JPH01273588A - Immobilized lipase - Google Patents
Immobilized lipaseInfo
- Publication number
- JPH01273588A JPH01273588A JP1054646A JP5464689A JPH01273588A JP H01273588 A JPH01273588 A JP H01273588A JP 1054646 A JP1054646 A JP 1054646A JP 5464689 A JP5464689 A JP 5464689A JP H01273588 A JPH01273588 A JP H01273588A
- Authority
- JP
- Japan
- Prior art keywords
- lipase
- carrier
- anion exchange
- reaction
- immobilized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 102000004882 Lipase Human genes 0.000 title claims abstract description 92
- 108090001060 Lipase Proteins 0.000 title claims abstract description 92
- 239000004367 Lipase Substances 0.000 title claims abstract description 89
- 235000019421 lipase Nutrition 0.000 title claims abstract description 89
- 238000005349 anion exchange Methods 0.000 claims abstract description 31
- 230000000694 effects Effects 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011324 bead Substances 0.000 abstract description 6
- 230000005764 inhibitory process Effects 0.000 abstract description 5
- 230000002209 hydrophobic effect Effects 0.000 abstract description 4
- 230000003100 immobilizing effect Effects 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 239000006087 Silane Coupling Agent Substances 0.000 abstract description 2
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 230000007062 hydrolysis Effects 0.000 abstract 1
- 238000006460 hydrolysis reaction Methods 0.000 abstract 1
- 238000005342 ion exchange Methods 0.000 abstract 1
- 239000003456 ion exchange resin Substances 0.000 abstract 1
- 229920003303 ion-exchange polymer Polymers 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 37
- 238000000354 decomposition reaction Methods 0.000 description 20
- 235000014113 dietary fatty acids Nutrition 0.000 description 17
- 239000000194 fatty acid Substances 0.000 description 17
- 229930195729 fatty acid Natural products 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 16
- 239000003925 fat Substances 0.000 description 15
- 235000019197 fats Nutrition 0.000 description 15
- 150000004665 fatty acids Chemical class 0.000 description 15
- 239000003921 oil Substances 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 10
- 235000015278 beef Nutrition 0.000 description 8
- 235000011187 glycerol Nutrition 0.000 description 8
- 239000011148 porous material Substances 0.000 description 8
- 239000003760 tallow Substances 0.000 description 8
- 239000003957 anion exchange resin Substances 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 235000021588 free fatty acids Nutrition 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108010093096 Immobilized Enzymes Proteins 0.000 description 4
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 4
- 235000011613 Pinus brutia Nutrition 0.000 description 4
- 241000018646 Pinus brutia Species 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000012051 hydrophobic carrier Substances 0.000 description 3
- 239000008363 phosphate buffer Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000007853 buffer solution Substances 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- -1 fatty acid ions Chemical class 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 101800000263 Acidic protein Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 235000006200 Glycyrrhiza glabra Nutrition 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 101710084373 Lipase 1 Proteins 0.000 description 1
- 241000909578 Nectandra Species 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- XENVCRGQTABGKY-ZHACJKMWSA-N chlorohydrin Chemical compound CC#CC#CC#CC#C\C=C\C(Cl)CO XENVCRGQTABGKY-ZHACJKMWSA-N 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000010701 ester synthesis reaction Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229940079826 hydrogen sulfite Drugs 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
〔従来技術及びその問題点〕
リパーゼにより油脂やエステルを加水分解するとグリセ
リンやアルコールと脂肪酸、脂肪酸イオン及びプロトン
が生ずる。脂肪酸及び脂肪酸イオンは水に難溶性のため
生産物阻害を起さないが、阻害を除くため反応液中の水
分含量を多くして、グリセリンやアルコール及びプロト
ンを希釈する方法がとられてきた(岩井他、J、 Ge
n、 Appl。Detailed Description of the Invention [Prior Art and its Problems] When fats and oils and esters are hydrolyzed by lipase, glycerin, alcohol, fatty acids, fatty acid ions, and protons are generated. Fatty acids and fatty acid ions are poorly soluble in water and do not inhibit the product; however, in order to eliminate inhibition, methods have been used to increase the water content in the reaction solution and dilute glycerin, alcohol, and protons ( Iwai et al., J. Ge.
n, Appl.
Micr輌Ro1.10.13(1964))。しかし
反応液中の水分含量が多いと、反応終了後水層に得られ
るグリセリンやアルコールを回収するエネルギーが多く
かかるため、酵素法による油脂分解を工業的に実施する
ための障害になっていた。Micr vehicle Ro1.10.13 (1964)). However, when the water content in the reaction solution is high, it takes a lot of energy to recover the glycerin and alcohol obtained in the aqueous layer after the reaction is completed, which has been an obstacle to industrially implementing fat and oil decomposition using the enzyme method.
本発明は、従来技術に見られる前記生産物阻害を克服し
得る固定化リパーゼを提供することをその課題とする。It is an object of the present invention to provide an immobilized lipase that can overcome the product inhibition observed in the prior art.
