JPH0412716B2 - - Google Patents

Info

Publication number
JPH0412716B2
JPH0412716B2 JP62239982A JP23998287A JPH0412716B2 JP H0412716 B2 JPH0412716 B2 JP H0412716B2 JP 62239982 A JP62239982 A JP 62239982A JP 23998287 A JP23998287 A JP 23998287A JP H0412716 B2 JPH0412716 B2 JP H0412716B2
Authority
JP
Japan
Prior art keywords
lipase
carrier
pore diameter
immobilized
average pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62239982A
Other languages
Japanese (ja)
Other versions
JPS6485089A (en
Inventor
Tomiaki Yamada
Katsuaki Oosato
Yasuhisa Osada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUHIN SANGYO BAIORIAKUTAA SHISUTEMU GIJUTSU KENKYU KUMIAI
Original Assignee
SHOKUHIN SANGYO BAIORIAKUTAA SHISUTEMU GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUHIN SANGYO BAIORIAKUTAA SHISUTEMU GIJUTSU KENKYU KUMIAI filed Critical SHOKUHIN SANGYO BAIORIAKUTAA SHISUTEMU GIJUTSU KENKYU KUMIAI
Priority to JP62239982A priority Critical patent/JPS6485089A/en
Publication of JPS6485089A publication Critical patent/JPS6485089A/en
Publication of JPH0412716B2 publication Critical patent/JPH0412716B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 発明の目的 産業上の利用分野 本発明はリパーゼによるエステル合成法に関
し、更に詳しくはマクロな細孔を有する多孔性担
体に固定化したリパーゼを用いて脂肪酸とモノグ
リセライド及び/又はジグリセライドとからトリ
グリセライドを合成する方法に関する。 従来の技術 食用油脂は主成分のトリグリセライド(TG)
の他に、TGの加水分解生成物である遊離脂肪酸
(FFA)、モノグリセライド(MG)及びジグリセ
ライド(DG)を含んでいる。これらは原料の集
荷から油脂分抽出操作の間に、原料中に含まれる
酵素又は外的要因により主成分であるTGが加水
分解を受け生成した物である。 これらの加水分解生成物のうちFFA及びMGは
精製段階で除去することができる。例えばアルキ
ル精製や蒸留・脱酸でTGからFFA及びMGのか
なりの割合を分離除去することが可能である。 一方DGは沸点等の物理性状や化学的性質が
TGと類似しているため相互の分離が困難であ
り、DGの分離方法は確立されていない。 TG中にDGが存在すると共融混合物を形成し、
SFI(固体脂含有係数)の低下、結晶核生成の妨
害、チヨコレート製造工程におけるテンパリング
操作を困難にする等の問題が生じる。 このようにDGが含まれる場合にはその用途に
制限を受けることになるので、油脂中のDG含有
量を効果的に減少させる方法が必要とされる。 リパーゼを油脂に作用させ、加水分解、エステ
ル合成及びエステル交換反応を行わせることは広
く知られている。 このうち、脂肪酸エステルの加水分解及び合成
は下式の如き可逆反応である。 DG+FFA←→TG+H2O (1) (1)式より水分の多い系では加水分解側に、又水
分の少ない系ではTG合成側に反応が進むことは
明らかであり、いずれにしてもリパーゼは加水分
解反応又は合成反応を促進する触媒となる。 特開昭59−179091、特開昭59−183691及び特開
昭60−98984にはマクロな細孔を有する担体に固
定化したリパーゼが開示されているが、これらの
担体は何れもイオン交換樹脂や誘導化多糖類など
の官能基を有する担体で、担体のもつ官能基とリ
パーゼをポリアルデヒド等の架橋剤により共有結
合させ強固に結合させている。 これらの方法は加水分解やエステル交換の如き
水の豊富に存在する系への適用は可能であるが、
水の少ない系への適用には必ずしも良策とは考え
られない。 即ち、加水分解では約50%の水分が、又エステ
ル交換でも1〜2%の水分が必要とされる。この
水分条件下では、水溶性酵素であるリパーゼが基
質である油脂と懸濁状態にある水へ漏出するため
担体と強固に固定化させる必要がある。そのため
の手段として架橋剤を用いることが必須要件とな
るが、これにより酵素剤製造工程が複雑になるば
かりか、合成活性の発現が阻害され活性が低下す
ることが危惧される。 特開昭57−8787は低水分系においてエステル交
換活性を有する酵素を基質に作用させるエステル
化法に関するもので、セライトやパーライトに吸
着させたリパーゼを用いパーム油を分別して得た
中融点部とステアリン酸メチルエステルを基質と
した例が示されているが、担体表面の物理性状の
考慮がなされていないため効果的にリパーゼが固
定化されず、活性発現が悪く、反応を完結させる
ために5日間という長時間を要している。 発明が解決しようとする問題点 本発明は、DG及び/又はMGをFFAと反応さ
せてTGとすることにより油脂の性状を改善し且
つTG収率を向上するための効率の良い方法を提
供することを目的とする。 ロ 発明の構成 問題点を解決するための手段 本発明のリパーゼによるエステル合成方法は、
平均細孔径が800Å以上であるマクロな細孔を有
する多孔性担体にリパーゼを物理吸着法により固
定化して得られる固定化リパーゼを水分濃度が
200ppm以下の条件で作用させて脂肪酸とモノグ
リセライド及び/又はジグリセライドとからトリ
グリセライドを合成することを特徴とする。 本発明において使用する酵素としては、リゾー
プス属(Rhizopus)、アスペルギリユウス属
(Aspergillus)、ペニシリウム属(Penicillum)、
キヤンデイダ属(Candida)、シユードモナス属
(Pseudomonas)、ムコール属(Mucor)及びジ
ヨートリカム属(Geotoricum)由来のリパーゼ
などが挙げられる。 リパーゼは油脂不溶性であるため担体表面に固
定化し基質と十分接触させるためには担体単位重
量当りの表面積(比表面積)は大きい程良い。 比表面積を大きくするためには担体表面に多く
の細孔を持つ必要がある。但し細孔の直径(細孔
径)には次の条件が必要である。分子量3万〜5
万であるリパーゼ分子の大きさは30〜50Åと言わ
れている。この分子が固定され、且つ基質及び反
応生成物であるFFA、MG、DG、TG及び水分
子が自由に出入り出来、しかもこれら基質の電気
的性質が影響されないだけの距離が必要になる。
TG分子が細孔内を十分に拡散するためにはTG
の数十倍の直径が必要となり、又表面の電気的性
質が異なる疎水性・親水性物質が相互に影響しあ
わず自由に通過するためには数百Åの細孔が必要
であろうとの検討結果を得た。 これらの検討結果を踏まえて更に検討を重ねた
ところ、担体としては数十〜数百Åなどのミクロ
