JPH01275471A - Production of hexagonal boron nitride sintered body - Google Patents

Production of hexagonal boron nitride sintered body

Info

Publication number
JPH01275471A
JPH01275471A JP63101749A JP10174988A JPH01275471A JP H01275471 A JPH01275471 A JP H01275471A JP 63101749 A JP63101749 A JP 63101749A JP 10174988 A JP10174988 A JP 10174988A JP H01275471 A JPH01275471 A JP H01275471A
Authority
JP
Japan
Prior art keywords
sintered body
sintering
bond
temperature
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101749A
Other languages
Japanese (ja)
Inventor
Takashi Ogawa
貴史 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP63101749A priority Critical patent/JPH01275471A/en
Publication of JPH01275471A publication Critical patent/JPH01275471A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride

Abstract

PURPOSE:To enable sintering under normal pressure and to obtain a dense hexagonal BN sintered body having high purity and stability by adding a precursor monomer having a B-N bond as sintering aid to hexagonal BN powder and executing sintering of the mixture. CONSTITUTION:A precursor monomer having a B-N bond is added to hexagonal BN powder as sintering aid. Concrete examples for the precursor monomer having a B-N bond are B-triamino-N-triphenyl borazine, hexaphenyl borazole, hexamethyl borazole, etc. A hexagonal BN sintered body is obtd. by executing the sintering under normal pressure. A dense sintered body having high purity is obtd. since the precursor monomer having a B-N bond causes contraction when it is polymerized at high temp. Obtd. sintered body is used suitably for an electric insulating material, material for a high temp. electric furnace, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電気絶縁材料、放熱用材料、高温電気炉用材
料などとして好適な高純度、高品質の六方晶窒化ホウ素
焼結体を、常圧焼結法によって容易に製造することがで
きる六方晶窒化ホウ素焼結体の製造方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a high-purity, high-quality hexagonal boron nitride sintered body suitable for electrical insulation materials, heat dissipation materials, high-temperature electric furnace materials, etc. The present invention relates to a method for producing a hexagonal boron nitride sintered body that can be easily produced by pressureless sintering.

[従来の技術] 六方晶窒化ホウ素(以下、BNという。)は、不活性、
高熱伝導度、高電気絶縁性、高潤滑性、かつ、耐食性良
好な工業材料であり、これらのすぐれた特性のため、さ
まざまな工業分野、たとえば、電気絶縁用材料、放熱用
材料、高温電気炉用材料などとして利用されている。し
かして、通常、このようなりNを原料とした製品は、化
学的製法により製造された粒径10ミクロン以下のBN
粉体を焼結し、所定の独自形状に加工することによって
得られるが、BNは、本来、自己焼結性に乏しく、BN
粉末のみでは、焼結温度2050℃、圧力3700kg
/−のような高温、高圧の条件下であっても、その密度
が1.65g/cd (理論密度の75%)という、疎
なものしかえられない。このため、従来、8203、C
aOなどのような焼結助剤を数wt%添加し、圧力35
0〜1700kg/cl、温度1700″〜2000℃
の条件でホットプレス、あるいは、旧Pによる焼結を行
なうことによって緻密な焼結体を得ていた。
[Prior art] Hexagonal boron nitride (hereinafter referred to as BN) is an inert,
It is an industrial material with high thermal conductivity, high electrical insulation, high lubricity, and good corrosion resistance. Due to these excellent properties, it is used in various industrial fields, such as electrical insulation materials, heat dissipation materials, and high-temperature electric furnaces. It is used as a raw material. However, products that use N as a raw material are usually made from BN with a particle size of 10 microns or less manufactured by chemical methods.
It is obtained by sintering powder and processing it into a predetermined unique shape, but BN inherently has poor self-sintering properties, and BN
For powder only, sintering temperature is 2050℃ and pressure is 3700kg.
Even under high temperature and high pressure conditions such as /-, only a sparse material with a density of 1.65 g/cd (75% of the theoretical density) can be obtained. For this reason, conventionally, 8203, C
A few wt% of sintering aids such as aO are added, and the pressure is 35%.
0~1700kg/cl, temperature 1700''~2000℃
A dense sintered body was obtained by hot pressing or sintering with old P under these conditions.