本発明者らは、固定化リパーゼを用いる反応について鋭
意研究を重ねた。リパーゼを結合させたいる時には、脂
肪酸より生成するプロトンが存在する反応液中で反応し
ても、陰イオン交換基の静電的な反発により生産物阻害
を起すプロトンがリパーゼ分子周辺から排除され、固定
化リパーゼは充分に活性を発揮することを見出し、この
知見に基づいて本発明をなすに至った。The present inventors have conducted extensive research on reactions using immobilized lipase. When bonding lipase, even if the reaction occurs in a reaction solution where protons generated from fatty acids are present, the protons that inhibit the product are removed from around the lipase molecule due to electrostatic repulsion of the anion exchange group. It was discovered that immobilized lipase exhibits sufficient activity, and based on this finding, the present invention was accomplished.
本発明に用いるリパーゼとしては、特に起源は選ばない
が、油脂に対する親和性がよくて反応の立ち上がりが良
く、油脂を高分解率にまで分解する酵素が良い。牛脂な
どの高融点の油脂を分解する場合45℃以上で反応する
耐熱性リパーゼを利用することが望ましい。The origin of the lipase used in the present invention is not particularly limited, but it is preferably an enzyme that has good affinity for fats and oils, has a good reaction start-up, and can decompose fats and oils to a high decomposition rate. When decomposing fats and oils with a high melting point such as beef tallow, it is desirable to use a heat-resistant lipase that reacts at 45° C. or higher.
本発明に用いられるリパーゼ固定化用担体は、出来るだ
け多くの陰イオン交換基を結合させた担体で、通常は各
種の陰イオン交換4ffl脂、ガラスピーズやシリカビ
ーズにシランカップカップリング剤を用いて出来るだけ
多くの陰イオン交換基を導入したもの、金属粉末に出来
るだけ多くの陰イオン交換基を導入したもの等の疎水性
担体が用いられる。親水性のビニルポリマーやセルロー
スに出来るだけ多くの陰イオン交換基を導入したものも
用いうるが、疎水性担体の方が基質に対する親和性が良
い上に、生成した親水性のグリセリンを排除し、グリセ
リンによる生産物阻害効果を減少させるため望ましい担
体である。またマクロポーラスな陰イオン交換樹脂やガ
ラスピーズ、シリカビーズ、F、J・ると更に良好な結
果が得られる。即ち通常のリパーゼ分子の半径は1(1
Å以上なので、これ以上の平均細孔半径を有する多孔性
担体を用いればリパーゼは細孔内の表面部分にも結合す
るためリパーゼ及び陰イオン交換基の結合面積が広くと
れる。また平均細孔半径が1000Å以上になると。The lipase immobilization carrier used in the present invention is a carrier to which as many anion exchange groups as possible are bonded, and is usually a carrier using various anion exchange 4FFL fats, glass beads, or silica beads with a silane coupling agent. A hydrophobic carrier is used, such as one in which as many anion exchange groups as possible have been introduced into a metal powder, or one in which as many anion exchange groups as possible have been introduced into a metal powder. Hydrophilic vinyl polymers or cellulose in which as many anion exchange groups as possible can be introduced can also be used, but hydrophobic carriers have better affinity for the substrate and eliminate the generated hydrophilic glycerin. It is a desirable carrier because it reduces the product inhibiting effects of glycerin. Even better results can be obtained by using macroporous anion exchange resins, glass beads, silica beads, F, J. That is, the radius of a normal lipase molecule is 1 (1
Since the average pore radius is Å or more, if a porous carrier having an average pore radius larger than this is used, the lipase will also bind to the surface portion within the pores, so that the bonding area between the lipase and the anion exchange group can be widened. Moreover, when the average pore radius becomes 1000 Å or more.
リパーゼ及び陰イオン交換基の結合する細孔表面積が減
少するので10〜1000人の平均細孔半径を有する担
体を用いるのがよい。マクロポーラス担体はリパーゼ及
び陰イオン交換基の結合する表面積を広くとれるととも
に、担体粒子が微細化することを防げるので圧損失の少
ない固定化酵素カラムが得られることになる。Since the pore surface area to which lipase and anion exchange groups bind is reduced, it is preferable to use a carrier having an average pore radius of 10 to 1,000. A macroporous carrier can provide a wide surface area for bonding lipase and anion exchange groups, and can also prevent carrier particles from becoming finer, resulting in an immobilized enzyme column with less pressure loss.
本発明に用いる陰イオン交換基とは、各種のアミン類、
アンモニウム類やその誘導体等であり、溶媒中で解離し
てプラスに帯電し、陰イオンを吸着する化学残基をいう
。The anion exchange group used in the present invention includes various amines,
Ammonium and its derivatives are chemical residues that dissociate in a solvent, become positively charged, and adsorb anions.
