JPS59179091A - Enzymatic hydrolysis of lipid - Google Patents
Enzymatic hydrolysis of lipidInfo
- Publication number
- JPS59179091A JPS59179091A JP58053285A JP5328583A JPS59179091A JP S59179091 A JPS59179091 A JP S59179091A JP 58053285 A JP58053285 A JP 58053285A JP 5328583 A JP5328583 A JP 5328583A JP S59179091 A JPS59179091 A JP S59179091A
- Authority
- JP
- Japan
- Prior art keywords
- lipase
- carrier
- immobilized
- anion
- anion exchange
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 150000002632 lipids Chemical class 0.000 title claims abstract description 10
- 230000007071 enzymatic hydrolysis Effects 0.000 title abstract 3
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 title abstract 3
- 102000004882 Lipase Human genes 0.000 claims abstract description 30
- 108090001060 Lipase Proteins 0.000 claims abstract description 30
- 239000004367 Lipase Substances 0.000 claims abstract description 29
- 235000019421 lipase Nutrition 0.000 claims abstract description 29
- 238000005349 anion exchange Methods 0.000 claims abstract description 25
- 238000000354 decomposition reaction Methods 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 14
- 230000002255 enzymatic effect Effects 0.000 claims description 3
- 239000011148 porous material Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000011324 bead Substances 0.000 abstract description 6
- 239000011347 resin Substances 0.000 abstract description 4
- 229920005989 resin Polymers 0.000 abstract description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 239000000377 silicon dioxide Substances 0.000 abstract description 3
- 150000001412 amines Chemical class 0.000 abstract description 2
- 239000011541 reaction mixture Substances 0.000 abstract 2
- 150000003863 ammonium salts Chemical class 0.000 abstract 1
- 125000000129 anionic group Chemical group 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 24
- 239000000243 solution Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000003921 oil Substances 0.000 description 15
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 239000003925 fat Substances 0.000 description 12
- 235000019197 fats Nutrition 0.000 description 12
- 235000014113 dietary fatty acids Nutrition 0.000 description 11
- 239000000194 fatty acid Substances 0.000 description 11
- 229930195729 fatty acid Natural products 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 9
- 239000003957 anion exchange resin Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 108010093096 Immobilized Enzymes Proteins 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 235000015278 beef Nutrition 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 230000002209 hydrophobic effect Effects 0.000 description 4
- 239000003760 tallow Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- -1 fatty acid ions Chemical class 0.000 description 3
- 239000012051 hydrophobic carrier Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 2
- 235000011613 Pinus brutia Nutrition 0.000 description 2
- 241000018646 Pinus brutia Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- 150000001735 carboxylic acids Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000005373 porous glass Substances 0.000 description 2
- 150000003141 primary amines Chemical group 0.000 description 2
- 150000003512 tertiary amines Chemical group 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- 101800000263 Acidic protein Proteins 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は脂質を酵素分解するにあたり、リノξ−ゼを結
合させた担体表面に陰イオン交換基が存在する固定化す
iR−ゼを用いて、す・ξ−ゼの基質濃度を50〜94
チの範囲内で分解することを特徴とする脂質の酵素分解
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION In enzymatically decomposing lipids, the present invention utilizes immobilized iR-ase, which has an anion exchange group on the surface of a carrier to which rhinoξ-ase is bound. Substrate concentration 50-94
The present invention relates to a method for enzymatically decomposing lipids, which is characterized in that the decomposition is performed within the following range.
リパーゼによυ油脂やエステルを加水分解するとグリセ
リンやアルコールと脂肪酸、脂肪酸イオン及びプロトン
が生ずる。脂肪酸及び脂肪酸イオンは水に難溶性のため
生産物阻害を起さないが、グリセリンやアルコール及び
プロトンは水に可溶硅のため生産物阻害を起す。従来こ
れらの生産物館害を除くため反応液中の水分含量を多く
して、ノリセリンやアルコール及びプロトンを希釈する
方法が取られてきた。(岩井他、 J、Gen、Ap
pl。When lipase hydrolyzes oils and esters, glycerin, alcohol, fatty acids, fatty acid ions, and protons are produced. Fatty acids and fatty acid ions do not inhibit production because they are poorly soluble in water, but glycerin, alcohol, and protons inhibit production because they are soluble in water. Conventionally, in order to eliminate these harmful effects on the product, a method has been adopted in which the water content in the reaction solution is increased to dilute Noricerin, alcohol, and protons. (Iwai et al., J, Gen, Ap
pl.
Mierobiol、 10.13<1964))
Lかし反応液中の水分含量が多いと、反応終了後水層に
得られるグリセリンやアルコールを回収するエネルギー
が多くかかるため、酵素法による油脂分解を工業的に実
施するための障害になっていた。Mierobiol, 10.13<1964))
If the water content in the L-oxidation reaction solution is high, it takes a lot of energy to recover the glycerin and alcohol obtained in the aqueous layer after the reaction, which is an obstacle to industrially implementing fat and oil decomposition using the enzymatic method. Ta.
