency range near the natural frequency of the structure as an external force, so there is a problem that a damping effect cannot be expected for multiple natural frequencies of the structure. . Conventionally, as a means to solve this problem, for example, the publication "JOINT AUTOMATIC
CONTROL CONFERENCE OF THE
AMERICAN AUTOMATIC COUNCIL”
(June 1973 The Institute Of Electrical and
"COMPARISON OF OPTIMIZED ACTIVE" published in Electronics Engineers, Inc.)
AND PASSIVE VIBRATION ABSORBER”
Active Vibration shown in Fig.3 on page 934 of
There is an absorber (vibration absorber). This vibration absorber installs vibration detectors on the building and the additional mass that vibrate in response to external forces, detects the vibration acceleration generated in the building and the additional mass, and then integrates each acceleration to determine the vibration velocity. get a signal,
In addition, the vibration velocity signal is integrated to obtain a vibration displacement signal, and the relative displacement is obtained from the vibration displacement of the building and the vibration displacement of the additional mass. control an actuator installed in a building based on four types of signals made through gains K 1 to K 4 , each consisting of a vibration velocity signal and a relative displacement signal,
This damps the vibrations of the building by driving the additional mass. By the way, the above publication is about the optimization of vibration absorbers, and all feedback and constants are PI.
It is intended to be determined on the condition that the integral value called (Performance index) is minimized. This will be explained below. PI is shown in formula (9) on page 934 of the above publication. This is shown below. Here, the vibration displacement of the building is
x 1 and the vibrational displacement of the additional mass body were x 2 . PI=∫ 0 (x 12 + ρ 2 (x 2 − x 1 ) 2 + ρ u2 u 2 )dt In the above equation, ρ and ρ u are constants and are called weighting factors. In other words, the PI deals with the vibrational displacement of the building x 1 , the relative displacement between the additional mass and the building (x 2 - x 1 ), and the control force u, but which of these three should be given more importance? Whether the design should be designed can be determined by arbitrarily selecting the sizes of the two parameters ρ and ρ u . In other words, gains K 1 , K 2 , K 3 , and K 4 are selected such that the relative displacement (x 2 − x 1 ) decreases when ρ is increased, and the control force u decreases when ρ u is increased. , and to reduce the vibration displacement x 1 of the building, conversely, ρ and ρ u should be reduced. However, when trying to specifically determine the gains K 1 , K 2 , K 3 , and K 4 in order to determine PI in this way, the motion of the vibration system from t = 0 to t = ∞ of the integral is There is a problem that it cannot be applied unless the external force is predicted in advance, and that the expected vibration damping effect cannot be obtained if the vibration system moves differently than expected. In addition, when trying to use an optimal control system using PI in actual hardware, all state quantities of the system to be controlled (in this example, the vibration displacement of the building,
There is a constraint that the vibrational displacement, velocity, and vibrational displacement of the additional mass body must all be known (free since each of these four is subject to feedback gains K 1 to K 4 ). In this example, all of this is done by integrating the output of accelerometers attached to the building and the additional mass, but in reality,
In doing this, there are difficulties, such as how to provide an initial value when performing integration, and how to suppress integration errors that occur each time integration is performed. In addition, in this example, the building is simply expressed as a vibration system with one degree of freedom, but in the case of a vibration system with one degree of freedom, the independent variable of the vibration system is 2N + 2 (N is the number of degrees of freedom of the building, 1). Specifically, there are 2 independent variables for the building and 2 independent variables for the additional mass, for a total of 4 independent variables. Therefore, there are four variables to be observed for optimal control using PI, and since gains (K 1 to K 4 ) are added to each variable, four gains are also required. Therefore, when applying this example to a vibration system with multiple degrees of freedom, the total of the independent variables is, for example, 6, 8, when N is 2, 3, 4, 5...
10, 12, etc., and as the number of degrees of freedom N increases, the gain also increases, making it more difficult to apply to buildings with multiple natural frequencies. Although the above publication does not mention that the resonant frequency of the additional mass is set lower than the natural frequency of the building, in an optimal control system using PI,