本発明に用いる担体に結合するリパーゼ量は、あまり少
量であると、固定化酵素活性が低く固定化リパーゼによ
る反応の立ち上がりが悪くなる。If the amount of lipase bound to the carrier used in the present invention is too small, the immobilized enzyme activity will be low and the reaction start-up by the immobilized lipase will be slow.
化リパーゼによる反応の立ち上がりは良くはなるが、高
脂肪酸濃度の最終分解率は悪くなることがある。これは
、リパーゼを結合する時、陰イオン交換基を介して結合
する場合が多いので、陰イオン交換基がふさがれてしま
い、リパーゼを結合させた担体表面に陰イオン基が存在
しなくなるためである。本発明の効果を得るためには、
一般的に低分子である陰イオン交換基を充分結合させた
担体を用いることと、リパーゼ結合片を調整し、リパー
ゼの結合していない陰イオン交換基を担体表面に存在さ
せることが必要である。Although the start-up of the reaction by chemical lipase is improved, the final decomposition rate of high fatty acid concentrations may be poor. This is because when lipase is bound, it is often bound through an anion exchange group, so the anion exchange group is blocked and there are no anion groups on the surface of the carrier to which lipase is bound. be. In order to obtain the effects of the present invention,
In general, it is necessary to use a carrier that has sufficiently bound anion exchange groups, which are low molecules, and to adjust the lipase-binding fragment so that anion exchange groups to which lipase is not bound are present on the carrier surface. .
担体にリパーゼを結合させる方法については、リパーゼ
が通常酸性蛋白であるため、陰イオン交換担体にはイオ
ン結合で容易に結合する。また陰イオン交換基を有する
疎水性担体を用いた場合には、イオン結合及び疎水性結
合で強固に結合する。Regarding the method of binding lipase to a carrier, since lipase is usually an acidic protein, it easily binds to an anion exchange carrier through an ionic bond. In addition, when a hydrophobic carrier having an anion exchange group is used, it is strongly bound by ionic bonds and hydrophobic bonds.
またイオン結合及び疎水結合で結合したものをゲルター
ルアルデヒドやカルボジイミドで処理すると更に強固に
結合する。ゲルタールアルデヒド処理の場合p+(を7
以上にすると、ゲルタールアルデヒドが反応性を増し、
リパーゼを失活させてしまうので、pH4,5〜6.5
付近に調整し、温度を25℃以下に保ち10〜20分程
度の短時間に処理した方が良い。また反応後は亜硫酸水
素ナトリウムなどで余分のゲルタールアルデヒドを取り
除いておく。以上の操作はカラムに充填した担体に適当
量のリパーゼ溶液を流しイオン結合及び疎水性結合で吸
着させた後、pl+及び温度を調整し適当に希釈したゲ
ルタールアルデヒド溶液を流し、続いて亜硫酸水素ナト
リウム溶液を流すことにより、固定化1酵素カラムの調
整が容易であるので工業的に有利な結合法である。上記
の如く陰イオン交換基をリパーゼ蛋白を結合するための
官能基とすると、陰イオン交換基のプロトンを排除して
プロトンによる生産物阻害効果を除く作用を弱めること
も考えられるので、陰イオン交換基を保護して別の官能
基を介してリパーゼを結合させれば本発明の効果はより
一層増大されるのでそのような結合法をとってもなんら
さしつかえない。Furthermore, when those bound by ionic bonds and hydrophobic bonds are treated with geltaraldehyde or carbodiimide, the bonds become even stronger. In the case of geltaraldehyde treatment, p + (7
Above that, geltaraldehyde becomes more reactive,
pH 4.5-6.5 as lipase is inactivated
It is better to adjust the temperature to around 25°C or lower and process the process for a short time of about 10 to 20 minutes. After the reaction, excess geltaraldehyde is removed using sodium bisulfite or the like. The above operation involves pouring an appropriate amount of lipase solution onto the carrier packed in the column and adsorbing it through ionic and hydrophobic bonds. After adjusting the PL+ and temperature, pouring in an appropriately diluted gel taraldehyde solution, followed by hydrogen sulfite. This is an industrially advantageous bonding method because it is easy to prepare an immobilized enzyme column by flowing a sodium solution. If the anion exchange group is used as a functional group for binding the lipase protein as described above, it is possible that the anion exchange group will eliminate protons and weaken the effect of removing the product inhibition effect of protons. If the group is protected and the lipase is bonded via another functional group, the effects of the present invention will be further enhanced, so there is no problem with such a bonding method.