本発明者らは、リパーゼを結合させた担体を用いて、工
業的な油脂分解法について鋭意研究を重ねた結釆陰イオ
/交換基を導入した担体上用いる場合、陰イオン交換基
の静電的な反発によシ生産物阻害を起すプロトンをリパ
ーゼ分子周辺から排除できる点に新たに着目し、検討を
加えたところ、す・ξ−ゼを結合させた担体表面に陰イ
オン交換基が多数存在するように新たな方法で調製した
固定化す・クーゼを用いて油脂分解を行えば反応液中の
基質濃度を50〜94チとこれまで用いられたことのな
い程の高濃度にしても高分解率にまで加水゛分解しうろ
ことを見い出し、この知見に基づいて本発明をなすに至
った。The present inventors have conducted intensive research on industrial fat and oil decomposition methods using a carrier bound to lipase. We focused on the fact that the protons that inhibit the production of lipase can be removed from the vicinity of the lipase molecule due to the repulsion of If fat and oil decomposition is carried out using an immobilized solution prepared using a new method, even if the substrate concentration in the reaction solution is increased to 50-94%, which is a high concentration that has never been used before. We have discovered that scales can be hydrolyzed to a certain degree of decomposition, and based on this knowledge, we have accomplished the present invention.
本発明に用いるり・ξ−ゼとしては、特に起源は選ばな
いが、油脂に対する親和性がよくて反応の立ち上がシが
良く、油脂を高分解率にまで分解する酵素が良い。牛脂
などの高融点の油脂を分解する場合45℃以上で反応す
る耐熱性IJ A−ゼを利用することが望ましい。The origin of the lysine/ξ-ase used in the present invention is not particularly selected, but it is preferably an enzyme that has good affinity for fats and oils, has a good reaction start-up, and can decompose fats and oils to a high decomposition rate. When decomposing fats and oils with a high melting point such as beef tallow, it is desirable to use heat-resistant IJA-ze, which reacts at temperatures of 45°C or higher.
本発明に用いられる担体は、出来るだけ多くの陰イオン
交換基を結合させた担体で通常は各種の陰イオン交換樹
脂Xガラスピーズやシリカビーズにシランカップカップ
リング剤を用いて出来るだけ多くの陰イオン交換基を導
入したもの、金属粉末に出来るだけ多くの陰イオン交換
基を導入したもの等の疎水性担体が用いられる。親水性
のビニルポリマーやセルロースに出来るだけ多くの陰イ
オン交換基を導入したものも用いうるが、疎水性担体の
方が基質に対する親和性が良い上に、生成した親水性の
グリセリンを排除しグリセリンによる生産物阻害効果を
減少させるため望ましい担体ヤある。またマクロポーラ
スな陰イオン交換樹脂やガラスピーズ、シリカビーズを
用いると更に良好な結果が得られる。即ち通常のり・ク
ーゼ分子の半径は10Å以上なので、これ以上の平均細
孔半径を有する多孔性担体を用いればリパーゼは細孔内
の表面部分にも結合するためIJ ノR−ゼ及び陰イオ
ン交換基の結合面積が広くとれる。また平均細孔半径が
1000Å以上になると、リパーゼ及び陰イオン交換基
の結合する細孔表面積が減少するので10〜1000大
の平均細孔半径を准する担体を用いる。マクロポーラス
担体はリパーゼ及び陰イオン交換基の結合する表面積を
広くとれるとともに、担体粒子が微細化することを防げ
るので圧損失の少ない固定化酵素カラムが得られること
になる。The carrier used in the present invention is a carrier to which as many anion exchange groups as possible are bonded, and is usually made by combining various anion exchange resins, glass beads, or silica beads with a silane cup coupling agent. Hydrophobic carriers are used, such as those into which ion exchange groups have been introduced, and those in which as many anion exchange groups as possible have been introduced into metal powder. Hydrophilic vinyl polymers and cellulose with as many anion exchange groups as possible can also be used, but hydrophobic carriers have better affinity for the substrate and can eliminate the generated hydrophilic glycerin. This is a desirable carrier because it reduces the product-inhibiting effects caused by. Even better results can be obtained by using macroporous anion exchange resins, glass beads, or silica beads. In other words, since the radius of a normal glue/couse molecule is 10 Å or more, if a porous carrier with an average pore radius larger than this is used, lipase will also bind to the surface area within the pores, resulting in IJ-R-ase and anion exchange. The bonding area of the group can be widened. Furthermore, when the average pore radius is 1000 Å or more, the pore surface area to which lipase and anion exchange groups bond decreases, so a carrier having an average pore radius of 10 to 1000 is used. A macroporous carrier can provide a wide surface area for bonding lipase and anion exchange groups, and can also prevent carrier particles from becoming finer, resulting in an immobilized enzyme column with less pressure loss.
本発明に用いる陰イオン交換基とは、各種のアミン類、
アンモニウム類やその誘導体等であシ、溶媒中で解離し
てプラスに帯電し、陰イオンを吸着する化学残基をいう
。The anion exchange group used in the present invention includes various amines,
A chemical residue such as ammonium or its derivatives that dissociates in a solvent, becomes positively charged, and adsorbs anions.