な細孔を極力少なくし、しかも数千Å以上のマク
ロな細孔を有する多孔性担体が好ましいことを見
出した。 このようなマクロな細孔を有する多孔性担体と
しては、平均細孔径として800Å以上、好ましく
は1000Å以上の細孔を持つ必要がある。 しかし平均細孔径があまり高すぎると比表面積
が低下してリパーゼの活性発現が悪くなる傾向に
あるので、平均細孔径は500000Å以下が好まし
い。 なお平均細孔径は、水銀圧入法による積算細孔
容積が全細孔容積の50%に達するときの細孔径を
以つて表す。 本発明で使用する担体は前述の物理的な特性を
具備する物であればよく、無機系天然物ではゼオ
ライト、珪藻土、パーライト、カオリン等の粘土
鉱物、無機系合成担体としては担体表面の細孔を
調整したシリカ、アルミナ、ゼオライト等、合成
高分子化合物としてはイオン交換樹脂、スチレ
ン・ジビニルベンゼン共重合体、ポリメチルメタ
アクリレート、ポリエチレングリコール及び/又
はポリプロピレングリコールを主鎖とする光硬化
性樹脂及びこれらの複合物等で前述の条件を満足
する担体であれば使用に供することが出来る。 本発明においては前述の担体にリパーゼを物理
吸着法により固定化して得られる固定化リパーゼ
を用いる。 本発明のエステル合成における基質としては脂
肪酸の他にモノグリセライドとジグリセライドの
うちの少なくとも一種を含むものならばいずれで
も良い。油脂のエステル交換反応により得られる
TGの他にMG、DG、FFAなどの副生物を含む
ものにも応用できる。また予め精製してMGや
FFAを除去した後のDG含有物に脂肪酸を添加す
るようにしても良い。 前記(1)式の反応をTG合成側に有利にするため
には、反応系における水分濃度は200ppm以下、
好ましくは150ppm以下とする。反応温度は、用
いるリパーゼにもよるが、20〜75℃でよい。 試験例 1 シユードモナス属由来の市販リパーゼ0.3g及
び界面活性剤としてレシチン0.3gを水10gに溶
解して酵素水溶液とし、この酵素水溶液を平均細
孔径が97200Å、比表面積0.80m2/gのセライト
No.535(和光純薬製)担体10gに添加して均一に含
浸させた。室温で0.5mmHgの真空条件下で18時間
乾燥後、温度を40℃に昇温し6時間乾燥処理を行
い担体に対して3%のリパーゼを含有する固定化
リパーゼを調整した。本固定化酵素の水分含量は
約1%であつた。 固定化担体としては、上記の他、第1表に示す
セライトNo.545(和光純薬製)、セライトNo.640(東
京鉱業貿易製)の3種を用い、上記の方法により
3%のリパーゼを含有する固定化リパーゼを調製
した。反応は水分濃度を60ppmに脱水したTG:
87.6%、DG:7.2%、MG:0.3%、FFA4.8%から
なるクルード・パームオレイン油30gに上述の方
法で調製した固定化リパーゼをそれぞれ3g添加
し、60℃で0.6mmHg真空条件下で24時間反応させ
る回分式で行つた。 24時間反応後、反応油を採取してTG含量をガ
スクロマトグラフ法により測定した結果を第1表
に示す。 なお固定化担体の比表面積はBET法により、
細孔容積は水銀圧入法により測定した。また水銀
圧入法による積算細孔容積が全細孔容積の50%に
達するときの細孔径を平均細孔径と定義した。 第1表の結果より明らかなように、3種類の担
体で比較すると、平均細孔径97200Åのセライト
No.535及び平均細孔径159000ÅのセライトNo.545を
用いて調製した固定化リパーゼは、平均細孔径
570ÅのセライトNo.640を用いて調製した固定化リ
パーゼに比してTG増加量ΔTG、即ちTG合成活
性が著しく良好であることが認められる。 試験例 2 シユードモナス属由来の市販リパーゼを担体に
対して3%となるように、試験例1と同様に各種
担体に酵素水溶液を添加含浸させ0.5mmHg、室温
で18時間その後昇温し40℃で6時間乾燥して固定
化リパーゼを調製した。 試験例1で使用したクルード・パームオレイン
油30gに固定化リパーゼを10%添加し、試験例1
と同様に60℃、0.6mmHgの真空条件下で生成する
水分を除去しながら24時間エステル合成を行つ
た。 本試験例で使用した固定化リパーゼ用担体は、
セライトと類似の天然無機物として珪藻土(和光
純薬製)、パーライト、カオリン、細孔調節した
合成シリカとしてSMB−2035(日揮化学製)、
SPG、MPG(伊勢化学製)、合成高分子としてイ
オン交換樹脂WK−10(三菱化学製)、スチレン/
ジビニルベンゼン共重合体SGP−70C(綜研化学
製)、ポリメチルメタアクリレートMP−1400(綜
研化学製)の細孔を調製した微小球体の合計11種
類の固定化用担体にリパーゼを固定化し試験例1
と同様の方法で60℃、24時間行い、反応油を採取
しTG組成の変化を測定し第1表に示した。
B. Object of the Invention Industrial Application Field The present invention relates to a method for ester synthesis using lipase, and more specifically, the synthesis of triglyceride from fatty acids and monoglyceride and/or diglyceride using lipase immobilized on a porous carrier having macroscopic pores. Concerning how to synthesize. Conventional technology The main component of edible oils and fats is triglyceride (TG).
In addition, it contains free fatty acids (FFA), monoglycerides (MG), and diglycerides (DG), which are hydrolysis products of TG. These products are produced by hydrolysis of the main component TG by enzymes contained in the raw materials or external factors during the oil and fat extraction operation from the collection of raw materials. Among these hydrolysis products, FFA and MG can be removed in the purification step. For example, it is possible to separate and remove a significant proportion of FFA and MG from TG by alkyl purification, distillation, and deacidification. On the other hand, DG has physical and chemical properties such as boiling point.
Since it is similar to TG, it is difficult to separate it from each other, and a method for separating DG has not been established. The presence of DG in TG forms a eutectic mixture,
