JPH02138975A - Production of immobilized lipase - Google Patents

Production of immobilized lipase

Info

Publication number
JPH02138975A
JPH02138975A JP29315388A JP29315388A JPH02138975A JP H02138975 A JPH02138975 A JP H02138975A JP 29315388 A JP29315388 A JP 29315388A JP 29315388 A JP29315388 A JP 29315388A JP H02138975 A JPH02138975 A JP H02138975A
Authority
JP
Japan
Prior art keywords
lipase
immobilized
anion exchanger
immobilized lipase
polar solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29315388A
Other languages
Japanese (ja)
Other versions
JPH0417633B2 (en
Inventor
Yoshiji Kosugi
佳次 小杉
Hideoki Tanaka
田中 秀興
Masaru Shiraki
白木 勝
Katsuo Takahashi
克夫 高橋
Isao Maeda
前田 庸
Koichi Shimotomai
下斗米 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAKUTOU KASEI KOGYO KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
RAKUTOU KASEI KOGYO KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAKUTOU KASEI KOGYO KK, Agency of Industrial Science and Technology filed Critical RAKUTOU KASEI KOGYO KK
Priority to JP29315388A priority Critical patent/JPH02138975A/en
Publication of JPH02138975A publication Critical patent/JPH02138975A/en
Publication of JPH0417633B2 publication Critical patent/JPH0417633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To prepare a large amount of a highly active immobilized lipase by bringing a solution, regulated to >=0.1 ionic strength and containing 40-70vol.% water-miscible polar solvent added thereto into contact with an anion exchanger. CONSTITUTION:A lipase enzymic solution, regulated to <=0.1 ionic strength and containing 40-70vol.% water-miscible polar solvent added thereto is prepared. The resultant lipase enzymic solution is then passed through an anion exchanger to adsorb lipase and prepare an immobilized lipase. After adsorbing the lipase on the anion exchanger, treatment with a polyvalent reaction reagent is preferably carried out to further enhance the immobilization ratio of the lipase. An anion exchanger obtained by introducing as many anionic groups as possible into a hydrophobic substrate, such as a copolymer of polystyrene and divinylbenzene, is preferred as a carrier for the immobilized lipase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固定化リパーゼの製造方法、詳しくは陰イオン
交換体にリパーゼを吸着させて固定化リパーゼを調製す
るにあたり、その固定化率を高め高活性の固定化リパー
ゼを大量生産するに有効な固定化リパーゼの製造方法に
関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing immobilized lipase, and more specifically, to improve the immobilization rate when preparing immobilized lipase by adsorbing lipase to an anion exchanger. The present invention relates to a method for producing immobilized lipase that is effective for mass-producing highly active immobilized lipase.

この固定化リパーゼは、これを使用すればエステル分解
、エステル交換、エステル合成、ラセミ体の光学分割等
を行うことができると共に、酵素利用工業、油脂工業1
食品工業、医薬品工業などの分野に広く応用できるもの
である。
This immobilized lipase can be used to perform ester decomposition, transesterification, ester synthesis, optical resolution of racemates, etc., as well as enzyme utilization industry, oil and fat industry.
It can be widely applied to fields such as the food industry and the pharmaceutical industry.

(従来の技術) 近年、油脂の加水分解を始めとして酵素の利用が注目さ
れており、特に工業的に人手が容易であり、油脂分解力
が高いことからリパーゼが広く用いられている。しかし
遊離のリパーゼでは長期間の繰り返し使用に難があり、
またカラムを用いた連続反応に使用することができない
ため、工業的利用を進めるには経済的観点からもリパー
ゼを固定化する必要があり、その技術開発が求められて
いる。
(Prior Art) In recent years, the use of enzymes for hydrolyzing fats and oils has attracted attention, and in particular, lipase has been widely used because it is industrially easy to use and has a high ability to decompose fats and oils. However, free lipase is difficult to use repeatedly over a long period of time.
Moreover, since it cannot be used for continuous reactions using columns, it is necessary to immobilize lipase from an economical point of view in order to advance its industrial use, and the development of this technology is required.