本発明に用いる担体に結合するIJ ノR−ゼ量は、あ
まシ少量であると、固定化酵素活性が低く固定化す/1
’−ゼによる反応の立ち上がシが悪くなる。If the amount of IJ-R-ase bound to the carrier used in the present invention is too small, the immobilized enzyme activity will be low and immobilization will occur.
The start-up of the reaction due to '-ze becomes difficult.
また非常に大量のリパーゼを結合させると、固定化リパ
ーゼによる反応の立ち上がシは良くはなるが、高基質濃
度の最終分解率は悪くなることがある。これは、リパー
ゼを結合する時、陰イオン交換基を介して結合する場合
が多いので、陰イオン交換基がふさがれてしまい、リパ
ーゼを結合させた担体表面に陰イオン基が存在しなくな
るためである。本発明の効果を得るためには、一般的に
低分子である隘イオン交換基を充分結合させた担体を用
いることと、リノξ−ゼ結合量を調整することが必要で
ある。Furthermore, when a very large amount of lipase is bound, although the start-up of the reaction by the immobilized lipase is improved, the final decomposition rate at a high substrate concentration may be deteriorated. This is because when lipase is bound, it is often bound through an anion exchange group, so the anion exchange group is blocked and there are no anion groups on the surface of the carrier to which lipase is bound. be. In order to obtain the effects of the present invention, it is necessary to use a carrier to which sufficient ion exchange groups, which are generally low molecules, are bound, and to adjust the amount of linose ξ-ase bound.
本発明のり、e−ゼ結合法については、リパーゼが通常
酸性蛋白であるため、陰イオン交換担体にはイオン結合
で容易に結合する。また陰イオン交換基を有する疎水性
担体を用いた場合には、イオン結合及び疎水性結合で強
固に結合する。またイオン結合及び疎水結合で結合した
ものをゲルタールアルデヒドやカル2ジイミドで処理す
ると更に強固に結合する。ゲルタールアルデヒド処理の
場合−Hを7以上にすると、ゲルタールアルデヒドが、
反応性を増し、す・ξ−ゼを失活させてしまうの−t”
pH4,5〜6.5付近に調整し、温度を25℃以下に
保ち10〜20分程度の短時間に処理した方が良い。ま
た反応後は亜硫酸水素ナトリウムなどで余分のゲルター
ルアルデヒドを取シ除いておく。Regarding the adhesive bonding method of the present invention, since lipase is usually an acidic protein, it easily binds to the anion exchange carrier through an ionic bond. In addition, when a hydrophobic carrier having an anion exchange group is used, it is strongly bound by ionic bonds and hydrophobic bonds. Furthermore, when those bound by ionic bonds and hydrophobic bonds are treated with geltaraldehyde or cal-2-diimide, the bonds become even stronger. In the case of geltaraldehyde treatment, when -H is 7 or more, geltaraldehyde becomes
It increases reactivity and deactivates S-ξ-ze.”
It is better to adjust the pH to around 4.5 to 6.5, keep the temperature below 25°C, and process for a short time of about 10 to 20 minutes. After the reaction, remove excess geltaraldehyde with sodium bisulfite or the like.
以上の操作はカラムに充填した担体に適当量のリパーゼ
溶液を流しイオン結合及び疎水性結合で吸着させた後、
pI(及び温度を調整し適当に希釈したゲルタールアル
デヒド溶液を流し、続いて亜硫酸水素ナトリウム溶液を
流すことによシ固定化酵素カラムの調製が容易であるの
で工業的に有利な結合法である。上記の如く陰イオン交
換基をリパーゼ蛋白金結合するための官能基とすると、
陰イオン交換基のプロトンを排除してプロトンによる生
産物阻害効果を除く作用を弱めることも考えられるので
、陰イオン交換基を保護して別の官能基を介してす・ク
ーゼを結合させれば本発明の効果はより一層増大される
のでそのような結合法をとってもなんらさしつかえない
。The above operation is carried out after pouring an appropriate amount of lipase solution onto the carrier packed in the column and adsorbing it through ionic and hydrophobic bonds.
This is an industrially advantageous binding method because it is easy to prepare an immobilized enzyme column by adjusting the pI (and temperature) and flowing an appropriately diluted gel taraldehyde solution, followed by flowing a sodium bisulfite solution. As mentioned above, if the anion exchange group is used as a functional group for binding lipase protein to gold,
It is also possible to remove the protons from the anion exchange group and weaken the effect of protons to remove the product-inhibiting effect. Therefore, if the anion exchange group is protected and So-Kuse is bound to it via another functional group, Since the effects of the present invention are further enhanced, there is no problem with such a combination method.
本発明における脂質の酵素分解における反応条件のpH
や温度については固定化されたり/e−ゼの反応に最適
なpHや温度付近が用いられる。最適のpHや温度でガ
くても目的の分解率が得られるならば、それを用いても
さしつかえない。また必要ならば、金属イオンや、血清
アルブミン等を加えてもなんらさしつかえない。pH of reaction conditions in enzymatic decomposition of lipids in the present invention
Regarding the pH and temperature, the optimum pH and temperature for the immobilized/e-se reaction are used. If the desired decomposition rate can be obtained even if the pH and temperature are optimum, there is no problem in using it. Furthermore, if necessary, metal ions, serum albumin, etc. may be added.