本発明の固定化リパーゼは、前記のように、その担体表
面にリパーゼの結合していない陰イオン交換基が多数存
在することを特徴とするものであるが、リパーゼの結合
していない陰イオン交換基の担体表面における存在量は
、担体に結合したリパーゼ1分子あたり、通常、100
0個以上、好ましくは1万〜1000万個の割合である
。陰イオン交換基の数が多ければそれだけプロトンによ
る生産物阻害作用を弱めることでき、一般には、結合リ
パーゼ1分子あたり、1000個以上の割合の陰イオン
基が存在する担体であれば、所期の目的を達成すること
ができる。As described above, the immobilized lipase of the present invention is characterized by the presence of a large number of anion exchange groups to which lipase is not bound on the surface of the carrier. The amount of the group present on the carrier surface is usually 100% per molecule of lipase bound to the carrier.
The proportion is 0 or more, preferably 10,000 to 10,000,000. The greater the number of anion exchange groups, the more the product inhibition effect by protons can be weakened, and in general, if the carrier has 1000 or more anion groups per molecule of bound lipase, the desired effect can be achieved. Able to achieve purpose.
本発明の固定化リパーゼを用いてリパーゼ反応を行う場
合の反応条件のpHや温度については固定されたリパー
ゼの反応に最適なpHや温度付近が用いられる。最適の
pHや温度でなくても目的の反応率が得られるならば、
それを用いてもさしつかえない。また必要ならば、金3
イオンや、血清アルラミン等を加えてもさしつかえない
。Regarding the pH and temperature of the reaction conditions when carrying out a lipase reaction using the immobilized lipase of the present invention, a pH and temperature near the optimum for the reaction of the immobilized lipase are used. If the desired reaction rate can be obtained even if the pH and temperature are not optimal,
There is no harm in using it. Also, if necessary, 3 gold
It is also possible to add ions, serum allamin, etc.
本発明の固定化リパーゼは、プロトンによる生産物阻害
−力曳起るような従来公知のリパーゼ反応に対して使用
される。このようなリパーゼ反応としては、例えば、脂
質(グリセライドやエステル)の分解反応や、脂肪酸と
アルコールによるエステル合成反応等が挙げられる。The immobilized lipase of the present invention is used for conventionally known lipase reactions such as those that involve product inhibition-force withdrawal by protons. Examples of such lipase reactions include decomposition reactions of lipids (glycerides and esters) and ester synthesis reactions between fatty acids and alcohols.
本発明の固定化リパーゼを用いる時には、プロトンによ
る生産物障害を除去できるので、反応液中の最高遊離脂
肪酸濃度が50%以上、特に70〜80%(重量)とい
う高脂肪I!!!濃度の条件でもリパーゼ反応を進行さ
せることができる。例えば、本発明の固定化リパーゼを
用いて脂質の分解反応を行う場合5反応液中の遊離脂肪
酸濃度は、その最高値、即ち、最終反応液中の遊離脂肪
酸濃度が50〜70%の範囲になるように選ばれる。5
0%以下の脂肪酸濃度にしても、最終分解率は上がらず
、反応槽の規模を小さくしたり、反応複水層にに得られ
るグリセリンやアルコールの回収のエネルギーを少くす
るためには、この濃度以上で反応させる方が有利である
。When using the immobilized lipase of the present invention, product interference caused by protons can be removed, so the maximum free fatty acid concentration in the reaction solution is 50% or more, especially high fat I! of 70 to 80% (by weight)! ! ! The lipase reaction can also proceed under certain concentration conditions. For example, when performing a lipid decomposition reaction using the immobilized lipase of the present invention, the free fatty acid concentration in the 5 reaction solution is at its maximum value, that is, the free fatty acid concentration in the final reaction solution is in the range of 50 to 70%. chosen to be. 5
Even if the fatty acid concentration is 0% or less, the final decomposition rate does not increase, and in order to reduce the scale of the reaction tank and to reduce the energy required to recover glycerin and alcohol obtained in the reaction double water layer, this concentration is necessary. It is more advantageous to react at the above level.
工業的に脂肪酸をつくる場合、油脂分解を終った後に油
分と水(グリセリンを含む甘木)を分離し。When producing fatty acids industrially, oil and water (sweet wood containing glycerin) are separated after the fat and oil decomposition process is complete.
油分は液体脂肪酸と固体脂肪酸に分けて後の精製に供す
るが、この液体脂肪酸の中には、オレイン酸やリノール
酸等の他、未分解のトリグリセライドが残っていること
がある。このような粗製脂肪酸中に含まれる8ご程度の
グリセライドを分解する時などは粗製脂肪酸中にわずか
に含まれる水分で充分加水分解出来るので、粗製脂肪を
そのまま本発明の固定リパーゼと反応させれば混在する
トリグリセライドを取り除くことも可能である。The oil content is divided into liquid fatty acids and solid fatty acids for subsequent purification, but in addition to oleic acid, linoleic acid, and other undecomposed triglycerides may remain in the liquid fatty acids. When decomposing glycerides of about 8 or so contained in such crude fatty acids, the small amount of water contained in the crude fatty acids can be sufficient to hydrolyze them, so if the crude fats are directly reacted with the fixed lipase of the present invention, It is also possible to remove mixed triglycerides.