Problems arise such as a decrease in SFI (solid fat content index), interference with crystal nucleation, and difficulty in tempering operations in the thiokolate production process. If DG is contained in this way, its uses will be limited, so a method is needed to effectively reduce the DG content in fats and oils. It is widely known that lipase acts on fats and oils to cause hydrolysis, ester synthesis, and transesterification reactions. Among these, hydrolysis and synthesis of fatty acid esters are reversible reactions as shown in the following formula. DG + FFA ← → TG + H 2 O (1) From equation (1), it is clear that the reaction proceeds to the hydrolysis side in a system with a lot of water, and to the TG synthesis side in a system with a little water. It acts as a catalyst that promotes decomposition or synthesis reactions. JP-A-59-179091, JP-A-59-183691 and JP-A-60-98984 disclose lipase immobilized on a carrier having macro pores, but all of these carriers are ion exchange resins. It is a carrier that has a functional group such as a derivatized polysaccharide or a derivatized polysaccharide, and the functional group of the carrier and lipase are covalently bonded to each other by a crosslinking agent such as polyaldehyde to form a strong bond. Although these methods can be applied to water-rich systems such as hydrolysis and transesterification,
This is not necessarily considered a good solution when applied to systems with little water. That is, approximately 50% water is required for hydrolysis, and 1 to 2% water is required for transesterification. Under this moisture condition, lipase, which is a water-soluble enzyme, leaks into water, which is in suspension with oil and fat, which is a substrate, so it is necessary to firmly immobilize it with a carrier. Although it is essential to use a crosslinking agent as a means for this purpose, this not only complicates the enzyme preparation process, but also inhibits the expression of synthetic activity and is feared to reduce the activity. JP-A No. 57-8787 relates to an esterification method in which an enzyme with transesterification activity acts on a substrate in a low moisture system. An example using stearic acid methyl ester as a substrate has been shown, but because the physical properties of the carrier surface are not taken into consideration, lipase is not effectively immobilized and activity expression is poor. It takes a long time, several days. Problems to be Solved by the Invention The present invention provides an efficient method for improving the properties of fats and oils and increasing the TG yield by reacting DG and/or MG with FFA to produce TG. The purpose is to (b) Means for solving the structural problems of the invention The method for ester synthesis using lipase of the present invention includes:
Immobilized lipase obtained by immobilizing lipase on a porous carrier having macropores with an average pore diameter of 800 Å or more by physical adsorption is
It is characterized in that triglycerides are synthesized from fatty acids and monoglycerides and/or diglycerides under conditions of 200 ppm or less. Enzymes used in the present invention include Rhizopus, Aspergillus, Penicillum,
Examples include lipases derived from the genus Candida, Pseudomonas, Mucor, and Geotricum. Since lipase is insoluble in oil and fat, the larger the surface area (specific surface area) per unit weight of the carrier, the better in order to immobilize it on the surface of the carrier and bring it into sufficient contact with the substrate. In order to increase the specific surface area, it is necessary to have many pores on the surface of the carrier. However, the diameter of the pores (pore diameter) requires the following conditions. Molecular weight 30,000-5