本発明に用いる脂質としては、リノξ−ゼの基質になる
各種のグリセライドやエステルなどがあげられる。リパ
ーゼが作用するものであれば、いずれのものを用いても
さしつかえない。Examples of the lipids used in the present invention include various glycerides and esters that serve as substrates for linose ξ-ase. Any lipase can be used as long as it acts on lipase.
本発明に用いる反応液中のり・ぞ−ゼの基質濃度は、5
0〜94%が選はれる。50%以下の基質濃度にしても
、最終分解率は上がらず、反応槽の規模を小さく[7た
シ、反応後水層に得られるグリセリンやアルコールの回
収のエネルギーを少くするためには、この濃度以上で反
応させる方が有利である。また加水分解反応の化学量論
的な水分含量であるトリグリセライド1分子に対して水
3分子の基質濃度は牛脂などの長鎖のトリグリセライド
の場合94裂程度であるが、基質濃度が94チにガつて
も比較的高い分解率を達成することが出来名。The substrate concentration of glue-zoase in the reaction solution used in the present invention is 5
0-94% will be selected. Even if the substrate concentration is lower than 50%, the final decomposition rate does not increase, and the size of the reaction tank must be reduced [7. It is more advantageous to react at a concentration higher than that. In addition, the substrate concentration of 3 molecules of water per 1 molecule of triglyceride, which is the stoichiometric water content of the hydrolysis reaction, is about 94 molecules for long-chain triglycerides such as beef tallow; However, it is possible to achieve a relatively high decomposition rate.
本発明の基質濃度とは基質となるエステル結合を含む物
質と水分の重量和に対するエステル結合を含む物質の重
量パーセントをいう。工業的に脂肪酸をつくる場合油脂
分解を終った後に油分と水(グリセリンを言むせ水)を
分離し、油分は液体脂肪酸と固体脂肪酸に分けて後の精
製に供するが、この液体脂肪酸の中には、オレイン酸や
リノール酸等の他、未分解のトリグリセライドが残って
いることがある。すなわち粗製脂肪酸中に含まれる8チ
程度のグリセライドを分解する時などは粗製脂肪酸中に
わずかに含まれる水分で充分加水分解出来るので、粗製
脂肪酸をそのまま固定化リノクーゼと反応させれば混在
するトリグリセライドを取シ除くことも可能である。In the present invention, the substrate concentration refers to the weight percent of the substance containing an ester bond to the sum of the weights of the substance containing an ester bond and water, which serve as a substrate. When producing fatty acids industrially, after oil and fat decomposition are completed, oil and water (or glycerin) are separated, and the oil is divided into liquid fatty acids and solid fatty acids for later refining. In addition to oleic acid, linoleic acid, etc., undecomposed triglycerides may remain. In other words, when decomposing about 8 grams of glyceride contained in crude fatty acids, the small amount of water contained in the crude fatty acids can be sufficient to hydrolyze it, so if the crude fatty acids are reacted as they are with immobilized linocuse, the triglycerides present can be removed. It is also possible to remove it.
本発明に用W1反応槽としては、固定化リノソーゼと反
応液とを混ぜて混合する・々ツチ式のものと固定化リノ
ソーゼをカラムにつめた連続式のものとが考えられる。As the W1 reaction tank for use in the present invention, there are two types: a one-shot type in which the immobilized linosose and the reaction solution are mixed together, and a continuous type in which the immobilized linosose is packed in a column.
ノ2ツチ式、カラム式ともに、固定化リノに一ゼの回収
が容易で、生産物の精倉舗段階でのり・ぐ−ゼ蛋白の除
去の必要がなく、回収した酵素を反復使用出来る利点を
有する。カラム式は更に反応中に空気に接触することが
少ないので不飽和脂肪酸が空気酸化され々いことや、連
続化が可能であるので現在性なわれている高圧連続分解
工程に組み込み易いなどの利点を有する。Both the No2Tsuchi method and the column method have the advantage that it is easy to recover the immobilized enzyme, there is no need to remove glue/glue proteins at the final stage of the product, and the recovered enzyme can be used repeatedly. has. The column type has further advantages such as less contact with air during the reaction, so unsaturated fatty acids are less likely to be oxidized in the air, and because it can be continuous, it can be easily incorporated into the currently available high-pressure continuous cracking process. has.
本発明によって反応液中の水分言置が著しく少ない量で
油脂やエステルを高分解率にまで分解することが可能と
女っだ。このことは反応後に得られたグリセリンやアル
コールを蒸留によυ回収する際のエネルギーを少なくす
る他、大量の油脂を分解する際の反応槽の規模を小さく
する等工業的な油脂分解過程にもたらす効果は大きい。According to the present invention, it is possible to decompose fats and oils and esters to a high decomposition rate with a significantly reduced amount of water in the reaction solution. This not only reduces the energy required to recover the glycerin and alcohol obtained after the reaction by distillation, but also reduces the size of the reaction tank when decomposing large amounts of fats and oils. The effect is great.