本発明に用いる反応槽としては、固定化リパーゼと反応
液とを混ぜて混合するバッチ式のものと、固定化リパー
ゼをカラムにつめた連続式のものとが考えられる。バッ
チ式、カラム式ともに同量化リパーゼの回収が容易で、
生産物の精製段階でのリパーゼ蛋白の除去の必要がなく
1回収した酵素を反復使用出来る利点を有する。カラム
式は更に反応中に空気に接触することが少ないので不飽
和脂肪酸が空気酸化されないことや、連続化が可能であ
るので現在行なわれている高圧連続分解工程に組み込み
易いなどの利点を有する。The reaction vessels used in the present invention may be of a batch type in which the immobilized lipase and the reaction solution are mixed together, or of a continuous type in which the immobilized lipase is packed in a column. Equivalent lipase can be easily recovered using both batch and column methods.
This method has the advantage that it is not necessary to remove the lipase protein during the product purification step, and the recovered enzyme can be used repeatedly. The column type has further advantages such as less contact with air during the reaction, so the unsaturated fatty acids are not oxidized by the air, and because it can be continuous, it can be easily incorporated into the currently used high-pressure continuous cracking process.
本発明の固定化リパーゼを用いることによって反応液中
の水分含量が著しく少ない量で油脂やエステルを高分解
率にまで分解することが可能となった。このことは反応
後に得られたグリセリンやアルコールを蒸留により回収
する際のエネルギーを少なくする他、大量の油脂を分解
する際の反応槽の規模を小さくする等工業的な油脂分解
過程にもたらす効果は大きい。しかも固定化リパーゼカ
ラムを用いることにより連続反応が可能になることや不
飽和脂肪酸の空気酸化を防げる等の効果がある。しかも
固定化酵素カラムの調製や再生も容易である等、工業的
な油脂の酵素分解法として優れた方法である。By using the immobilized lipase of the present invention, it has become possible to decompose fats and oils and esters to a high decomposition rate with extremely low water content in the reaction solution. This not only reduces the energy required to recover the glycerin and alcohol obtained after the reaction by distillation, but also reduces the size of the reaction tank when decomposing large amounts of fats and oils, and has other effects on the industrial fats and oils decomposition process. big. Moreover, the use of an immobilized lipase column has the effect of enabling continuous reaction and preventing air oxidation of unsaturated fatty acids. Moreover, it is an excellent method for industrial enzymatic decomposition of fats and oils, as it is easy to prepare and regenerate the immobilized enzyme column.
つぎに実施例によって、本発明を更に詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.
実施例1
1gのダウエックスHuA−1(総交換容量1 、2m
eq以」ニ/ml、ポリスチレン鎖をジビニルベンゼン
で架橋した母体を持つ第三級アミンを交換基とするマク
ロポーラスタイプの弱塩基性陰イオン交換樹脂、ダウ・
ケミカル社製)を蒸留水及び1/15Mのマツクイルベ
イン緩衝液pH5,0で洗浄後、50AL12のリパー
ゼ液(1450単位)及び1成のマンクイルベイン緩衝
液を加え、8℃で1夜振とうした。次に1mQのマツク
イルベイン緩衝液、80μQの2錦ゲルタールアルデハ
イド溶液を加え、8℃で10分間振とうし、ダウエック
ス1nA−1に結合させた。最後に20テの亜硫酸水素
ナトリウムを0.2威加え、8℃で10分間振とうし、
余分のゲルタールアルデヒドを除いた後、水や緩衝液で
良く洗浄してダウエックスMWA−1固定化リパーゼを
得た。ここで用いたリパーゼ量は、固定化リパーゼの活
性発現に充分な量でしかも高い最終分解率を与える量で
ある。Example 1 1 g DOWEX HuA-1 (total exchange capacity 1, 2 m
Dow, a macroporous type weakly basic anion exchange resin whose exchange group is a tertiary amine with a matrix in which polystyrene chains are crosslinked with divinylbenzene.
Chemical Co., Ltd.) was washed with distilled water and 1/15M pine quill vain buffer pH 5.0, 50AL12 lipase solution (1450 units) and 1-component pine quill vain buffer were added, and the mixture was shaken at 8°C overnight. . Next, 1 mQ of pine irvain buffer solution and 80 μQ of 2-color gel tar aldehyde solution were added, and the mixture was shaken at 8° C. for 10 minutes to bind to DOWEX 1nA-1. Finally, add 0.2 parts of 20 parts of sodium bisulfite and shake at 8°C for 10 minutes.
After removing excess gel taraldehyde, it was thoroughly washed with water and a buffer solution to obtain DOWEX MWA-1 immobilized lipase. The amount of lipase used here is an amount sufficient to express the activity of the immobilized lipase, and an amount that provides a high final decomposition rate.