The size of a lipase molecule is said to be 30 to 50 Å. A distance is required in which this molecule is fixed, and the substrate and reaction products FFA, MG, DG, TG, and water molecules can freely enter and exit, and the electrical properties of these substrates are not affected.
In order for TG molecules to sufficiently diffuse within the pores, TG
It is estimated that pores of several hundred angstroms in diameter would be required for hydrophobic and hydrophilic substances with different surface electrical properties to freely pass through without affecting each other. The results of the study were obtained. After further investigation based on these study results, we found that the carrier should be a porous carrier with as few micro pores as possible, such as tens to hundreds of Å, and macro pores of several thousand Å or more. I found something favorable. A porous carrier having such macroscopic pores needs to have pores with an average pore diameter of 800 Å or more, preferably 1000 Å or more. However, if the average pore diameter is too high, the specific surface area will decrease and the expression of lipase activity will tend to deteriorate, so the average pore diameter is preferably 500,000 Å or less. Note that the average pore diameter is expressed as the pore diameter when the cumulative pore volume by mercury intrusion method reaches 50% of the total pore volume. The carrier used in the present invention may be any material as long as it has the above-mentioned physical properties.Inorganic natural products include clay minerals such as zeolite, diatomaceous earth, perlite, and kaolin, and inorganic synthetic carriers include pores on the surface of the carrier. Synthetic polymer compounds such as silica, alumina, and zeolite prepared with Any carrier that satisfies the above-mentioned conditions, such as a composite of these, can be used. In the present invention, an immobilized lipase obtained by immobilizing lipase on the above-mentioned carrier by a physical adsorption method is used. The substrate for the ester synthesis of the present invention may be any substrate as long as it contains at least one of monoglycerides and diglycerides in addition to fatty acids. Obtained by transesterification of fats and oils
In addition to TG, it can also be applied to substances containing by-products such as MG, DG, and FFA. It can also be purified in advance and used as MG.
Fatty acids may be added to the DG-containing material after FFA has been removed. In order to make the reaction of equation (1) more favorable to the TG synthesis side, the water concentration in the reaction system should be 200 ppm or less,
Preferably it is 150 ppm or less. The reaction temperature may be 20 to 75°C, depending on the lipase used. Test Example 1 0.3 g of commercially available lipase derived from the genus Pseudomonas and 0.3 g of lecithin as a surfactant are dissolved in 10 g of water to make an enzyme aqueous solution, and this enzyme aqueous solution is applied to Celite with an average pore diameter of 97200 Å and a specific surface area of 0.80 m 2 /g.