[発明が解決しようとする課題] しかしながら、このような方法によって得られるBN焼
結体の焼結密度は、1.9 g/cd (理論密度の8
3%)程度まで向上させ得るが、この反面、前述の8N
本来のすぐれた特性が大きく損なわれることが知られて
いる。すなわち、たとえば、8□03を数wt%焼結助
剤として添加し、高温高圧で焼結した従来のBN焼結体
は、800°〜900℃の加熱蒸気、及び、希酸に弱く
、又、高温(1500’C〜)での安定性が悪いなどの
点が問題となっていた。さらに、ホットプレスなどの加
圧焼結法は、ホットプレス装置本体や黒鉛ダイスなどの
材料費が高価であり、かつ、生産効率が悪いなどといっ
た理由から、8N焼結体のコストアップの大きな原因と
なるといった問題もあった。
[Problems to be Solved by the Invention] However, the sintered density of the BN sintered body obtained by such a method is 1.9 g/cd (8 g/cd of the theoretical density).
3%), but on the other hand, the aforementioned 8N
It is known that the original excellent properties are significantly impaired. That is, for example, a conventional BN sintered body that is sintered at high temperature and pressure with several wt% of 8□03 added as a sintering aid is weak against heated steam at 800° to 900°C and dilute acid. However, there were problems such as poor stability at high temperatures (1500'C and above). Furthermore, pressure sintering methods such as hot press are a major cause of the cost increase of 8N sintered bodies because the cost of materials such as the hot press equipment and graphite dies are expensive, and the production efficiency is low. There were also problems such as.

本発明は、前記問題を解決し、高純度、高安定性、かつ
、緻密な六方゛晶窒化ホウ素焼結体を、容易に、安価に
製造し得る製造方法を得ることを目的とするものである
The object of the present invention is to solve the above-mentioned problems and provide a manufacturing method that can easily and inexpensively manufacture a highly pure, highly stable, and dense hexagonal boron nitride sintered body. be.

[課題を解決するための手段] 本発明者は、前記問題を解決し、前記目的を達成するた
めに、焼結時に添加する焼結助剤及び焼     ”結
条件について鋭意研究を行なった結果、B−N結合を有
する前駆体モノマーを焼結助剤としてBN粉末に添加し
て焼結することによって目的を達し得、さらに、特定の
温度で仮焼成、及び、常圧焼結させることによって、よ
り確実に目的を達し得ることを見出して本発明を完成す
るに至った。すなわち、本発明の第1の発明は、六方晶
窒化ホウ素粉末体に、焼結助剤として、B−N結合を有
する前駆体モノマーを添加し、焼結させる六方晶窒化ホ
ウ素焼結体の製造方法であり、第2の発明は、六方晶窒
化ホウ素粉末体に、焼結助剤として、B−N結合を有す
る前駆体モノマーを、2wt%〜90wt%添加し、成
形した後、100°〜500℃の温度で仮焼成し、さら
に、常圧において、1000℃以上の温度で常圧焼結さ
せる六方晶窒化ホウ素焼結体の製造方法である。
[Means for Solving the Problems] In order to solve the above-mentioned problems and achieve the above-mentioned objects, the inventors of the present invention have conducted intensive research on sintering aids added during sintering and sintering conditions. The purpose can be achieved by adding a precursor monomer having a BN bond to the BN powder as a sintering aid and sintering it, and further by pre-calcining it at a specific temperature and sintering it under normal pressure. The present invention was completed by discovering that the object can be achieved more reliably.That is, the first invention of the present invention is to add a B-N bond to a hexagonal boron nitride powder as a sintering aid. A second invention is a method for producing a hexagonal boron nitride sintered body, in which a precursor monomer having a B-N bond is added as a sintering aid to a hexagonal boron nitride powder body and sintered. Hexagonal boron nitride to which 2 wt% to 90 wt% of a precursor monomer is added, molded, pre-calcined at a temperature of 100° to 500°C, and further sintered under normal pressure at a temperature of 1000°C or higher. This is a method for manufacturing a sintered body.