For example, even if two parameters, gains K 2 and K 4 , are selected from the gains K 1 to K 4 , damping of a vibration system with multiple degrees of freedom that is difficult using four parameters can be simply reduced to K 2 , K4 , we cannot expect any vibration damping effect. The present invention was made to solve these problems, and aims to obtain a vibration reduction effect for a plurality of natural frequencies using a method that is easier to implement than the conventional method. The present invention will be explained in detail with reference to the figures below. Figure 3 shows that by adding an additional mass to a structure and applying a control force between the additional mass and the structure according to the vibration of the structure, the damping of the structure is increased and the vibration is reduced. This shows one embodiment of the vibration isolating device according to the present invention, which will be described below using a building as an example of a structure. In the figure, 1 is a building, 2 is an additional mass that moves freely in the vibration direction of the building, 3 is an accelerometer that detects the vibration acceleration of the building, 4 is a displacement meter that detects the relative displacement between the building and the additional mass, and 5 6 is a control device that receives signals from the accelerometer 3 and displacement meter 4 to drive the actuator, and 6 is a linear motor or the like that receives the output signal from the control device 5 and applies a control force between the additional mass body 2 and the building. This is a typical actuator. FIG. 4 shows an embodiment of the configuration of the control device shown in FIG. 3, in which 51 is an integrator that converts an acceleration signal into a speed signal, 52 is a speed signal amplifier, and 53 is an integrator for converting an acceleration signal into a speed signal.
54 is a displacement signal amplifier, 54 is an adder that adds the speed signal and the displacement signal, and 55 is a power amplifier that drives the actuator 6. In the vibration isolator of the present invention, when an external force F acts on the building 1 via wind or the ground, vibrations are excited in the building 1. The vibration acceleration of the building 1 is detected by the accelerometer 3, sent to the control device 5, and given to the actuator 6 via the integrator 51, speed signal amplifier 52, and power amplifier 55. The actuator 6 generates a control force between the additional mass body 2 and the building 1 that corresponds to the speed of the building, for example, a control force that is proportional to the speed of the building, and has the role of increasing vibration damping of the building 1. Furthermore, there is a displacement meter 4 between the building 1 and the additional mass body 2 that detects relative displacement, and this relative displacement signal is
Via the displacement signal amplifier 53 in the control device 5,
The signal is input to the adder 54, and similarly to the speed signal, the actuator 6 applies a control force corresponding to the relative displacement between the additional mass body 2 and the building 1, for example, a control force proportional to the relative displacement. In other words, by generating a control force proportional to the relative displacement, it is equivalent to installing a mechanical spring between the building 1 and the additional mass body 2, and by changing the gain of the displacement signal amplifier 53, an arbitrary spring can be generated. An electrical spring with a constant is constructed. Further, in the present invention, the resonance frequency of the additional mass body 2 determined from the spring constants of the additional mass body 2 and the electric spring is selected to be lower than the natural frequency of the building 1. FIG. 5 shows the configuration according to the present invention as a vibration model, and in the figure, m 1 , K 1 , and C 0 represent the mass, spring constant, and damping constant of the building 1, respectively;
m 2 is the mass of the additional mass body 2 , C 20 is a damping constant represented by friction of the additional mass body 2 , and U is the control force acting between the building 1 and the additional mass body 2 . The equation of motion of the vibration model in FIG. 5 is given by the following equation. m 11 +C 0 x〓 1 +K 1 x 1 =F−U …(2) m 22 +C 20 (x〓 2 −x〓 1 )=U …(3) U=K n (x 1 − x 2 ) + C n x〓 1 ...(4) where, F: External force applied to the building x 2 , x〓 2 , x¨ 2 : Additional mass, velocity, acceleration K Constant determined by the gain C n : Constant determined by the gain of the speed signal amplifier As shown in equation (4), the control force U is determined by K n (x 1 - x 2 ), which acts as an electric spring, and the building 1 It is expressed as the sum of two control forces, C n・x〓 1, which give damping to . When considering the control system of a vibration isolator, the frequency characteristics from the control force U of the actuator 6 to the vibration acceleration x¨1 of the building 1 , and the frequency characteristics from the vibration acceleration x¨1 of the building 1 to the control force U are the control system. This is an important factor for stability and vibration control effectiveness. Here, the frequency characteristics from the control force U to the vibration acceleration x 1 indicate the characteristics of the building 1, and the frequency characteristics from the vibration acceleration x to the control force U indicate the characteristics of the vibration isolator. From equation (2), the transfer function Z s (s) from the control force U to the vibration acceleration x 1 is given by the following equation. Z s (s) = X 1 (s) / U (s) = s 2 /m 1 s 2 +C 0 s + K 1 ...
...(5) where s: Laplace operator U(s): Function obtained by Laplace transform of control force U X¨1 (s): Function obtained by Laplace transform of vibration acceleration x¨1 Also, (3), (4 ) ), the transfer function Z c (s) from the vibration acceleration x¨ 1 to the control force U is Z c (s) = U (s) / X 1 (s) = m 2 (C n s + K n ) / m 2s 2
+C 20 s + K n ...(6) It is expressed as follows. FIG. 6 shows a control block diagram of the vibration isolator expressed by equations (2), (3), and (4). Now, when the transfer function Z c (s) of equation (6) is set to be the control force U proportional to the vibration velocity x 1 of the building 1, the transfer function C M (s) of the control system is It is expressed by equation (7). C M (s)=s・Z c (s)=m 2・s・(C n s + K n )/m 2
s 2 +C 20 s+K n =m 2・s・{s/(K n /C n )+1}/1+
20 [s/ω 2 ] + [s/ω 2 ] 2 ...(7) Here, ω 2 : Resonance frequency of the additional mass