ところで、リパーゼの一般的な固定化方法としては共有
結合法、包括法、吸着法など、種々の方法が知られてい
るが、なかでも工業的実施可能な方法としてイオン交換
樹脂による吸着法は着目され、幾つかの方法が提案され
て来た。例えば基体表面に陰イオン交換基が存在するよ
うに固定化する方法であり、この固定化リパーゼを用い
ると高濃度の脂肪酸存在下でも高活性が維持できること
が分かり、特開昭59−17909号(特公昭63−1
8476号)として提案された。
By the way, various methods are known as general immobilization methods for lipase, such as covalent bonding, entrapping, and adsorption methods, but among them, adsorption using ion exchange resins has attracted attention as an industrially viable method. Several methods have been proposed. For example, it is a method of immobilizing so that an anion exchange group is present on the surface of the substrate, and it was found that using this immobilized lipase, high activity could be maintained even in the presence of a high concentration of fatty acids. Special Public Service 1986-1
No. 8476).

そして、その後、ムコール由来のリパーゼを弱塩基性陰
イオン交換樹脂に吸着させる方法(特開昭60−989
84号公報参照)、活性水素を有しない塩基性イオン交
換樹脂のマクロポア内に多価アルデヒドを用いて固定化
する方法(特開昭60−30683号公報参照)、(特
開昭61−15690号公報参照)、アミノ基及びポリ
エーテル基を官能基として有する樹脂を用い、これに酵
素を吸着させ、さらに多官能性架橋剤で固定化すする方
法(特開昭62−155089号公報参照)及びカンジ
ダ層の酵母由来のリパーゼの固定化法(特開昭63−1
60583号公報参照)なども提案されて来た。
Then, a method of adsorbing mucor-derived lipase to a weakly basic anion exchange resin (Japanese Patent Application Laid-Open No. 60-989
84), a method of immobilizing polyvalent aldehyde within the macropores of a basic ion exchange resin that does not have active hydrogen (see JP-A-60-30683), (JP-A-61-15690) (see JP-A-62-155089), a method in which an enzyme is adsorbed onto a resin having an amino group and a polyether group as functional groups, and further immobilized with a polyfunctional crosslinking agent (see JP-A No. 155089/1989); Method for immobilizing lipase derived from yeast (Japanese Patent Application Laid-open No. 63-1
60583) have also been proposed.

また、リパーゼを固定化する際の方法として特開昭62
−179388号公報には疎水性微孔性ポリマーを極性
溶媒で予備湿潤し、リパーゼが固定化され6る速度を著
しく促進した例が報告されている。しかし、この例はイ
オン交換基の存在しない疎水性ポリマーに対する固定化
であり、固定化速度の改善効果のみしか得られなかった
In addition, as a method for immobilizing lipase, JP-A-62
JP-A-179388 reports an example in which a hydrophobic microporous polymer was pre-wetted with a polar solvent to significantly accelerate the rate at which lipase was immobilized. However, in this example, immobilization was performed on a hydrophobic polymer without an ion exchange group, and only the effect of improving the immobilization rate was obtained.

(発明が解決しようとする課題) ところで、特公昭63−1.8476号で開示された前
記提案に係る方法は、リパーゼの固定化にそれなりの効
果を有しているが、より高い活性の固定化リパーゼを大
量に製造するためには不充分であった。
(Problems to be Solved by the Invention) By the way, the method according to the proposal disclosed in Japanese Patent Publication No. 1.8476/1984 has a certain effect on immobilization of lipase, but it is difficult to immobilize lipase with higher activity. It was insufficient to produce a large amount of synthetic lipase.

ここで用いる固定化リパーゼを大量生産するためには高
度に精製したリパーゼが大量に必要となる。
In order to mass produce the immobilized lipase used here, a large amount of highly purified lipase is required.

また、陰イオン交換基が結合している高分子基体は疎水
性であるため、リパーゼ酵素溶液との混合がうまくゆか
なかった。
Furthermore, since the polymer substrate to which the anion exchange group is bonded is hydrophobic, it was difficult to mix it with the lipase enzyme solution.