本発明において使用するBN粉末体は、市場に販冑され
ているものを用い、又、B−N結合を有する前駆体モノ
マーとしては、いくつか知られているが、たとえば、B
−トリアミノ−N−トリフェニルボラジン(以下、AP
Bという。)は、トルエン及び液体アンモニアの混合液
に、該混合液を低温(−78℃)でかきまぜながら、B
−)ジクロル−N−フェニルボラジンのトルエン溶液を
滴下し、その後、室温まで上昇させてアンモニアを還流
させることによって得られる。
The BN powder used in the present invention is one that is commercially available, and there are several known precursor monomers having a BN bond, such as BN powder.
-Triamino-N-triphenylborazine (hereinafter referred to as AP
It's called B. ) is added to a mixture of toluene and liquid ammonia while stirring the mixture at a low temperature (-78°C).
-) Obtained by dropping a toluene solution of dichloro-N-phenylborazine, then raising the temperature to room temperature and refluxing ammonia.

このようにして得られたAPBは、500℃以下の温度
で熱縮合反応がおこり、 盲 Ph(Ph=CaHs) となることが知られている。しかして、−この際、約2
0wt%の重量収縮がおこり、さらに、1ooo℃以上
の重合反応時には、約り0%重量収縮がおこるものであ
る。このために、このような前駆体モノマーを焼結助剤
として用いれば、緻密かつ高純度の焼結体を製造するこ
とができ、このような方法によって得られた8N焼結体
は、高温においても安定であり、かつ、耐食性にすぐれ
たものであることが認められた。なお、B−N結合を有
する前駆体モノマーとしては、APB以外に、ボラゾー
ル誘導体のへキサフェニルボラゾール、ヘキサメチルボ
ラゾールなどが用いられる。
It is known that the APB obtained in this manner undergoes a thermal condensation reaction at a temperature of 500° C. or lower, resulting in blind Ph (Ph=CaHs). However, - in this case, about 2
A weight shrinkage of 0 wt% occurs, and furthermore, a weight shrinkage of about 0% occurs during a polymerization reaction at 100° C. or higher. For this reason, if such a precursor monomer is used as a sintering aid, it is possible to produce a dense and highly pure sintered body, and the 8N sintered body obtained by such a method is sintered at high temperatures. It was also found to be stable and have excellent corrosion resistance. In addition to APB, borazole derivatives such as hexaphenylborazole and hexamethylborazole are used as the precursor monomer having a BN bond.

次に、本発明における諸条件の数値限定理由について述
べる。
Next, the reason for limiting the numerical values of various conditions in the present invention will be described.

APBとBN粉末体(粒径5ミクロン)を窒素雰囲気中
で乾式混合し、ラバープレスにより、直径10鴫、高さ
10mmに形成し、焼結を1時間常圧で行なった。この
とき、APBの混合比率を1wt%〜95wt%、仮焼
成温度を50〜800℃、焼結温度を800〜1500
℃に変化させた。得られた焼結体の状態を顕微鏡(x2
00)で調べ、焼結体の密度をアルキメデス法によって
浮力より算出した。これらの結果を(表1〉に示す。
APB and BN powder (particle size: 5 microns) were dry mixed in a nitrogen atmosphere, formed into a size of 10 mm in diameter and 10 mm in height using a rubber press, and sintered for 1 hour at normal pressure. At this time, the mixing ratio of APB is 1wt% to 95wt%, the pre-calcination temperature is 50 to 800℃, and the sintering temperature is 800 to 1500℃.
The temperature was changed to ℃. The state of the obtained sintered body was observed under a microscope (x2
00), and the density of the sintered body was calculated from the buoyancy force using the Archimedes method. These results are shown in Table 1.

又、得られた焼結体を真空中1800℃で1時間加熱し
、その重量減少を調べた。この結果を(表2)に示す。
Further, the obtained sintered body was heated in vacuum at 1800° C. for 1 hour, and its weight loss was examined. The results are shown in (Table 2).

(表 2) さらに、得られた焼結体を100℃の加熱蒸気中(相対
湿度100%〉に180時間放置し、その重量増加を調
べた。結果を(表3)に示す。
(Table 2) Furthermore, the obtained sintered body was left in heated steam at 100° C. (relative humidity 100%) for 180 hours, and its weight increase was examined. The results are shown in (Table 3).