1gのダウエックスWGR(総交換容量1 、6meq
/ mQ、エビクロロヒドリンとアンモニアとの縮合体
でポリアミンを交換基とするゲルタイプの弱塩基性陰イ
オン交換樹脂、ダウ・ケミカル社製)を上記と同様に処
理して、無機イオンを多く通すように極めて細かな細孔
を多数持つように合成されたゲルタイプの陰イオン交換
樹脂に固定化したリパーゼを得た。1g of DOWEX WGR (total exchange capacity 1, 6meq
/ mQ, a gel-type weakly basic anion exchange resin containing a condensate of shrimp chlorohydrin and ammonia and using polyamine as an exchange group (manufactured by Dow Chemical Company) was treated in the same manner as above to obtain a large amount of inorganic ions. We obtained lipase immobilized on a gel-type anion exchange resin synthesized to have many extremely fine pores that allow it to pass through.
レバチットCNP80 (総交換容量4.7meq/
mfl、アクリルを母体とし、カルボン酸を交換基とす
るマクロポーラス型の弱酸性陽イオン交換樹脂、バイエ
ル社製)を1g、■−シクロへキシル−3−(2−モル
ホリノエチル)−カルぼジイミド・p−トルエンメトス
ルホン酸(以下CMCと略す)を50■、水10−を加
え、6N HCQでpHを4〜5に保ちながら、室温で
反応を続け、pHが安定したところで過剰のCMCをよ
く洗い去る。Revachit CNP80 (total exchange capacity 4.7meq/
1 g of mfl, a macroporous weakly acidic cation exchange resin with acrylic as the base and carboxylic acid as the exchange group (manufactured by Bayer AG), ■-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide・Add 50 μm of p-toluenemethosulfonic acid (hereinafter abbreviated as CMC) and 10 μm of water, continue the reaction at room temperature while keeping the pH at 4 to 5 with 6N HCQ, and when the pH stabilizes, remove excess CMC. Wash thoroughly.
次に1/15Mマツクイルベイン緩衝液pH4を2mQ
、50μQのリパーゼ液(1450単位)を加え、冷室
中で一夜反応させて、レバチットCNP80固定化リパ
ーゼを得た。Next, add 2 mQ of 1/15M pine irvain buffer pH 4.
, 50 μQ of lipase solution (1450 units) was added, and the mixture was allowed to react overnight in a cold room to obtain Revatit CNP80-immobilized lipase.
リパーゼ活性は、3.14gのトリブチレン、35成の
2石ポリビニールアルコール(倉敷ポパール117)溶
液、40畝の0.1M燐酸緩衝液(pH7)、12m1
2の水を混ぜ10分間超音波処理して調製したトリブチ
リンエマルジョン9−1酵素懸濁液1gとを混合し、6
0゛℃、20分間振とうしながら反応させた。メタノー
ル・アセトンの1:1混液を入れて反応を止め、生じた
脂肪酸を0.05NNaOHで滴下して活性を測定した
。The lipase activity was determined using 3.14 g of tributylene, 35-mer two-stone polyvinyl alcohol (Kurashiki Popal 117) solution, 40 ml of 0.1 M phosphate buffer (pH 7), 12 ml of
Mix 1 g of tributyrin emulsion 9-1 enzyme suspension prepared by mixing water from step 2 and sonicating it for 10 minutes,
The reaction was carried out at 0°C for 20 minutes with shaking. The reaction was stopped by adding a 1:1 mixture of methanol and acetone, and the resulting fatty acid was added dropwise with 0.05N NaOH to measure the activity.
上記の条件により1分間に1マイクロ当量の酸を遊離す
る量を1単位とした。The amount of acid released in 1 minute under the above conditions was defined as 1 unit.
リパーゼ標品は、Pseudomonas fluor
escesbiotype I −Ha 1021 (
微工研菌寄第5495号)の生産するリパーゼを硫安塩
析、透析、クロロホルムによる脱脂等を行った後凍結乾
燥したものを用いた。The lipase preparation is Pseudomonas fluor
escesbiotype I-Ha 1021 (
The lipase produced by Kaikouken Kyoiku No. 5495) was subjected to ammonium sulfate salting out, dialysis, degreasing with chloroform, etc., and then freeze-dried.
100mQの三角フラスコに、牛脂と0.1N燐酸緩衝
液P)17.0とで、各種牛脂濃度の反応液をつくり、
良く水分を除いた固定化リパーゼを加え、60℃で毎分
178回振ヒラしながら160〜200時間反応させた
後の分解率(最終分解率)を酸化値とケン化値の比から
求めた。その結果を第1表に示す。In a 100 mQ Erlenmeyer flask, prepare reaction solutions of various beef tallow concentrations with beef tallow and 0.1N phosphate buffer P)17.0.
The immobilized lipase, which had been well removed from moisture, was added and reacted for 160 to 200 hours at 60°C with shaking 178 times per minute. The decomposition rate (final decomposition rate) was determined from the ratio of the oxidation value and saponification value. . The results are shown in Table 1.