即ち、固定化率を固定化に用いた酵素量に対する固定化
された量で表現すると、固定化率は固定化リパーゼの生
産量を増やす毎に悪くなり、また混合条件によって非常
にバラツキが大きくなる問題があった。
In other words, when the immobilization rate is expressed as the amount of immobilized enzyme relative to the amount of enzyme used for immobilization, the immobilization rate worsens as the production amount of immobilized lipase increases, and also varies greatly depending on the mixing conditions. There was a problem.

本発明はかかる問題に着目し、特にリパーゼ酵素溶液の
イオン強度、極性溶媒濃度などを特定することにより、
また更に吸着後の処理を見出すことによりリパーゼの固
定化率を上昇させ高活性の固定化リパーゼを大量に調製
可能ならしめることを目的とするものである。
The present invention focuses on such problems, and by specifically specifying the ionic strength, polar solvent concentration, etc. of the lipase enzyme solution,
Furthermore, it is an object of the present invention to increase the immobilization rate of lipase by finding a post-adsorption treatment, thereby making it possible to prepare a large amount of highly active immobilized lipase.

(課題を解決するための手段) 上記目的を達するため本発明においては陰イオン交換体
にリパーゼを吸着させて固定化リパーゼを調製するにあ
たり、リパーゼ酵素溶液をイオン強度0.1以下にする
と共に水に混和する極性溶媒を該溶液に対し40〜70
容量%加える。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, when preparing immobilized lipase by adsorbing lipase on an anion exchanger, the lipase enzyme solution is made to have an ionic strength of 0.1 or less, and water is Add a polar solvent miscible to the solution at a concentration of 40 to 70%.
Add volume%.

また、上記リパーゼ酵素溶液をイオン強度0.1以下に
すると共に水に混和する極性溶媒を該溶液に対し40〜
70容量%添加し吸着させた後、多価性反応試薬で処理
する。
In addition, the ionic strength of the lipase enzyme solution is adjusted to 0.1 or less, and a polar solvent that is miscible with water is added to the solution to
After adding and adsorbing 70% by volume, it is treated with a polyvalent reaction reagent.

ここで、上記本発明におけるリパーゼは微生物や高等動
植物で生産される酵素で、エステル結合に作用してエス
テル分解やエステル交換あるいはエステル合成作用を触
媒する生体高分子である。
Here, the lipase in the present invention is an enzyme produced by microorganisms and higher animals and plants, and is a biopolymer that acts on ester bonds to catalyze ester decomposition, transesterification, or ester synthesis.

上記の作用を有するものであれば、エステラーゼとかホ
スホリパーゼと呼ばれるものも包含する。
It also includes substances called esterases and phospholipases as long as they have the above-mentioned effects.

とくに牛脂などの高融点の油脂を分解する場合、耐熱性
にずくれ、脂質との親和性が良く、反応の起ち上がりが
早く、脂質を高分解率まで分解するシュードモナス・フ
ルオレッセンス由来のリパーゼは最も好適である。
In particular, when decomposing fats and oils with a high melting point such as beef tallow, lipase derived from Pseudomonas fluorescens is highly heat resistant, has good affinity with lipids, starts a reaction quickly, and decomposes lipids to a high rate. Most preferred.

本発明の固定化リパーゼの担体としては、ポリスチレン
とジビニルベンゼンの共重合体、アクリレートとジビニ
ルベンゼンの共重合体、フェノ−ル樹脂、アクリル樹脂
、エポキシ樹脂等の疎水性の基体にできるだけ多くの陰
イオン交換基を導入した陰イオン交換体を用いる。陰イ
オン交換体はリパーゼ結合面積を増加させるため、マク
ロポーラスな多孔性担体が望ましい。この場合、マクロ
ポーラス担体の細孔直径は用いるリパーゼ分子の10〜
100倍である102〜104オングストロームのもの
が用いられる。このような担体として具体的にはダウエ
ックスMWA−1(ダウケミカル社製)ダウエックス6
6(ダウケミカル社製)、ダイヤイオンwn−30(三
菱化成工業社製)などがあげられる。
The carrier for the immobilized lipase of the present invention is a hydrophobic substrate such as a copolymer of polystyrene and divinylbenzene, a copolymer of acrylate and divinylbenzene, a phenolic resin, an acrylic resin, or an epoxy resin. An anion exchanger into which an ion exchange group has been introduced is used. Since the anion exchanger increases the lipase binding area, a macroporous carrier is desirable. In this case, the pore diameter of the macroporous carrier is 10 to 10% of the lipase molecule used.
A thickness of 102 to 104 angstroms, which is 100 times larger, is used. Specific examples of such carriers include DOWEX MWA-1 (manufactured by Dow Chemical Company) and DOWEX 6.
6 (manufactured by Dow Chemical Company), and Diaion wn-30 (manufactured by Mitsubishi Chemical Industries, Ltd.).