(表 3) これらの結果から、焼結助剤の添加量は、2wt%〜9
0wt%に限定するものであって、添加量が2wt%以
下では、前駆体モノ÷−量が少な過ぎるために十分に熱
縮合せず、90wt%を超えると、焼結体の体積収縮が
激しく、焼結体が焼結時に破損したり、クラックが入っ
たりするためである。又、仮焼成温度は、100”〜5
00℃の範囲に限定するものであって、あらかじめモノ
マーを熱縮合によってポリマー化することにより、焼成
時に気泡が取込まれたり、クラックが入ったりするのを
防ぐための操作であって、仮焼成温度が前記範囲を外れ
た温度であると、反応が十分におこらなかったり、ある
いは、急激に進行するためにモノマーを均一に熱縮合で
きないためである。さらに、焼結温度は、1000℃以
上に限定するものであって、焼結温度が1000℃未満
であると、仮焼成により熱縮合された前駆体ポリマーが
十分に重合されず、緻密な焼結体が得られないからであ
る。仮焼成時間及び焼結加熱時間は、それぞれ、20〜
40分、及び、1〜2時間が適当である。
(Table 3) From these results, the amount of sintering aid added is between 2wt% and 9wt%.
If the amount added is 2 wt% or less, sufficient thermal condensation will not occur because the amount of precursor mono/- amount is too small, and if it exceeds 90 wt%, the volume of the sintered body will shrink severely. This is because the sintered body may be damaged or cracked during sintering. In addition, the pre-firing temperature is 100” to 5.
This operation is limited to the temperature range of 00℃, and is an operation to prevent air bubbles from being taken in or cracks to occur during firing by preliminarily converting the monomer into a polymer through thermal condensation. If the temperature is outside the above range, the reaction may not occur sufficiently or may proceed rapidly, making it impossible to uniformly thermally condense the monomers. Furthermore, the sintering temperature is limited to 1000°C or higher; if the sintering temperature is lower than 1000°C, the precursor polymer thermally condensed by pre-calcination will not be sufficiently polymerized, resulting in dense sintering. This is because the body cannot be obtained. Temporary firing time and sintering heating time are 20 to 20 minutes, respectively.
40 minutes and 1 to 2 hours are appropriate.

なお、BN粉末体とB−N結合を有する前駆体モノマー
との混合物の成形は、ラバープレス法、通常プレス法、
静水圧・加圧法、などによって所望の特定形状に成形す
ることができる。
The mixture of the BN powder and the precursor monomer having a BN bond can be formed by a rubber press method, a normal press method,
It can be molded into a desired specific shape by hydrostatic pressure, pressurization, or the like.

[実施例] 次に、本発明の実施例を述べる。[Example] Next, examples of the present invention will be described.

実施例 (1) APBの合成 ドライアイス及び鷹タノールを入れた還流コンデンサー
をつけた三つロフラスコ内を窒素置換の後、クロルベン
ゼン125mρと三塩化ホウ素50gを入れ、0℃でか
きまぜながら15gのアニリンを20分間で滴下させ、
その後、温度を室温まで上昇させ、120℃で10時間
、還流し、B−トリクロル−N−トリフェニルボラジン
を合成した。次に、三つロフラスコにトルエン50 m
Bをいれ、−78℃に冷却、きかまぜながら前記のよう
にして合成したB−トリクロル−N−トリフェニルボラ
ジン32gをトルエンに溶解した溶液を2時間かけて滴
下させ、その後、温度を室温まで上昇させることによリ
、アンモニアを還流した後、白色固体のB−トリクロル
−N−トリフェニルボラシナ(APB) 10gを得た
Example (1) Synthesis of APB After purging the inside of a three-hole flask equipped with a reflux condenser containing dry ice and takatanol with nitrogen, 125 mρ of chlorobenzene and 50 g of boron trichloride were added, and while stirring at 0°C, 15 g of aniline was added. Dropped in 20 minutes,
Thereafter, the temperature was raised to room temperature and refluxed at 120°C for 10 hours to synthesize B-trichloro-N-triphenylborazine. Next, add 50 m of toluene to a three-necked flask.
B was added, cooled to -78°C, and while stirring, a solution of 32 g of B-trichloro-N-triphenylborazine synthesized as described above dissolved in toluene was added dropwise over 2 hours, and then the temperature was raised to room temperature. After refluxing the ammonia by raising the temperature, 10 g of B-trichlor-N-triphenylboracina (APB) as a white solid was obtained.