第1表
→(表は高い原料牛脂濃度での油脂の最終分解率は、リ
パーゼを結合させた担体表面に第三級アミンやポリアミ
ン等の陰イオン交換基が存在するもの(ダウエックスN
WA−1やダウエックスWGRを固定化担体としたもの
)の方が陽イオン交換基であるカルボン酸が存在すもの
(レバチットCNP80を固定化担体としたもの)より
良いことが解る。また陰イオン交換基が存在する担体表
面で、リパーゼが結合する箇所が細孔内にまで及ぶマク
ロポーラスの陰イオン交換樹脂に固定化したリパーゼに
よると高基質濃度での分解率が特に良いことを示してい
る。Table 1 → (The table shows the final decomposition rate of fats and oils at high concentrations of raw beef tallow for those with anion exchange groups such as tertiary amines and polyamines on the surface of the carrier to which lipase is bound (Dowex N
It can be seen that those using WA-1 or DOWEX WGR as an immobilizing carrier) are better than those containing a carboxylic acid as a cation exchange group (using Revatit CNP80 as an immobilizing carrier). In addition, lipase immobilized on a macroporous anion exchange resin, which has an anion exchange group on the surface of the carrier and where the lipase binds extends into the pores, has a particularly good decomposition rate at high substrate concentrations. It shows.
なお、固定化担体リパーゼに結合したリパーゼ1分子当
りの陰イオン交換基の数を、リパーゼの分子量(12万
)、固定化したリパーゼの活性単位、固定化用担体の総
交換容量を基にして算出すると、ダウエックスNWA−
1の場合はllXl0’個以上、ダウエックスυGHの
場合は9X10’個以上であった。−方、分子量12万
のリパーゼ蛋白には800余りのアミノ酸が存在し、そ
の1割の80個程度が酸性アミノ酸である。その大部分
は塩基性アミノ酸と中和してしまうので、蛋白分子上で
解離し、陰イオン交換基と結合しうるリパーゼ分子上の
残基数は半分以下(40以下)である。The number of anion exchange groups per molecule of lipase bound to the immobilized carrier lipase is determined based on the molecular weight of the lipase (120,000), the activity unit of the immobilized lipase, and the total exchange capacity of the immobilization carrier. When calculated, DOWEX NWA-
In the case of No. 1, there were 11X10' or more, and in the case of DOWEX υGH, there were 9X10' or more. On the other hand, lipase protein with a molecular weight of 120,000 has over 800 amino acids, of which about 80, or 10%, are acidic amino acids. Since most of it is neutralized with basic amino acids, the number of residues on the lipase molecule that can be dissociated on the protein molecule and bonded to the anion exchange group is less than half (40 or less).
実施例2
各種のマクロポーラスの陰イオン交換樹脂に実施例1の
ダウエックスMVA−1に示したと同様の方法で固定リ
パーゼを用いて最終分解率を比較した。Example 2 The final decomposition rates of various macroporous anion exchange resins were compared using immobilized lipase in the same manner as shown for DOWEX MVA-1 in Example 1.
その結果を第2表に示す。The results are shown in Table 2.
第2表
第2表は、マクロポーラスタンプの各種の陰イオン交換
体、陰イオン交換タイプのキレート樹脂(ダイアイオン
CR20)に、適当量のリパーゼを結合させた固定化リ
パーゼを用いると、リパーゼを結合させた担体表面に陰
イオン交換基が存在するので、プロトン生産物障害が除
去され、油脂の分解率が良いことを示す。Table 2 Table 2 shows that when immobilized lipase with an appropriate amount of lipase bound to various anion exchangers of Macro Polar Stamp and anion exchange type chelate resin (Diaion CR20) is used, lipase is activated. Since an anion exchange group exists on the surface of the bonded carrier, proton product interference is removed, indicating that the decomposition rate of fats and oils is good.
なお、固定化リパーゼの担体表面に結合するリパーゼ1
分子当りの陰イオン交換基の数を実施例1と同様にして
算出すると、アンバーライトIRA93の場合は12X
105、アンバーライトIRA904の場合は6.5
X 10’、ダイアイオンWA21(7)場合は2.O
X to5、ダイオアイオンHPA25の場合は2.O
X 10’、ダイアイオンCR20の場合は1.5 X
10’、デュオライトA−4の場合は19X]、05
、デュオライトA−7の場合は23×105であった。Note that lipase 1 bound to the carrier surface of immobilized lipase
When the number of anion exchange groups per molecule is calculated in the same manner as in Example 1, in the case of Amberlite IRA93, it is 12X
105, 6.5 for Amberlight IRA904
X 10', 2 for Diaion WA21 (7). O
X to5, 2 for Diaion HPA25. O
X 10', 1.5 X for Diaion CR20
10', 19X for Duolite A-4], 05
In the case of Duolite A-7, it was 23 x 105.