又、用いる極性溶媒としては水に混和し、酵素を失活さ
せない極性溶媒であれば良く、具体的にはエタノール、
イソプロピルアルコール等があげられる。
The polar solvent used may be any polar solvent that is miscible with water and does not deactivate the enzyme, specifically ethanol,
Examples include isopropyl alcohol.

そして、固定化リパーゼの製造にあたっては、先ずイオ
ン強度0.1以下に脱塩したリパーゼ酵素溶液に水と混
和する極性溶媒を40〜70容量%加えて遠心等により
不純タンパクを除いた後、担体と接触させると、一般に
酸性タンパクであるリパーゼは陰イオン交換体にイオン
結合するほか、疎水性アミノ酸に冨むリパーゼタンパク
は疎水性担体と強固に疎水結合する。その後、未固定の
リパーゼを洗浄することにより、容易に固定化リパーゼ
を得ることができる。
To produce immobilized lipase, first add 40 to 70% by volume of a water-miscible polar solvent to a lipase enzyme solution that has been desalted to an ionic strength of 0.1 or less, remove impure proteins by centrifugation, etc. When brought into contact with the carrier, lipase, which is generally an acidic protein, forms an ionic bond with the anion exchanger, and lipase protein, which is rich in hydrophobic amino acids, forms a strong hydrophobic bond with the hydrophobic carrier. Thereafter, by washing the unimmobilized lipase, immobilized lipase can be easily obtained.

なお、より強固に固定化する場合にはグルタルアルデヒ
ド等の多価性反応試薬で処理する。しかし多価性反応試
薬は食品等に混入すると好ましくないので、反応終了後
、未反応の多価性反応試薬を還元剤等で完全に除去した
後、充分に水洗する。
In addition, in order to immobilize more firmly, treatment is performed with a polyvalent reaction reagent such as glutaraldehyde. However, since polyvalent reaction reagents are undesirable if mixed into foods, etc., after the reaction is complete, unreacted polyvalent reaction reagents are completely removed using a reducing agent, etc., and then thoroughly washed with water.

更に本リパーゼによる固定化量は、リパーゼ1分子に対
し1000個以上の陰イオン交換基が存在する様に結合
させる。実際にはできるだけ多くのイオン交換基を導入
した担体にリパーゼを吸着させる。リパーゼの吸着量を
増していくと未吸着のリパーゼも徐々に増加するが、あ
る量以上になると急に増大する。その量以下にリパーゼ
吸着量を押さえれば前記の目的を確実に達成することが
できる。
Furthermore, the amount of immobilization by this lipase is such that there are 1000 or more anion exchange groups per molecule of lipase. In reality, lipase is adsorbed onto a carrier into which as many ion exchange groups as possible are introduced. As the amount of adsorbed lipase increases, the amount of unadsorbed lipase gradually increases, but when the amount exceeds a certain level, it suddenly increases. If the amount of lipase adsorption is kept below that amount, the above objective can be reliably achieved.

(作用) 本発明はイオン強度を0.1以下に低下させて、担体と
リパーゼタンパクのイオン結合作用によりリパーゼが担
体に吸着するものである。イオン強度を0.1以上にす
ると、担体とリパーゼタンパクのイオン結合が弱まり、
リパーゼの吸着量も減少し、高活性の固定化リパーゼが
得られなくなる。
(Function) In the present invention, the ionic strength is lowered to 0.1 or less, and lipase is adsorbed to the carrier by the ionic bonding action between the carrier and lipase protein. When the ionic strength is set to 0.1 or more, the ionic bond between the carrier and lipase protein is weakened.
The amount of lipase adsorbed also decreases, making it impossible to obtain highly active immobilized lipase.