It was added to 10 g of carrier No. 535 (manufactured by Wako Pure Chemical Industries, Ltd.) and uniformly impregnated. After drying at room temperature under vacuum conditions of 0.5 mmHg for 18 hours, the temperature was raised to 40°C and drying was carried out for 6 hours to prepare immobilized lipase containing 3% lipase based on the carrier. The water content of this immobilized enzyme was about 1%. In addition to the above, three types of immobilization carriers, Celite No. 545 (manufactured by Wako Pure Chemical Industries, Ltd.) and Celite No. 640 (manufactured by Tokyo Mining Trading Co., Ltd.) shown in Table 1, were used as immobilization carriers, and 3% lipase was added by the method described above. An immobilized lipase containing the following was prepared. The reaction was performed using TG dehydrated to a water concentration of 60 ppm:
To 30 g of crude palm olein oil consisting of 87.6%, DG: 7.2%, MG: 0.3%, and FFA 4.8%, 3 g of each of the immobilized lipases prepared by the above method was added, and the mixture was heated at 60°C under a 0.6 mmHg vacuum condition. The reaction was carried out in a batch manner in which the reaction was carried out for 24 hours. After 24 hours of reaction, the reaction oil was collected and the TG content was measured by gas chromatography. The results are shown in Table 1. The specific surface area of the immobilization carrier was determined by the BET method.
Pore volume was measured by mercury intrusion method. In addition, the pore diameter when the cumulative pore volume by mercury intrusion method reached 50% of the total pore volume was defined as the average pore diameter. As is clear from the results in Table 1, when comparing the three types of carriers, celite with an average pore diameter of 97,200 Å
The immobilized lipase prepared using Celite No. 535 and Celite No. 545 with an average pore diameter of 159,000 Å has an average pore diameter of
It was observed that the TG increase ΔTG, that is, the TG synthesis activity, was significantly better than that of the immobilized lipase prepared using 570 Å Celite No. 640. Test Example 2 Various carriers were impregnated with an enzyme aqueous solution in the same manner as in Test Example 1, using a commercially available lipase derived from the genus Pseudomonas at a concentration of 3% based on the carrier. The immobilized lipase was prepared by drying for 6 hours. 10% immobilized lipase was added to 30 g of crude palm olein oil used in Test Example 1, and
Similarly, ester synthesis was carried out for 24 hours under vacuum conditions of 60°C and 0.6 mmHg while removing generated water. The carrier for immobilized lipase used in this test example was
Natural inorganic substances similar to celite include diatomaceous earth (manufactured by Wako Pure Chemical Industries, Ltd.), perlite, and kaolin; synthetic silica with controlled pores includes SMB-2035 (manufactured by JGC Chemical);
SPG, MPG (manufactured by Ise Chemicals), ion exchange resin WK-10 (manufactured by Mitsubishi Chemical) as a synthetic polymer, styrene/
Test examples in which lipase was immobilized on a total of 11 types of immobilization carriers: microspheres with pores prepared from divinylbenzene copolymer SGP-70C (manufactured by Soken Chemical) and polymethyl methacrylate MP-1400 (manufactured by Soken Chemical). 1
The reaction was carried out in the same manner as above at 60°C for 24 hours, the reaction oil was collected, and the changes in TG composition were measured and are shown in Table 1.