(2) BN焼結体の製造 8N粉末体(粒径5ミクロン>3gに、(1)で合成し
たAPBを60wt%添加し、窒素雰囲気中で乾式混合
し、ラバープレスによって、直径10mm、高さ10m
mに成形し、500’Cで1時間仮焼成を行ない、つい
で、焼結温度1500℃に1時間焼成して8N焼結体を
製造した。
(2) Production of BN sintered body Add 60 wt% of APB synthesized in (1) to 8N powder (particle size > 3 g), dry mix in a nitrogen atmosphere, and use a rubber press to form a powder with a diameter of 10 mm and a high height. 10m
m, pre-sintered at 500'C for 1 hour, and then fired at a sintering temperature of 1500C for 1 hour to produce an 8N sintered body.

(3)各種試験結果 (2)で得られたBN焼結体について、その状態を顕微
鏡(x2()0)で調べ、焼結体の密度をアルキメデス
法により浮力より算出した結果、気孔が少なく、密度は
2.02g/Cxlであり、緻密かつ高品質であること
が認められた。
(3) Various test results The condition of the BN sintered body obtained in (2) was examined with a microscope (x2()0), and the density of the sintered body was calculated from the buoyancy using the Archimedes method. The density was 2.02 g/Cxl, and it was found to be dense and of high quality.

又、得られたBN焼結体を真空中で1800℃に1時間
加熱し、その重量減少を調べた結果は、1.0wt%で
あって、従来の方法によるBN焼結体(11,0wt%
)に較べてきわめて安定であることが認められた。
In addition, the obtained BN sintered body was heated to 1800°C in vacuum for 1 hour, and the weight loss was examined, and the result was 1.0 wt%, compared to the BN sintered body made by the conventional method (11.0 wt%). %
) was found to be extremely stable.

さらに、得られたBN焼結体を100℃の加熱蒸気中(
相対湿度100%)に180時間放置し、その重量増加
を調べた。その結果、重量増加は、0.06wt%であ
って、きわめて、耐湿性に富んでいることが認められた
Furthermore, the obtained BN sintered body was placed in heated steam at 100°C (
The sample was left at a relative humidity of 100% for 180 hours, and its weight increase was examined. As a result, the weight increase was 0.06 wt%, and it was recognized that the film had extremely high moisture resistance.

比較例 市販の8N焼結体(BN95%、残部バインダー8□0
3)について実施例と同様な諸試験を行なった結果、気
孔は少ないが、密度は1.88g/at!であり、18
00℃、1時間の加熱減量は、11.0wt%であり、
100℃の加熱蒸気中、180時間放置後の重量増加は
、2.0wt%であった。
Comparative example Commercially available 8N sintered body (BN 95%, balance binder 8□0
Regarding 3), we conducted various tests similar to those in the example, and found that although there were few pores, the density was 1.88 g/at! and 18
The heating loss at 00°C for 1 hour is 11.0wt%,
The weight increase after being left in heated steam at 100° C. for 180 hours was 2.0 wt%.

[発明の効果] 本発明は、特殊な焼結助剤を添加して焼結するものであ
り、又、特定条件で焼結するものであるから、常圧にお
ける焼結を可能となし得、しかも、高純度、かつ、高安
定性の緻密なりN焼結体が得られ、ホットプレスなどの
従来の製造方法に較べて、安価に、容易に前記のような
すぐれた品質のBN焼結体を製造し得るなどきわめてす
ぐれた効果が認められる。
[Effects of the Invention] The present invention performs sintering by adding a special sintering aid and sintering under specific conditions, so sintering under normal pressure is possible. Moreover, a dense N sintered body with high purity and high stability can be obtained, and compared to conventional manufacturing methods such as hot pressing, it is possible to easily produce the above-mentioned excellent quality BN sintered body at a lower cost. It has been recognized that it has extremely excellent effects, such as being able to produce .