従って、0.1以下とすることにより高活性の固定化リ
パーゼを得る。
Therefore, a highly active immobilized lipase can be obtained by setting it to 0.1 or less.

又、本発明は極性溶媒を40〜70容量%リパーゼ酵素
溶液に加えることにより陰イオン交換体の基体である疎
水性のポリスチレン等がリパーゼ酵素溶液と混合吸着し
やすくなり、リパーゼタンパクと疎水性基体の疎水結合
は低下するにもかかわらず、固定化率が大幅に向上する
。その上、極性溶媒を40〜70容量%添加するとリパ
ーゼ以外の夾雑タンパクの除去が容易にできる。夾雑タ
ンパクを除去した酵素液より固定化を行えば、夾雑タン
パクが固定化担体に吸着する量が少なくなるためリパー
ゼタンパクの吸着量が増加し、高活性のりバーゼが得ら
れることになる。なお、極性溶媒が40%以下では夾雑
タンパクの除去が難しく、また極性溶媒が70%以上に
なると、極性溶媒の体積が増加することにより、リパー
ゼタンパク濃度が減少し、大量のリパーゼタンパクを固
定化担体に吸着させることが困難になり実用に適合しな
くなる。
Furthermore, in the present invention, by adding a polar solvent of 40 to 70% by volume to the lipase enzyme solution, hydrophobic polystyrene, etc., which is the base of the anion exchanger, can be easily mixed and adsorbed with the lipase enzyme solution, and the lipase protein and the hydrophobic base can be easily mixed and adsorbed. The immobilization rate is significantly improved despite the decrease in hydrophobic binding. Moreover, when 40 to 70% by volume of a polar solvent is added, contaminant proteins other than lipase can be easily removed. If immobilization is performed using an enzyme solution from which contaminant proteins have been removed, the amount of contaminant proteins adsorbed to the immobilization carrier will decrease, so the amount of lipase protein adsorbed will increase, and highly active gluebase will be obtained. In addition, if the polar solvent is less than 40%, it is difficult to remove contaminant proteins, and if the polar solvent is more than 70%, the lipase protein concentration decreases due to the increase in the volume of the polar solvent, and a large amount of lipase protein is immobilized. It becomes difficult to adsorb onto a carrier, making it unsuitable for practical use.

(実施例) 以下、更に本発明の実施例について説明する。(Example) Examples of the present invention will be further described below.

なお、実施例中におけるリパーゼ活性はNordらの変
法(山田浩−1大田安英、町田晴夫、日展化36巻86
0 (1962) )によって測定を行い、60°Cで
P)17.0で1分間に1マイクロ当量の酸を遊離する
酵素量を1単位とした。
In addition, the lipase activity in the examples was determined by the modified method of Nord et al.
(1962)), and the amount of enzyme that liberated 1 microequivalent of acid per minute at 60°C and P) 17.0 was defined as 1 unit.

又表中の固定化率は固定化前及び固定化後の酵用いたリ
パーゼ溶液は、シュウトモナス・フルオレッセンス・バ
イオタイプI −No、1021 (微工研菌寄第54
95号)の培養液上澄みを脱塩濃縮したものを用いた。
In addition, the immobilization rate in the table is based on the lipase solution used before immobilization and after immobilization.
No. 95) was used, which was obtained by desalting and concentrating the culture supernatant.

実施例1 シュウトモナス フルオレッセンス バイオタイプ■の
培養上澄み液を脱塩濃縮した液(以下pfCと略する)
を用いて、ダウエックス−66にリパーゼを固定化した
。固定化はpf−cに種々の濃度のエタノールを加え5
000PPMで20分遠心後上澄み40gを取りダウエ
ックス−66,10gに加え8°Cにて1夜しんとう処
理して固定化を行った。固定化後グルグルアルデヒド(
25%N、6g加え8°Cで10分しんとう後、20%
亜硫酸水素ナトリウム2g加え更に8°Cで10分しん
とう処理を行い、余分のグルタルアルデヒドを除いた後
、水で良く洗浄して固定化リパーゼを得た。
Example 1 Desalted and concentrated culture supernatant of Shutomonas fluorescens biotype (hereinafter abbreviated as pfC)
Lipase was immobilized on DOWEX-66 using For immobilization, various concentrations of ethanol were added to pf-c.
After centrifugation at 000 PPM for 20 minutes, 40 g of the supernatant was taken, added to 10 g of Dowex-66, and fixed at 8° C. overnight. After immobilization, gluculaldehyde (
Add 6g of 25% N, stir at 8°C for 10 minutes, then add 20%
After adding 2 g of sodium bisulfite and further stirring at 8°C for 10 minutes to remove excess glutaraldehyde, the mixture was thoroughly washed with water to obtain immobilized lipase.