【表】 また試験例1及び試験例2のデータについて、
担体の平均細孔径(横軸に示す)と24時間反応後
のTG増加量ΔTG(縦軸に示す)との関係を第1
図に示した。 第1表及び第1図より、平均細孔径が600Å以
上、更に800Å以上の担体はTG合成活性が良好
に発現しTG濃度はそれぞれ92%以上、94%以上
となることがわかる。これにより固定化リパーゼ
の活性発現因子は固定化担体の表面の細孔径の影
響が強く関与していることが明らかで、平均細孔
径が600Å以上の担体を用いた場合に活性の発現
が良好であることが認められる。 試験例 3 ダウエツケスMWA−1(ダウケミカル社製:
20〜50メツシユ、第三級アミンを交換基とする平
均細孔径600Å、比表面積43m2/g、細孔容積
0.926c.c./gである弱塩基性陰イオン交換樹脂)
10gを、M/15マツクルベイン緩衝液(PH5.0)
10mlにリパーゼ(試験例1と同様シユードモナス
属由来)0.3gを溶解した酵素液に加え、10℃で
一液振盪した。次に別に用意した10mlのマツクル
ベイン緩衝液に0.8mlの25%グルタルアルデヒド
溶液を加え10分間振盪したのち、これを前述の酵
素液とダウエツクスMWA−1の混合物に加える
ことによりイオン交換樹脂にリパーゼを共有結合
させた。最後に2mlの20%亜硫酸水素ナトリウム
を加え余剰のグルタルアルデヒドを除いた後、マ
ツクルベイン緩衝液及び蒸留水で洗浄を行いイオ
ン交換樹脂の回りに付着した水を拭き取つた。こ
れを試験例1と同様の条件で減圧乾燥を行い担体
に共有結合したリパーゼ酵素剤(比較例)を調製
した。 他方ダウエツケスMWA−1に0.3gのリパー
ゼをレシチン0.3g共存する水に溶解し試験例1
と同様の方法で吸着固定化したリパーゼ酵素剤
(実施例)を調製した。またレシチンを用いない
以外は試験例1と同様の方法でダウエツクス
MWA−1に吸着固定化したリパーゼ酵素剤(実
施例)を調製した。 試験例1と同様の条件でエステル合成反応を行
わせ、パームオレイン反応油中のTG濃度を測定
した結果を第2表に示す。
[Table] Also, regarding the data of Test Example 1 and Test Example 2,
The relationship between the average pore diameter of the carrier (shown on the horizontal axis) and the TG increase amount ΔTG after 24-hour reaction (shown on the vertical axis) is
Shown in the figure. From Table 1 and Figure 1, it can be seen that carriers with average pore diameters of 600 Å or more, and further 800 Å or more, exhibit good TG synthesis activity, with TG concentrations of 92% or more and 94% or more, respectively. This clearly shows that the activity expression factor of immobilized lipase is strongly influenced by the pore size on the surface of the immobilized carrier, and the expression of activity is better when a carrier with an average pore diameter of 600 Å or more is used. It is recognized that there is. Test Example 3 Dawetsukes MWA-1 (manufactured by Dow Chemical Company:
20-50 mesh, average pore diameter 600 Å with tertiary amine as an exchange group, specific surface area 43 m 2 /g, pore volume
Weakly basic anion exchange resin (0.926cc/g)
10g of M/15 Matsuklebain buffer (PH5.0)
An enzyme solution in which 0.3 g of lipase (derived from Pseudomonas genus as in Test Example 1) was dissolved in 10 ml was added, and the entire solution was shaken at 10°C. Next, add 0.8 ml of 25% glutaraldehyde solution to 10 ml of Muzzle Vein buffer prepared separately, shake for 10 minutes, and then add this to the mixture of enzyme solution and Dowex MWA-1 mentioned above to infuse lipase into the ion exchange resin. Covalently bonded. Finally, 2 ml of 20% sodium hydrogen sulfite was added to remove excess glutaraldehyde, and then washed with matsuklebain buffer and distilled water to wipe off water adhering to the ion exchange resin. This was dried under reduced pressure under the same conditions as Test Example 1 to prepare a lipase enzyme agent covalently bonded to a carrier (comparative example). On the other hand, 0.3 g of lipase was dissolved in Dawetzke's MWA-1 in water coexisting with 0.3 g of lecithin, and Test Example 1 was prepared.
An adsorbed and immobilized lipase enzyme agent (Example) was prepared in the same manner as described above. In addition, dowex was applied in the same manner as in Test Example 1 except that lecithin was not used.
A lipase enzyme agent (Example) adsorbed and immobilized on MWA-1 was prepared. The ester synthesis reaction was carried out under the same conditions as in Test Example 1, and the TG concentration in the palm olein reaction oil was measured. The results are shown in Table 2.