実施例3
実施例1ど同様にして調製したダウエックスMWA−1
固定化リパーゼを良く乾燥し、牛脂と0.1M燐酸緩衝
液とで各種の牛脂濃度の反応液をつくり、リパーゼ反応
を行ってその最終分解率を比較した。Example 3 DOWEX MWA-1 prepared in the same manner as Example 1
The immobilized lipase was thoroughly dried, reaction solutions with various concentrations of beef tallow were prepared with beef tallow and 0.1 M phosphate buffer, and lipase reactions were performed to compare the final decomposition rates.
その結果を第3表に示す。対照として固定化する際に用
いた可溶性リパーゼの結果も併記する。The results are shown in Table 3. The results of soluble lipase used during immobilization are also shown as a control.
なお、牛脂80%を固定化リパーゼと反応させると反応
後の遊離脂肪酸濃度は71%になる。また牛脂94%を
固定化リパーゼと反応させると反応後の遊離脂肪酸濃度
は79%になる。Note that when 80% beef tallow is reacted with immobilized lipase, the free fatty acid concentration after the reaction becomes 71%. Furthermore, when 94% beef tallow is reacted with immobilized lipase, the free fatty acid concentration after the reaction becomes 79%.
第3表
第3表は、可溶性リパーゼによると、高脂肪酸濃度での
最終分解率が著しく減少するのに対し、リパーゼを結合
させた担体表面に陰イオン交換基が多数存在するように
調製した固定化リパーゼを用いると、高脂肪酸濃度でも
高い分解率が得られることを示す。Table 3 Table 3 shows that when using soluble lipase, the final decomposition rate is significantly reduced at high fatty acid concentrations, whereas when using immobilized lipase prepared in such a way that a large number of anion exchange groups exist on the surface of the carrier to which lipase is attached, We show that a high decomposition rate can be obtained using chemical lipase even at high fatty acid concentrations.
Claims (1)
合しない陰イオン交換基を存在させたことを特徴とする
固定化リパーゼ。(1) An immobilized lipase characterized in that an anion exchange group to which lipase does not bind is present on the surface of a carrier to which lipase is bound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1054646A JPH01273588A (en) | 1989-03-07 | 1989-03-07 | Immobilized lipase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1054646A JPH01273588A (en) | 1989-03-07 | 1989-03-07 | Immobilized lipase |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58053285A Division JPS59179091A (en) | 1983-03-29 | 1983-03-29 | Enzymatic hydrolysis of lipid |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01273588A true JPH01273588A (en) | 1989-11-01 |
JPH0342072B2 JPH0342072B2 (en) | 1991-06-26 |
Family
ID=12976544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1054646A Granted JPH01273588A (en) | 1989-03-07 | 1989-03-07 | Immobilized lipase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01273588A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5650833A (en) * | 1979-10-02 | 1981-05-08 | Kanto Seiki Kk | Impact absorbing panel for car and manufacture thereof |
-
1989
- 1989-03-07 JP JP1054646A patent/JPH01273588A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5650833A (en) * | 1979-10-02 | 1981-05-08 | Kanto Seiki Kk | Impact absorbing panel for car and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0342072B2 (en) | 1991-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0368674B2 (en) | ||
DE3515252A1 (en) | METHOD FOR IMMOBILIZING SOLVED PROTEIN | |
US5292649A (en) | Method for reaction of lipase upon fatty acid | |
JP2678341B2 (en) | Immobilized lipase | |
DE2805950C2 (en) | Carrier material for immobilizing enzymes | |
JPH0431670B2 (en) | ||
JPS6219835B2 (en) | ||
JP3902282B2 (en) | Method for producing high purity glycerin | |
JPH01273588A (en) | Immobilized lipase | |
US4206259A (en) | Support matrices for immobilized enzymes | |
JPS59183691A (en) | Preparation of immobilized lipase | |
JPS5920357B2 (en) | Enzymatic decomposition of lipids | |
JPS59179091A (en) | Enzymatic hydrolysis of lipid | |
EP0294711B1 (en) | Process for the preparation of enzymes fixed to a carrier | |
JPS584914B2 (en) | Support matrix for enzyme immobilization | |
EP1194237B1 (en) | Method of removing iodides from a non-aqueous organic medium using silver or mercury exchanged macroporous organofunctional polysiloxane resins | |
JPS6058086A (en) | Production of ester | |
KR20110034116A (en) | The improvement method for selectivity and productivity of fatty acid replacement in phospholipids by immobilized phospholipase a2 | |
JPS63160583A (en) | Production of immobilized lipase and hydrolysis of lipid using said immobilized lipase | |
JP2595004B2 (en) | Enzyme-immobilizing carrier, its enzyme-immobilizing method and enzyme desorbing method | |
JPH03127992A (en) | Production of fatty acid ester | |
JPH02138975A (en) | Production of immobilized lipase | |
JP3509124B2 (en) | Method for transesterification of fats and oils using immobilized lipase | |
JPH0585157B2 (en) | ||
JPH0412716B2 (en) |