示したようにエタノールを40%以上添力lする事に依
り固定化率が90%以上示した。
As shown, by adding 40% or more ethanol, the immobilization rate was 90% or more.

第1表 固定化処理結果−エタノール濃度の影響実施例
2 十分脱塩処理したpf −cに対してエタノールを5.
0%添加後遠心処理した上澄みに食塩を種々の濃度添加
してイオン強度Oから0.5の酵素溶液を調製した。前
法に従ってこの酵素溶液をダウエックス−66に固定化
した。
Table 1 Immobilization treatment results - Effect of ethanol concentration Example 2 5.5% of ethanol was added to pf-c that had been sufficiently desalted.
After adding 0% and centrifuging the supernatant, salt was added at various concentrations to prepare enzyme solutions with an ionic strength of 0 to 0.5. This enzyme solution was immobilized on Dowex-66 according to the previous method.

なお得られた固定化リパーゼを用いて油脂分解能を測定
した。
The fat and oil decomposition ability was measured using the obtained immobilized lipase.

すなわち固定化リパーゼ1gにオリーブオイルIg、水
1g加え60″Cで48時間反応後油脂加水分解率を測
定した。
That is, 1 g of immobilized lipase, 1 g of olive oil, and 1 g of water were added and reacted at 60''C for 48 hours, and then the oil/fat hydrolysis rate was measured.

油脂加水分解率(%)−(酸化/けん化価)X100よ
り油脂加水分解率を求めた。
The fat and oil hydrolysis rate was determined from the equation of fat and oil hydrolysis rate (%) - (oxidation/saponification value) x 100.

結果は第2表に示したようにイオン強度0から0.1の
酵素溶液を用いた場合は固定化率が95%以上であり、
油脂分解活性が高い固定化リパーゼが得られた。
As shown in Table 2, the immobilization rate was 95% or more when using an enzyme solution with an ionic strength of 0 to 0.1.
An immobilized lipase with high lipolytic activity was obtained.

第2表 固定化処理結果−イオン強度について実施例3 pf−cに(1)水、(2)メタノール、(3)エタノ
ール。
Table 2 Immobilization treatment results - ionic strength Example 3 PF-C: (1) water, (2) methanol, (3) ethanol.

(4)イソプロピルアルコール、(5)アセ1−ンを5
0%加え5000PPMで20分遠心後上澄み液を用い
てダウエックス−66に酵素を固定化した。結果を第3
表に示す。
(4) isopropyl alcohol, (5) ace1-one 5
After adding 0% and centrifuging at 5000 PPM for 20 minutes, the supernatant was used to immobilize the enzyme on DOWEX-66. 3rd result
Shown in the table.

第3表 固定化処理結果−溶媒処理について実施例4 pf−cに等容のエタノールを加え、混合液を400O
RPMで20分間遠心分離した。上澄み液800g (
330単位/g)にダウエックス−66,200gを加
え8°Cにて1夜浸透処理して固定化を行った。
Table 3 Immobilization treatment results - About solvent treatment Example 4 Add equal volume of ethanol to pf-c and mix the mixture at 400O
Centrifuged for 20 minutes at RPM. 800g of supernatant liquid (
330 units/g) was added with 200 g of Dowex-66, followed by infiltration treatment at 8°C overnight for immobilization.

固定化後グルタルアルデヒド(25%)32g加え8°
Cで10分しんとう処理を行い、余分のグルタルアルデ
ヒドを除いた後、水で良く洗浄して固定化リパーゼを得
た。
After fixation, add 32g of glutaraldehyde (25%) at 8°
After washing with C for 10 minutes to remove excess glutaraldehyde, the mixture was thoroughly washed with water to obtain immobilized lipase.