しかも固定化リノξ−ゼカラムを用いることによシ運絖
反応が可能になることや不飽和脂肪酸の空気酸化を防げ
る等の効果がある。しかも固定化酵素カラムの調製や再
生も容易である等、工業的な油脂の酵素分解法として優
れた方法である。Furthermore, the use of the immobilized ξ-ze column makes it possible to carry out the cell reaction and prevents air oxidation of unsaturated fatty acids. Moreover, it is an excellent method for industrial enzymatic decomposition of fats and oils, as it is easy to prepare and regenerate the immobilized enzyme column.
しぎに実施例によって、本発明を更に詳細に説明すiる
。Next, the present invention will be explained in more detail with reference to Examples.
実施例
1y−のダウエックスMWA−1(総交換容量1.2M
eヤJJ上/ mlのポリスチレン鎖をジビニルベンゼ
ンで架橋した母体を持つ第三級アミ/を交換基とするマ
クロビーラスタイゾの弱塩基性陰イオン交換樹脂、ダウ
・ケミカル社製)を蒸留水及びM/15のマツクイルベ
イン緩衝液p H5,0で洗浄後、50μtのリノξ−
ゼ液(1450単位)及び1rノのマツクイルベイ/緩
衝液を加え、8℃で1夜振とうした。次に1−のマツク
イルベイン緩衝液、80μtの25%ゲルタールアルデ
ハイド溶液を加え、8℃で10分間振とうし、ダウエッ
クスMWA−1に結合させた。最後に20%の亜硫酸水
素ナトリウムを0.2−加え、8℃で10分間振とうし
、余分のグルタールアルデノ)イドを除いた後、水や緩
衝液で良く洗浄してダウエックスMWA−1固定化リパ
ーゼを得た。ここで用いたリノ?−ゼ量は固定化リパー
ゼの活性発足に光分な量でしかも高基質′濃度妊で最終
分解率を悪くしない量である。Example 1y-Dowex MWA-1 (total exchange capacity 1.2M
Eya JJ / mL of Macrovira Styzo's weakly basic anion exchange resin (manufactured by Dow Chemical Company) with a tertiary amine/exchange group having a parent body made of polystyrene chains crosslinked with divinylbenzene (manufactured by Dow Chemical Company) was mixed with distilled water. After washing with M/15 pine quilvain buffer pH 5,0, 50 μt of Rhinoξ-
A solution (1450 units) and 1 r of Matsukuil Bay/buffer were added, and the mixture was shaken at 8°C overnight. Next, 1-Matsuki Irbain buffer solution and 80 μt of 25% geltal aldehyde solution were added, and the mixture was shaken at 8° C. for 10 minutes to bind to DOWEX MWA-1. Finally, add 20% sodium hydrogen sulfite and shake for 10 minutes at 8°C to remove excess glutaraldenoid, wash thoroughly with water and buffer, and use DOWEX MWA- 1 immobilized lipase was obtained. The lino used here? The amount of enzyme is sufficient to activate the activity of the immobilized lipase, and is also an amount that does not impair the final decomposition rate at high substrate concentrations.
1?のダウエックスWGR(総変換容量1.6Me−奴
1エピクロロヒドリンとアンモニアとの縮合体でポリア
ミンを交換基とするゲルタイプの弱塩基性陰イオン交換
樹脂、ダウ・ケミカル社製)を上記と同様に処理して、
無機イオンを多く通すように極めて細かな細孔を多数持
つように合成されfcゲルタイゾの陰イオン交換樹脂に
固定化したす・ソーゼを得た。1? DOWEX WGR (total conversion capacity: 1.6Me-1, a gel-type weakly basic anion exchange resin containing polyamine as an exchange group, a condensate of epichlorohydrin and ammonia, manufactured by Dow Chemical Co.) as described above. Process in the same way as
Su/sose was synthesized to have a large number of extremely fine pores to allow a large number of inorganic ions to pass through, and was immobilized on an anion exchange resin of FC GEL TYSO.
し、?チットCNP80(総交換容i 4.7 M e
g/ mlのアクリルを母体とし、カルボン酸を交換
基とするマクロポーラス型の弱酸性陽イオン交換樹脂。death,? Chit CNP80 (total exchange capacity i 4.7 M e
Macroporous weakly acidic cation exchange resin with acrylic base and carboxylic acid exchange group.