【式】 ξ20:付加質量体の減衰比[=C20/2m2ω2] 第(7)式の伝達関数CM(s)のボード線図を第7
図に示す。第7図から明らかなように、制御系の
伝達関数CM(s)は、付加質量体2の共振周波数
ω2より高い周波数領域では建物1の振動速度x〓1
に比例した一定な制御ゲイン Cnを与えること
になる。すなわち、この発明の防振装置は、付加
質量体2の共振周波数ω2を建物1の固有振動数
ωより低くなるよう変位信号増幅器のゲインで決
まる定数Knを設定することで、この防振装置の
出力する制御力Uは、建物1の振動速度x〓1に比例
した建物1の振動を低減する減衰力として作用す
ることになる。 第8図は第(2)、(3)、(4)式に示す運動方程式の建
物1の振動変位x1、付加質量体2の変位x2を共振
倍率(静的変位xs1=F/K1,xs2=F/Knで正
規化した変位)の形で示した周波数特性の例であ
る。 図中、横軸は振動周波数ωで、実線イのカーブ
は、建物1の共振倍率(x1/xs1)、点線ロのカー
ブは、付加質量体2の共振倍率(x2/xs2)示す。
付加質量体2の共振周波数ω2を建物1の固有振
動数ωより低く設定することで、建物1の共振倍
率は、建物1の振動速度x〓1に比例した減衰力Cn
x〓1が作用するため低くなる。 第9図は複数の固有振動数ω(1)、ω(2)、ω(3)を持
つ建物1の共振倍率の低減効果の一例を示す図
(多自由度振動モデルの周波数特性図)であり、
図中、実線イのカーブは防振装置がない場合の建
物1の共振倍率、点線ハのカーブはこの発明の防
振装置を付加した場合の建物1の共振倍率の一例
を示す。 複数の固有振動数を持つ建物1においても、付
加質量体2の共振周波数ω2を建物1の最も低い
1次固有振動数ω(1)よりも低く設定することで、
従来、建物の自由度の数に応じてゲインの数を増
やすことなく複数の固有振動数を持つ建物1の振
動を同時に低減することができる。 以上のようにこの発明は、Kn,Cnの二つのゲ
インを選び、かつ付加質量体2と電気的バネのバ
ネ定数Knから決定される付加質量体2の共振周
波数を建物1の固有振動数より低い値に設定する
ことにより振動系の運動を外力を含めて予め予想
する必要もなく、従来に比べて簡単な方法によ
り、従来実現が難しかつた複数の固有振動数に対
する建物の制振手段を実現可能にしたものであ
る。 なお、この発明の実施例では構造物として建物
を例にして説明したが、その他、高速道路等の高
架道路、つり橋等の振動の制振にも適用できる他
振動の制振方向を一軸とした例で説明したが、同
様の防振装置を他の振動方向の軸に備えることに
より2軸以上の振動方向に対する防振装置にも適
用できることは明らかである。
[Formula] ξ 20 : Damping ratio of the additional mass body [=C 20 /2m 2 ω 2 ] The Bode diagram of the transfer function C M (s) in equation (7) is expressed as the seventh
As shown in the figure. As is clear from FIG. 7, the transfer function C M (s) of the control system is determined by the vibration velocity x〓 1 of the building 1 in the frequency range higher than the resonance frequency ω 2 of the additional mass 2.
This gives a constant control gain C n proportional to . In other words, the vibration isolator of the present invention achieves vibration isolation by setting the constant K n determined by the gain of the displacement signal amplifier so that the resonant frequency ω 2 of the additional mass body 2 is lower than the natural frequency ω of the building 1. The control force U output by the device acts as a damping force that reduces the vibration of the building 1 in proportion to the vibration velocity x 1 of the building 1. Figure 8 shows the vibrational displacement x 1 of the building 1 and the displacement x 2 of the additional mass body 2 in the equations of motion shown in equations (2), (3), and (4), expressed as resonance magnification (static displacement x s1 =F/ This is an example of frequency characteristics shown in the form of K 1 , x s2 = displacement normalized by F/K n . In the figure, the horizontal axis is the vibration frequency ω, the solid line A curve is the resonance magnification of the building 1 (x 1 / x s1 ), and the dotted line B curve is the resonance magnification of the additional mass body 2 (x 2 / x s2 ). show.
By setting the resonant frequency ω 2 of the additional mass body 2 to be lower than the natural frequency ω of the building 1, the resonance magnification of the building 1 is determined by the damping force C n proportional to the vibration speed x〓 1 of the building 1.