固定化率は82.7%で、油脂分解能は92.5%であ
った。
The immobilization rate was 82.7%, and the fat and oil decomposition ability was 92.5%.

この例により固定化リパーゼを大量調製しても高活性の
リパーゼかえられることが分かった。
This example shows that even if a large amount of immobilized lipase is prepared, highly active lipase can be obtained.

(発明の効果) 本発明は以上のように陰イオン交換体にリパーゼを吸着
させて固定化リパーゼを調製するにあたり、リパーゼ酵
素溶液のイオン強度を0.1以下に低下させ極性溶媒を
40〜70容量%加える方法であり、イオン強度を0.
1以下に低下させることにより担体とリパーゼタンパク
のイオン結合作用によりリパーゼが担体に吸着しリパー
ゼの吸着量を十分に確保することができると共に、極性
溶媒の所定量の添加により陰イオン交換体の基体である
疎水性樹脂がリパーゼ酵素溶液と混合吸着し易くなり、
リパーゼタンパクと疎水性基体の疎水結合は低下するに
かかわらず、固定化率を大幅に向上することができる。
(Effects of the Invention) As described above, in preparing immobilized lipase by adsorbing lipase to an anion exchanger, the present invention lowers the ionic strength of the lipase enzyme solution to 0.1 or less and reduces the polar solvent to 40-70%. This is a method of adding % by volume, and the ionic strength is 0.
By lowering the amount to 1 or less, lipase is adsorbed to the carrier by the ionic bonding action between the carrier and lipase protein, and a sufficient amount of lipase can be secured.Additionally, by adding a predetermined amount of polar solvent, the anion exchanger substrate can be The hydrophobic resin becomes easier to mix and adsorb with the lipase enzyme solution,
Although the hydrophobic bond between the lipase protein and the hydrophobic substrate is reduced, the immobilization rate can be significantly improved.

しかも、極性溶媒の添加によりリパーゼ以外の夾雑タン
パクの除去が容易にでき、夾雑タンパクの吸着量が減少
してより高活性のリパーゼが得られ、本発明方法は従来
法に比し固定化率の高い、しかも高活性の固定化リパー
ゼを大量に調製できる顕著な効果を奏する。
Moreover, by adding a polar solvent, contaminant proteins other than lipase can be easily removed, the amount of contaminant protein adsorbed is reduced, and lipase with higher activity can be obtained, and the method of the present invention has a higher immobilization rate than conventional methods. It has the remarkable effect of being able to prepare a large quantity of highly active immobilized lipase.

特に請求項2記載の如く多価性反応試薬で処理するとき
はより強固に固定化することができる。
In particular, when treated with a polyvalent reaction reagent as described in claim 2, more solid immobilization can be achieved.

また、上記得られた固定化リパーゼは安定で、長時間連
続使用しても高活性が維持でき、実用上極めて有利であ
る。
In addition, the immobilized lipase obtained above is stable and can maintain high activity even when used continuously for a long time, which is extremely advantageous in practice.

Claims (1)