)々イニル社製)を1.P、1−シクロヘキシル−3−
(2−モルホリノエチル)−カルゼジイミド・p−)ル
エンメトスルホン酸lt下cMcとKt)を50 m9
*水10−を加え、6NHCtでpHを4〜5に保ち
ながら、室温で反応を続け、pHが安定したところで過
剰のCMCをよく洗い去る。次に1715Mマツクイル
ペイン緩衝液pH4を2−250μ、/= のり・ぐ−
ゼ液(1450単位)を加え、冷室中で一夜反応させて
、レノ々チツ)CNP80固定化リ固定化イノ得た。) manufactured by Inil Co., Ltd.) 1. P, 1-cyclohexyl-3-
(2-morpholinoethyl)-calcediimide p-)luenemethosulfonic acid (cMc and Kt) under 50 m9
* Add 10 - of water and continue the reaction at room temperature while keeping the pH at 4-5 with 6N HCl. When the pH stabilizes, excess CMC is thoroughly washed away. Next, add 1715M pine quill pain buffer pH 4 to 2-250μ, /= Nori・G-
A solution of CNP80 (1450 units) was added thereto, and the mixture was allowed to react overnight in a cold room to obtain CNP80-immobilized CNP80.
リパーゼ活性は、3.141のトリブチリン、35−の
2%ポリビニールアルコール(倉敷ボッセール117)
溶液、40m1の0.1 M燐酸緩衝液pH7、12−
の水を混ぜ10分間超音波処理して調製したトリブチリ
ンエマルジョン91nl、酵素懸濁液1zとを混合し、
60℃、20分間振とうしながら反応させた。メタノー
ル・アセトンの1:1混液を入れて反応を止め、生じた
脂肪酸を0.05NNaOHで滴定して活性を測定した
。上記の条件により1分間に1マイクロ当量の酸を遊離
する量を1単位とした。Lipase activity was 3.141 tributyrin, 35-2% polyvinyl alcohol (Kurashiki Bosser 117)
Solution, 40 ml of 0.1 M phosphate buffer pH 7, 12-
Mix 91 nl of tributyrin emulsion prepared by mixing with water and sonicating for 10 minutes and 1z of enzyme suspension,
The reaction was carried out at 60°C for 20 minutes with shaking. A 1:1 mixture of methanol and acetone was added to stop the reaction, and the resulting fatty acid was titrated with 0.05N NaOH to measure its activity. The amount of acid released in 1 minute under the above conditions was defined as 1 unit.
・ぐ−ゼを硫安塩析、透析、クロロホルムによる繞′脂
等を行つfC後凍結乾燥したものを用いた。- Guze was used after being freeze-dried after fC, which includes ammonium sulfate salting out, dialysis, and dialysis with chloroform.
100ゴの三角フラスコに、牛脂と0.1 M燐酸緩衝
液pH7,0とで、各種の基質濃度の反応液をっ<シ、
良く水分を除いた固定化リパーゼを加え、60℃で毎分
178回振とうしながら160〜200時間反応させた
後の分解率(最終分解率)を酸化第1表は高基質濃度で
の油脂の最終分解率は、IJ A−ゼを結合させた担体
表面に第三級アミンや?リアミン等の陰イオン交換基が
存在するもの(ダウエックスMWA−1やダウエックス
WGRを固定化担体としたもの)の方が陽イオン交換基
であるカルボン酸が存在するもの(し/々チットCNP
80を固定化担体としたもの)よシ良いことが解る。In a 100-inch Erlenmeyer flask, add reaction solutions of various substrate concentrations of beef tallow and 0.1 M phosphate buffer pH 7.0.
Add immobilized lipase that has been well removed from water and react at 60°C for 160 to 200 hours with shaking 178 times per minute. Table 1 shows the degradation rate (final degradation rate). The final decomposition rate of tertiary amine or ? Those with anion exchange groups such as reaamine (DOWEX MWA-1 and DOWEX WGR as immobilized carriers) are better than those with carboxylic acid, which is a cation exchange group (Shi/NichitCNP).
80 as an immobilization carrier).
また陰イオン変換基が存在する担体表面で、リノクーゼ
が結合する箇所が細孔内にまで及ぶマクロポーラスの陰
イオン交換樹脂に固定化したリノξ−ゼによると高基質
濃度での分解率が特に良いことを示している。In addition, the decomposition rate is particularly high at high substrate concentrations when rhinoξ-ase is immobilized on a macroporous anion-exchange resin that extends into the pores of the carrier surface where rhino-converting groups are present. It shows good things.
実施例2
ポーラスグラス(CPGO(1500,平均糺孔半径5
15人1粒子サイズ120−200 メツシュ、エレ
クトロヌクレオニクス社製)を500℃で2時間活性化
後、アセトン中に2%のシランカップリング剤(3−ア
ミノプロピルトリエトキシシラン)の溶液中に入れ、逆
流冷却管をつけて50℃で20時間おくと、末端に第1
級アミン基を有する陰イオン交換体を得る。この陰イオ
ン交換体に実施例1のダウエックスMWA−1で示した
と同様の操作でアミノアルキルCPG固足化IJ A−
ゼを得た。Example 2 Porous glass (CPGO (1500, average hole radius 5
15 people 1 particle size 120-200 mesh (manufactured by Electronucleonics) was activated at 500°C for 2 hours and then placed in a solution of 2% silane coupling agent (3-aminopropyltriethoxysilane) in acetone. If you attach a backflow cooling pipe and leave it at 50℃ for 20 hours, the first layer will appear at the end.
An anion exchanger having primary amine groups is obtained. Aminoalkyl CPG-immobilized IJA-
I got ze.