It becomes lower because x〓 1 acts. Figure 9 is a diagram (frequency characteristic diagram of a multi-degree-of-freedom vibration model) showing an example of the effect of reducing the resonance magnification of building 1, which has multiple natural frequencies ω ( 1) , ω (2) , and ω (3). can be,
In the figure, the solid line A curve shows an example of the resonance magnification of the building 1 without a vibration isolator, and the dotted line C curve shows an example of the resonance magnification of the building 1 when the vibration isolator of the present invention is added. Even in a building 1 that has multiple natural frequencies, by setting the resonant frequency ω 2 of the additional mass body 2 lower than the lowest primary natural frequency ω (1) of the building 1,
Conventionally, it is possible to simultaneously reduce the vibrations of a building 1 having a plurality of natural frequencies without increasing the number of gains according to the number of degrees of freedom of the building. As described above, this invention selects two gains, K n and C n , and adjusts the resonance frequency of the additional mass body 2 determined from the spring constant K n of the additional mass body 2 and the electric spring to the characteristic characteristic of the building 1. By setting a value lower than the vibration frequency, there is no need to predict the motion of the vibration system in advance, including external forces, and this method is simpler than conventional methods, making it possible to control buildings for multiple natural frequencies, which was difficult to achieve in the past. This makes it possible to implement a vibration means. In the embodiments of this invention, a building is used as an example of a structure. Although the example has been explained, it is clear that the present invention can also be applied to vibration isolators for two or more vibration directions by providing similar vibration isolators on the axes in other vibration directions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、構造物を1自由度の振動モデルで表
わした図、第2図は1自由度振動モデルの周波数
特性を示す図、第3図および第4図はこの発明の
実施例の構成を示す図、第5図はこの発明を振動
モデルで示す図、第6図はこの発明の防振装置の
制御ブロツク線図、第7図は伝達関数CM(s)の
ボード線図、第8図はこの発明の1自由度の振動
モ振動モデルの周波数特性図、第9図は多自由度
振動モデルの周波数特性図であり、1は建物、2
は付加質量体、3は加速度計、4は変位計、5は
制御装置、6はアクチユエータ、51は積分器、
52は速度信号増幅器、53は変位信号増幅器、
54は加算器、55は電力増幅器である。なお図
中同一あるいは相当部分には同一符号を付して示
してある。
Figure 1 is a diagram showing a structure as a vibration model with one degree of freedom, Figure 2 is a diagram showing the frequency characteristics of the vibration model with one degree of freedom, and Figures 3 and 4 are configurations of embodiments of the present invention. , FIG. 5 is a diagram showing the present invention as a vibration model, FIG. 6 is a control block diagram of the vibration isolator of the present invention, FIG. 7 is a Bode diagram of the transfer function C M (s), and FIG. Figure 8 is a frequency characteristic diagram of the one-degree-of-freedom vibration model of this invention, and Figure 9 is a frequency characteristic diagram of a multi-degree-of-freedom vibration model.