【表】 吸着法で調製したリパーゼ酵素剤は良好な活性
を発現するのに対し、共有結合法で固定化したリ
パーゼ酵素剤は吸着法で固定化したものに比し約
20〜30%のTG合成活性しか発現しないことが認
められた。 ハ 発明の効果 油脂中のTG含有量の向上及び油脂性状の改質
が容易に行われる。 油脂の精製工程での負担が軽減でき、精製収率
の向上が期待できる。
[Table] Lipase enzyme preparations prepared by adsorption method exhibit good activity, whereas lipase enzyme preparations immobilized by covalent bonding method have approximately
It was observed that only 20-30% of TG synthesis activity was expressed. C. Effects of the invention The TG content in fats and oils can be improved and the properties of fats and oils can be easily modified. The burden on the oil and fat refining process can be reduced, and an improvement in refining yield can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は担体の平均細孔径と24時間後のTG増
加量との関係を示す図である。
FIG. 1 is a diagram showing the relationship between the average pore diameter of the carrier and the increase in TG after 24 hours.

Claims (1)

【特許請求の範囲】 1 平均細孔径が800Å以上であるマクロな細孔
を有する多孔性担体にリパーゼを物理吸着法によ
り固定化して得られる固定化リパーゼを水分濃度
が200ppm以下の条件で作用させて脂肪酸とモノ
グリセライド及び/又はジグリセライドとからト
リグリセライドを合成することを特徴とするリパ
ーゼによるエステル合成方法。 2 マクロな細孔を有する多孔性担体の平均細孔
径が800〜500000Åである特許請求の範囲第1項
記載のエステル合成方法。
[Scope of Claims] 1. Immobilized lipase obtained by immobilizing lipase on a porous carrier having macroscopic pores with an average pore diameter of 800 Å or more by a physical adsorption method, and acting on the immobilized lipase at a water concentration of 200 ppm or less. A method for ester synthesis using lipase, characterized in that triglyceride is synthesized from fatty acid and monoglyceride and/or diglyceride. 2. The ester synthesis method according to claim 1, wherein the porous carrier having macropores has an average pore diameter of 800 to 500,000 Å.
JP62239982A 1987-09-26 1987-09-26 Synthesis of ester using lipase Granted JPS6485089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62239982A JPS6485089A (en) 1987-09-26 1987-09-26 Synthesis of ester using lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62239982A JPS6485089A (en) 1987-09-26 1987-09-26 Synthesis of ester using lipase