カルゼキシアルキルCPG (平均細孔半径547人。Calzexialkyl CPG (average pore radius 547 people.
粒子サイノ20−80メツシュの末端にカルブキシル基
を有するポーラスグラス エレクトロヌクレオニクス社
製)を実施例1のレノ々チツ) CNP80テ示り、
タト同様の操作でカル?キシアルキルCPG固定化すノ
ξ−ゼを得た。A porous glass having a carboxyl group at the end of the Particle Cyno 20-80 mesh (manufactured by Electronucleonics Co., Ltd.) was mixed with the resin of Example 1) as CNP80.
Cal with the same operation as Tato? A xyalkyl CPG-immobilized nose ξ-ase was obtained.
5?のトヨ・ξ−ルHW60(東洋1達製、親水性のビ
ニルポリマー)を5−の60’%NaOH,12,5m
のエピクロルヒドリンを加え、50℃で2時間振とう後
、500−の蒸留水で洗浄し、エポキシトヨA−ルヲ得
り。エポキシトヨ、o−ルに12?(7)へキサメチレ
ンジアミンを加え、1M苛性ソーダ液2−とともにgo
’cで2時間振とうし、反応後アセトンで洗浄して末端
基に第1級アミン基を有するアミノ化トヨノξ−ルを得
た。アミノアルキルトヨ、e−ルに実施例1のダウエッ
クスMWA−1で示したと同様の操作でアミノアルキル
トヨ・ξ−ル固定化り・ぞ−ゼを得た。5? Toyo ξ-L HW60 (manufactured by Toyo Ichida, hydrophilic vinyl polymer) was mixed with 5-60'% NaOH, 12.5 m
of epichlorohydrin was added, and after shaking at 50°C for 2 hours, the mixture was washed with 500°C of distilled water to obtain epoxy toyo A-ru. Epoxy toyo, 12 in o-le? (7) Add hexamethylene diamine and go with 1M caustic soda solution 2-
After the reaction, the mixture was shaken for 2 hours at C.c. and washed with acetone to obtain an aminated toyonol having a primary amine group at the terminal group. An aminoalkyl toyo ξ-ol-immobilized resin was obtained in the same manner as shown for Dowex MWA-1 in Example 1.
各固定化す、e−ゼについて、実施例1で示したと同様
の操作で、最終分解率を求めた。For each immobilized enzyme, the final decomposition rate was determined in the same manner as in Example 1.
第2表は、高基質濃度での油脂の最終分解率はす”FR
−ゼを結合させた担体表面にカルゼキシル基纂存在する
ものよジアミノ基が存在するものの方が良いを示す。ま
た担体表面にアミノ基が存在し、担体自身が疎水性のも
のの方が更に良いことを示す。Table 2 shows the final decomposition rate of fats and oils at high substrate concentrations.
This shows that it is better to have a diamino group present on the surface of the carrier to which -ze is bound than a carzexyl group chain. It is also shown that it is better to have an amino group on the surface of the carrier and to make the carrier itself hydrophobic.
実施例3
各種のマクロポーラスの陰イオン交換樹脂に実施例1の
ダウエックスMWA−1に示したと同様の方法で固定化
したり7e−ゼを用いて最終分解率を比較した。これら
の陰イオン交換樹脂はマクロポーラスな細孔表面に多く
の陰イオン交換基を有するものである。Example 3 Immobilization was performed on various macroporous anion exchange resins in the same manner as shown for DOWEX MWA-1 in Example 1, and the final decomposition rates were compared using 7e-ase. These anion exchange resins have many anion exchange groups on the surface of macroporous pores.
第3表は、マクロポーラスタイプの各種の陰イオン交換
体、陰イオン交換タイプのキレート樹脂(ダイア・fオ
ンCR20)に、適当量のり・ξ−ゼを結合させた固定
化リパーゼを用いると、す・ぐ−ゼを結合させた担体表
面に陰イオン交換基が存在するので、高基質濃度での油
脂の分解率が良いことを示す。Table 3 shows that when immobilized lipase combined with an appropriate amount of glue and ξ-ase is used with various macroporous type anion exchangers and anion exchange type chelate resin (Dia f-on CR20), This indicates that the decomposition rate of fats and oils is good at high substrate concentrations due to the presence of anion exchange groups on the surface of the carrier to which Su-Guze is bound.
実施例4
実施例1と同様にして調製したダウエックスMWA−1
固定化す、a−ゼを良く乾燥し、牛脂と一終一分解率を
比較した。対照として固定化する際に第4表は、可溶性
リパーゼによると、高基質濃度での最終分解率が著しく
減少するのに対し、す・ぐ−ゼを結合させた担体表面に
陰イオン交換基がノ1.在づるよりに調製した固定化リ
パーゼを用いる示す。Example 4 DOWEX MWA-1 prepared in the same manner as Example 1
The immobilized a-ze was thoroughly dried and the final and final decomposition rate was compared with that of beef tallow. When immobilized as a control, Table 4 shows that when using soluble lipase, the final decomposition rate was significantly reduced at high substrate concentrations, whereas when anion exchange groups were attached to the surface of the carrier to which Suguse was attached, No. 1. We demonstrate the use of locally prepared immobilized lipase.