is an additional mass body, 3 is an accelerometer, 4 is a displacement meter, 5 is a control device, 6 is an actuator, 51 is an integrator,
52 is a speed signal amplifier, 53 is a displacement signal amplifier,
54 is an adder, and 55 is a power amplifier. Note that the same or corresponding parts in the figures are indicated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 外力を受けて振動する構造物の振動を検出す
る振動検出手段と、上記構造物に設置され、その
構造物の振動方向に動く付加質量体と、上記構造
物と付加質量体との相対変位を検出する相対変位
検出手段と、上記構造物に生じる振動速度に対応
する制御力と上記構造物と付加質量体との相対変
位に対応する制御力を上記構造物と付加量体との
間に作用させるアクチユエータと、上記振動検出
手段の出力信号を受けて上記構造物に生じる振動
速度に対応する制御力、および上記相対変位検出
手段の出力信号を受けて上記構造物と付加質量体
との相対変位に対応する制御力とを発生するよう
に上記アクチユエータを制御する制御装置とを具
備し、上記構造物と付加質量体との相対変位に対
応する制御力を上記構造物と付加質量体との間に
作用させることにより上記付加質量体を支承する
電気的バネを構成し、かつ上記電気的バネで支承
される上記付加質量体の共振周波数を上記構造物
の固有振動数より低く設定することを特徴とする
防振装置。
1. Vibration detection means for detecting the vibration of a structure that vibrates in response to an external force, an additional mass installed in the structure and moving in the vibration direction of the structure, and relative displacement between the structure and the additional mass. and a control force corresponding to the vibration velocity occurring in the structure and a control force corresponding to the relative displacement between the structure and the additional mass between the structure and the additional mass. an actuator to be applied, a control force corresponding to the vibration velocity generated in the structure in response to an output signal from the vibration detection means, and a control force corresponding to the vibration velocity generated in the structure in response to an output signal from the relative displacement detection means; a control device that controls the actuator to generate a control force corresponding to the displacement between the structure and the additional mass, and a control device that controls the actuator to generate a control force corresponding to the relative displacement between the structure and the additional mass. an electric spring that supports the additional mass by acting between them, and setting the resonant frequency of the additional mass supported by the electric spring to be lower than the natural frequency of the structure. Features a vibration isolator.
JP57099607A 1982-06-10 1982-06-10 Vibration insulating device Granted JPS58217838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099607A JPS58217838A (en) 1982-06-10 1982-06-10 Vibration insulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099607A JPS58217838A (en) 1982-06-10 1982-06-10 Vibration insulating device