Publications (2)

Publication Number Publication Date
JPS6485089A JPS6485089A (en) 1989-03-30
JPH0412716B2 true JPH0412716B2 (en) 1992-03-05

Family

ID=17052715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62239982A Granted JPS6485089A (en) 1987-09-26 1987-09-26 Synthesis of ester using lipase

Country Status (1)

Country Link
JP (1) JPS6485089A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8729890D0 (en) * 1987-12-22 1988-02-03 Unilever Plc Improvements in & relating to fat processes
DK95490D0 (en) * 1990-04-18 1990-04-18 Novo Nordisk As PROCEDURE FOR PREPARING TRIGLYCERIDE AND TRIGLYCERIDE COMPOSITION
JP5048957B2 (en) * 2005-03-04 2012-10-17 国立大学法人静岡大学 Ester synthesis catalyst, method for producing the same, and method for producing biofuel using the catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727159A (en) * 1980-07-23 1982-02-13 Kansai Paint Co Ltd Method of electrostatic powder coating
JPS5728519A (en) * 1980-07-25 1982-02-16 Sumitomo Electric Industries Cable cooler
JPS5920357A (en) * 1982-07-26 1984-02-02 Tokiwa Shokubutsu Kagaku Kenkyusho:Kk Production of conversion product of gardenia pigment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727159A (en) * 1980-07-23 1982-02-13 Kansai Paint Co Ltd Method of electrostatic powder coating
JPS5728519A (en) * 1980-07-25 1982-02-16 Sumitomo Electric Industries Cable cooler
JPS5920357A (en) * 1982-07-26 1984-02-02 Tokiwa Shokubutsu Kagaku Kenkyusho:Kk Production of conversion product of gardenia pigment

Also Published As

Publication number Publication date
JPS6485089A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
JP2641935B2 (en) How to immobilize lipase
JP2873251B2 (en) Granular immobilized lipase preparation, its production method and its use
JPH0458958B2 (en)
JP2678341B2 (en) Immobilized lipase
JPH0412716B2 (en)
CN100347295C (en) Method for preparing fixed enzyme
JP2824900B2 (en) Regeneration method of immobilized lipase
KR102307780B1 (en) Immobilized lipase for diisononyl adipate synthesis, preparation method of thereof, and preparation method of diisononyl adipate using thereof
CA2027649C (en) Supported enzyme
JP2657887B2 (en) Preparation method of immobilized enzyme
JP3509124B2 (en) Method for transesterification of fats and oils using immobilized lipase
EP0147914A2 (en) Immobilized enzyme composites
JPH06505148A (en) Enzymatic reverse hydrolysis of hydrophilic substrates - method for producing amphiphilic compounds
JP2778135B2 (en) Preparation method of lipase-immobilized enzyme preparation
JPS5920357B2 (en) Enzymatic decomposition of lipids
DE4131546A1 (en) Candida lipase for high activity and aldehyde resistance - comprises covalent bonding to epoxy activated macroporous carrier for immobilisation and enantioselective esterification of chiral alcohol with enol ester
AT398310B (en) IMMOBILIZED LIPASE, METHOD FOR THE PRODUCTION THEREOF AND METHOD FOR INCREASING THE ENANTIOSELECTIVITY OF A CANDIDA LIPASE IN THE Esterification of CHIRAL ALCOHOLS
JP2983655B2 (en) Diglyceride production method
JPH0757195B2 (en) Enzymatic esterification method
JP2676470B2 (en) Immobilized lipase, method for producing the same, and method for transesterifying oils and fats using the lipase
JPS6225987A (en) Production of diglyceride by enzymatic method
JPH012588A (en) Modified oil manufacturing method
JP3037349B2 (en) Enzyme-immobilizing carrier and method for producing immobilized enzyme
Khasanov et al. State of fungal lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in border layers water—solid phase and factors affecting catalytic properties of Enzymes
JPH0343092A (en) Production of polyol monofatty acid ester

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 16