Claims (1)
体表面に陰イオン交換基が存在する固定化リパーゼを用
いて、リノぞ−ゼの基質濃度を50〜94チの範囲内で
分解することを特徴とする脂質の酵素分解方法When enzymatically decomposing lipids, it uses an immobilized lipase that has an anion exchange group on the surface of the carrier to which lipase is bound, and is characterized by decomposing the substrate concentration of linose within the range of 50 to 94 cm. Enzymatic decomposition method for lipids
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58053285A JPS59179091A (en) | 1983-03-29 | 1983-03-29 | Enzymatic hydrolysis of lipid |
US07/912,655 US5292649A (en) | 1983-03-29 | 1992-07-09 | Method for reaction of lipase upon fatty acid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58053285A JPS59179091A (en) | 1983-03-29 | 1983-03-29 | Enzymatic hydrolysis of lipid |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1054646A Division JPH01273588A (en) | 1989-03-07 | 1989-03-07 | Immobilized lipase |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59179091A true JPS59179091A (en) | 1984-10-11 |
JPS6318476B2 JPS6318476B2 (en) | 1988-04-19 |
Family
ID=12938453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58053285A Granted JPS59179091A (en) | 1983-03-29 | 1983-03-29 | Enzymatic hydrolysis of lipid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59179091A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292282A (en) * | 1988-09-28 | 1990-04-03 | Agency Of Ind Science & Technol | Solidified lipase using fine powder carrier |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5476892A (en) * | 1977-11-29 | 1979-06-19 | Agency Of Ind Science & Technol | Immobilization of lipase |
JPS5650554A (en) * | 1979-10-02 | 1981-05-07 | Mitsubishi Electric Corp | Semiconductor memory |
JPS5650833A (en) * | 1979-10-02 | 1981-05-08 | Kanto Seiki Kk | Impact absorbing panel for car and manufacture thereof |
-
1983
- 1983-03-29 JP JP58053285A patent/JPS59179091A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5476892A (en) * | 1977-11-29 | 1979-06-19 | Agency Of Ind Science & Technol | Immobilization of lipase |
JPS5650554A (en) * | 1979-10-02 | 1981-05-07 | Mitsubishi Electric Corp | Semiconductor memory |
JPS5650833A (en) * | 1979-10-02 | 1981-05-08 | Kanto Seiki Kk | Impact absorbing panel for car and manufacture thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0292282A (en) * | 1988-09-28 | 1990-04-03 | Agency Of Ind Science & Technol | Solidified lipase using fine powder carrier |
Also Published As
Publication number | Publication date |
---|---|
JPS6318476B2 (en) | 1988-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA3082668C (en) | Plant fiber-based intelligent adsorptive material with multi-adsorption sites and preparation method and use thereof | |
EP0565978B1 (en) | Activated carriers, their fabrication and use | |
US4839419A (en) | Method for immobilizing dissolved proteins | |
Urbano et al. | Polymer supports for the removal and degradation of hazardous organic pollutants: an overview | |
CN109939649A (en) | A kind of preparation method of chitosan magnetic-sodium alginate gel ball | |
Ashjari et al. | Selective concentration of eicosapentaenoic acid and docosahexaenoic acid from fish oil with immobilized/stabilized preparations of Rhizopus oryzae lipase | |
MXPA00012167A (en) | Process for preparing monodisperse crosslinked bead polymers. | |
JP2008208368A (en) | Monodispersed weak acidic cation exchanger | |
JPS6219835B2 (en) | ||
JPS59179091A (en) | Enzymatic hydrolysis of lipid | |
WO2024002326A1 (en) | Preparation method for and use of double-enzyme-inorganic hybrid nanoflower microspheres | |
JPS59183691A (en) | Preparation of immobilized lipase | |
JPH01273588A (en) | Immobilized lipase | |
JPS5920357B2 (en) | Enzymatic decomposition of lipids | |
Cui et al. | Immobilization of lipase onto N‐succinyl‐chitosan beads and its application in the enrichment of polyunsaturated fatty acids in fish oil | |
JPS584914B2 (en) | Support matrix for enzyme immobilization | |
CN113231049B (en) | Cross-linked agarose affinity medium, and preparation method and application thereof | |
JP2711625B2 (en) | Hydrous granular carrier for biological treatment equipment and method for producing the same | |
JPS6058086A (en) | Production of ester | |
KR20110034116A (en) | The improvement method for selectivity and productivity of fatty acid replacement in phospholipids by immobilized phospholipase a2 | |
JP2595004B2 (en) | Enzyme-immobilizing carrier, its enzyme-immobilizing method and enzyme desorbing method | |
CN106591274B (en) | Immobilized nuclease P1, and preparation method and application thereof | |
Herdan et al. | Enantioselective hydrolysis of racemic esters using pig liver esterase | |
JPH02138975A (en) | Production of immobilized lipase | |
CN109852660B (en) | Process for preparing cefadroxil |