Publications (2)

Publication Number Publication Date
JPS58217838A JPS58217838A (en) 1983-12-17
JPH0472094B2 true JPH0472094B2 (en) 1992-11-17

Family

ID=14251777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099607A Granted JPS58217838A (en) 1982-06-10 1982-06-10 Vibration insulating device

Country Status (1)

Country Link
JP (1) JPS58217838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160009833A (en) * 2014-07-17 2016-01-27 삼성전자주식회사 A fixing module and a motion assist apparatus comprising thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0816503B2 (en) * 1984-05-31 1996-02-21 三菱重工業株式会社 Balancer device for reciprocating engine
JPS6141032A (en) * 1984-08-02 1986-02-27 Mitsubishi Electric Corp Vibration controller
JPS6159036A (en) * 1984-08-29 1986-03-26 Mitsubishi Electric Corp Vibration controller
JPS6170243A (en) * 1984-09-13 1986-04-11 Mitsubishi Electric Corp Vibration control device
JPS61171932A (en) * 1985-01-23 1986-08-02 Mitsubishi Electric Corp Vibration controlling device
JPS61290252A (en) * 1985-06-17 1986-12-20 Mitsubishi Electric Corp Vibration controller
JPS6262036A (en) * 1985-09-09 1987-03-18 Mitsubishi Electric Corp Vibration control device
JPH0533795Y2 (en) * 1985-09-10 1993-08-27
JP4940472B2 (en) * 2007-06-08 2012-05-30 倉敷化工株式会社 Active vibration isolator and vibration damping device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773251A (en) * 1980-10-24 1982-05-07 Hitachi Ltd Vibration preventer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5773251A (en) * 1980-10-24 1982-05-07 Hitachi Ltd Vibration preventer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160009833A (en) * 2014-07-17 2016-01-27 삼성전자주식회사 A fixing module and a motion assist apparatus comprising thereof

Also Published As

Publication number Publication date
JPS58217838A (en) 1983-12-17

Similar Documents

Publication Publication Date Title
Zhu et al. A study on interaction control for seismic response of parallel structures
Beard et al. Practical product implementation of an active/passive vibration isolation system
Collette et al. Review of active vibration isolation strategies
JPH04350274A (en) Vibration controller for structure
JPH04360976A (en) Vibration controller
JPH0472094B2 (en)
Chowdhury et al. The optimal design of negative stiffness inerter passive dampers for structures
Karnopp et al. Semiactive control of multimode vibratory systems using the ilsm concept
Ha et al. Mitigation of seismic responses on building structures using MR dampers with Lyapunov‐based control
Hiemenz et al. Seismic response of civil structures utilizing semi-active MR and ER bracing systems
JPH0143177B2 (en)
JP3136325B2 (en) Hybrid dynamic vibration absorber
Garcia et al. Passive and active control of a complex flexible structure using reaction mass actuators
JPH03250165A (en) Hybrid dynamic vibration reducer
Rajamani et al. On invariant points and their influence on active vibration isolation
JP2003206979A (en) Vibration control method
JPH01207574A (en) Vibrationproof device for construction
US20070137954A1 (en) Inertial actuator
JPH11125027A (en) Hybrid damping device
JP2546454B2 (en) Vibration control device for structures
JPS63165652A (en) Earthquakeproof and vibrationproof optimum control system
JPH10246279A (en) Quasi-active dynamic vibration reducer and boiler structure provided with this dynamic vibration reducer
JP4337393B2 (en) Vibration control method
JP3087774B2 (en) Damping device
JPH0711810A (en) Controlling method for active mass damper