特許出願人  住友金属鉱山株式会社Patent applicant: Sumitomo Metal Mining Co., Ltd.

Claims (1)

【特許請求の範囲】 1)六方晶窒化ホウ素粉末体に、焼結助剤として、B−
N結合を有する前駆体モノマーを添加し、焼結させるこ
とを特徴とする六方晶窒化ホウ素焼結体の製造方法。 2)六方晶窒化ホウ素粉末体に、焼結助剤として、B−
N結合を有する前駆体モノマーを、2wt%〜90wt
%添加し、成形した後、100゜〜500℃の温度で仮
焼成し、さらに、常圧において、1000℃以上の温度
で常圧焼結させることを特徴とする六方晶窒化ホウ素焼
結体の製造方法。
[Claims] 1) Adding B- to the hexagonal boron nitride powder as a sintering aid
A method for producing a hexagonal boron nitride sintered body, which comprises adding a precursor monomer having an N bond and sintering the mixture. 2) B- is added to the hexagonal boron nitride powder as a sintering aid.
2 wt% to 90 wt of precursor monomer having N bond
% added, shaped, pre-calcined at a temperature of 100° to 500°C, and further sintered under normal pressure at a temperature of 1000°C or higher. Production method.
JP63101749A 1988-04-25 1988-04-25 Production of hexagonal boron nitride sintered body Pending JPH01275471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101749A JPH01275471A (en) 1988-04-25 1988-04-25 Production of hexagonal boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101749A JPH01275471A (en) 1988-04-25 1988-04-25 Production of hexagonal boron nitride sintered body

Publications (1)

Publication Number Publication Date
JPH01275471A true JPH01275471A (en) 1989-11-06

Family

ID=14308890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101749A Pending JPH01275471A (en) 1988-04-25 1988-04-25 Production of hexagonal boron nitride sintered body

Country Status (1)

Country Link
JP (1) JPH01275471A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
CN104944961A (en) * 2015-07-03 2015-09-30 中国人民解放军国防科学技术大学 Boron nitride blocky ceramic and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914886B2 (en) 2003-08-21 2011-03-29 Saint-Gobain Ceramics & Plastics, Inc. Structural component comprising boron nitride agglomerated powder
US8169767B2 (en) 2003-08-21 2012-05-01 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder and devices comprising the powder
CN104944961A (en) * 2015-07-03 2015-09-30 中国人民解放军国防科学技术大学 Boron nitride blocky ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0504786A2 (en) Alumina/boron carbide/silicon carbide ceramic composite and method of manufacture
CN111099905B (en) High-aluminum refractory brick and preparation method thereof
Xie et al. Formation of silicon nitride bonded silicon carbide by aqueous gelcasting
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
CN101054301A (en) Method of preparing composite material of silicon nitride and silicon carbide by reverse reaction sintering
CN103582621B (en) The manufacture method of Silicon carbide-carbon composite material
JPH01275471A (en) Production of hexagonal boron nitride sintered body
JPH10500095A (en) Reaction bonded silicon carbide refractory products
JPH06128035A (en) Silicon filled polymer precursor for sic-a1n ceramic
CN110105072A (en) A kind of preparation method of high hardness silicon nitride material
Guo et al. Gelating and drying process of aqueous gelcasting aluminum nitride ceramics
JPH05251088A (en) Manufacture of porous carbon electrode plate for fuel cell
JP3483920B2 (en) Method for producing high-purity β-type silicon carbide sintered body for semiconductor production equipment
JPH05148023A (en) Ceramic composition containing spinel, silicon carbide and boron carbide
JPS5826076A (en) Ceramic sintered body and manufacture
KR100299099B1 (en) Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JP2549976B2 (en) Heat-resistant mullite sintered body
JP3616829B2 (en) Carbon-boron carbide sintered body, method for producing the same, and material using the sintered body
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPS62123070A (en) Manufacture of boron nitride base sintered body
JPS5823346B2 (en) Production method of α-sialon sintered body
JP4296251B2 (en) Method for producing alumina-boron nitride composite material
JPS6042188B2 (en) Manufacturing method of silicon nitride molded body
JPS6287461A (en) Manufacture of high density silicon carbide sintered body