【特許請求の範囲】 1、陰イオン交換体にリパーゼを吸着させて固定化リパ
ーゼを調製するにあたり、リパーゼ酵素溶液をイオン強
度0.1以下にすると共に、水に混和する極性溶媒を該
溶液に対し40〜70容量%添加することを特徴とする
固定化リパーゼの製造方法。 2、陰イオン交換体にリパーゼを吸着させて固定化リパ
ーゼを調製するにあたり、リパーゼ酵素溶液をイオン強
度0.1以下にすると共に、水に混和する極性溶媒を該
溶液に対し40〜70容量%加えて吸着させた後、多価
性反応試薬で処理することを特徴とする固定化リパーゼ
の製造方法。 3、陰イオン交換体の基体としてマクロポーラスな疎水
性樹脂を用いる請求項1又は請求項2記載の固定化リパ
ーゼの製造方法。 4、リパーゼ吸着量が陰イオン交換容量の1000分の
1以下である請求項1、請求項2又は請求項3記載の固
定化リパーゼの製造方法。
[Claims] 1. In preparing immobilized lipase by adsorbing lipase on an anion exchanger, the ionic strength of the lipase enzyme solution is reduced to 0.1 or less, and a water-miscible polar solvent is added to the solution. A method for producing immobilized lipase, which comprises adding 40 to 70% by volume of immobilized lipase. 2. When preparing immobilized lipase by adsorbing lipase on an anion exchanger, the ionic strength of the lipase enzyme solution is 0.1 or less, and the amount of a water-miscible polar solvent is 40 to 70% by volume based on the solution. A method for producing immobilized lipase, which comprises further adsorbing the lipase and then treating it with a polyvalent reaction reagent. 3. The method for producing immobilized lipase according to claim 1 or 2, wherein a macroporous hydrophobic resin is used as the substrate of the anion exchanger. 4. The method for producing immobilized lipase according to claim 1, claim 2, or claim 3, wherein the lipase adsorption amount is 1/1000 or less of the anion exchange capacity.
JP29315388A 1988-11-19 1988-11-19 Production of immobilized lipase Granted JPH02138975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29315388A JPH02138975A (en) 1988-11-19 1988-11-19 Production of immobilized lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29315388A JPH02138975A (en) 1988-11-19 1988-11-19 Production of immobilized lipase

Publications (2)

Publication Number Publication Date
JPH02138975A true JPH02138975A (en) 1990-05-28
JPH0417633B2 JPH0417633B2 (en) 1992-03-26

Family

ID=17791106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29315388A Granted JPH02138975A (en) 1988-11-19 1988-11-19 Production of immobilized lipase

Country Status (1)

Country Link
JP (1) JPH02138975A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793339A (en) * 1993-11-11 1998-08-11 Olympus Optical Co., Ltd. Visual display apparatus
JP2006158389A (en) * 2004-11-12 2006-06-22 Kao Corp Method for producing immobilized enzyme

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5793339A (en) * 1993-11-11 1998-08-11 Olympus Optical Co., Ltd. Visual display apparatus
JP2006158389A (en) * 2004-11-12 2006-06-22 Kao Corp Method for producing immobilized enzyme
JP4616755B2 (en) * 2004-11-12 2011-01-19 花王株式会社 Method for producing immobilized enzyme

Also Published As

Publication number Publication date
JPH0417633B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US5569594A (en) Transesterification with lipase immobilized on a polymer containing epoxy and tertiary amino groups
US6165758A (en) Purifying cephalosporin C acylase and regenerating a carrier immobilizing cephalosporin C acylase
JPS6219835B2 (en)
JPH02138975A (en) Production of immobilized lipase
JP2722600B2 (en) Fat / oil reforming method
FI101400B (en) Process for the preparation of carrier-bound enzymes
KR20110034116A (en) The improvement method for selectivity and productivity of fatty acid replacement in phospholipids by immobilized phospholipase a2
Ünal A study on the lipase-catalayzed esterification in organic solvent
JP3509124B2 (en) Method for transesterification of fats and oils using immobilized lipase
US4013512A (en) Method for adsorption and elution of lipid hydrolyzing enzymes
JP2778135B2 (en) Preparation method of lipase-immobilized enzyme preparation
JPS5920357B2 (en) Enzymatic decomposition of lipids
JP3025947B2 (en) Method for producing dry immobilized lipase carrier
JPS62166895A (en) Production of fatty acid ester
JPS63214184A (en) Immobilized enzyme and production thereof
Herdan et al. Enantioselective hydrolysis of racemic esters using pig liver esterase
KR101153396B1 (en) Methods for immobilizing lipase on carrier using buffer mixed system
Khasanov et al. State of fungal lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in border layers water—solid phase and factors affecting catalytic properties of Enzymes
JP2004065153A (en) Method for producing immobilized enzyme
JPH049516B2 (en)
JPH0710231B2 (en) Immobilized enzyme and ester synthesis method using immobilized enzyme
SU1472505A1 (en) Method of immobilizing enzymes
JPH06327475A (en) Preparation of immobilized enzyme
KR950010816B1 (en) Immobilization of lipase
JPH06327486A (en) Method for transesterification using immobilized enzyme