JPH01273373A - Piezoelectric composite thin-film element - Google Patents

Piezoelectric composite thin-film element

Info

Publication number
JPH01273373A
JPH01273373A JP63102129A JP10212988A JPH01273373A JP H01273373 A JPH01273373 A JP H01273373A JP 63102129 A JP63102129 A JP 63102129A JP 10212988 A JP10212988 A JP 10212988A JP H01273373 A JPH01273373 A JP H01273373A
Authority
JP
Japan
Prior art keywords
piezoelectric
thin film
thin
polarization
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63102129A
Other languages
Japanese (ja)
Inventor
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
佳宏 冨田
Atsushi Abe
阿部 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63102129A priority Critical patent/JPH01273373A/en
Publication of JPH01273373A publication Critical patent/JPH01273373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve piezoelectric characteristics, and to eliminate the need for polarization treatment by forming an element by a piezoelectric thin-film group, an electrode and an organic thin-film and orientating the axes of polarization of the piezoelectric thin-film group in one direction to a degree. CONSTITUTION:A piezoelectric composite thin-film element has piezoelectric thin-films mutually isolated and arrayed in two dimensions, an electrode 3 annexed to the thin-films 2 and organic thin-films shaped into at least the clearances of the thin-films 2. The thin-film 2 is shown in a chemical formula (PbxLay) (TizZrw)O3, has either composition of a) 0.7<=x<=1, 0.9<=x+y<=1, 0.95<=z<=1 and w=0, b) x=1, y=2, 0.2<=z<=0.8 and z+w=1 and c) 0.83<=x<=1, x+y=1, 0.2<=z<=0.8 and 0.96<=z+w<=1, and is orientated to a high degree in the <direction or the <111> direction, and the direction of polarization is also aligned to a high degree. Accordingly, piezoelectric characteristics are improved, and polarization treatment is unnecessitated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無a!薄膜と有n薄膜とを用いた複合薄膜素
子、特に、圧電性複合薄膜素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to a variety of applications. The present invention relates to a composite thin film element using a thin film and an n-containing thin film, and particularly to a piezoelectric composite thin film element.

従来の技術 圧電材料は、圧電振動子、フィルタ、遅延素子あるいは
圧電センサ・アクチュエータとして広範囲に使用されて
いる。圧電材料としては LjTao3.L 1Nb0
3等の単結晶、チタン酸鉛・ジルコン酸チタン酸鉛(P
 Z T)系のセラミクス、ポリフッ化ビニリデン(P
VDF)等の有機フィルム等が使用されている。PZT
系セラミクスは一般に電気機械結合係数および圧電定数
が大きいが、比誘電率が大きいため電圧出方係数が小さ
い。また、音響インピーダンスが大きい。圧電性有機フ
ィルムは、セラミクスにない加工性、成形性をもち、小
さい音響インピーダンスを示すが、圧電定数が小さく、
誘電的・機械的損失が大きい。ざらに圧電定数を大きく
するために、最近、エポキシ系樹脂、シリコンゴム等の
有機材料とPZT粒子等のセラミクス微粒子を混合した
圧電性複合材料の研究開発が活発に行われている。
BACKGROUND OF THE INVENTION Piezoelectric materials are widely used as piezoelectric vibrators, filters, delay elements, or piezoelectric sensor actuators. As a piezoelectric material, LjTao3. L 1Nb0
3 grade single crystal, lead titanate/lead zirconate titanate (P
Z T)-based ceramics, polyvinylidene fluoride (P
Organic films such as VDF) are used. PZT
Ceramics generally have a large electromechanical coupling coefficient and piezoelectric constant, but have a large dielectric constant and therefore a small voltage output coefficient. Also, the acoustic impedance is large. Piezoelectric organic films have processability and formability that ceramics do not have, and exhibit low acoustic impedance, but they have a small piezoelectric constant and
Large dielectric and mechanical losses. In order to roughly increase the piezoelectric constant, research and development have recently been actively conducted on piezoelectric composite materials in which organic materials such as epoxy resins and silicone rubber are mixed with ceramic fine particles such as PZT particles.

圧電材料は自発分極PsO向きがランダムであると、各
分域の圧電効果が相互に打ち消し合って、全体として歪
みの発生つまり圧電効果はみられない。そこで、高電界
を印加してPsの向きを揃える分極処理が必要となる。
When the spontaneous polarization PsO direction of the piezoelectric material is random, the piezoelectric effects of each domain cancel each other out, and no distortion occurs, that is, no piezoelectric effect is observed as a whole. Therefore, a polarization process is required to align the directions of Ps by applying a high electric field.

発明が解決しようとする課題 圧電性複合材料の圧電定数を大きくするには、圧電性の
大きい物質を高充填し、分極化度を高くすることが重要
である。充填塵、分極化度に限界があり、従来の圧電性
複合材料の圧電定数は小さい。
Problems to be Solved by the Invention In order to increase the piezoelectric constant of a piezoelectric composite material, it is important to fill it with a highly piezoelectric substance and increase the degree of polarization. Due to the limited dust filling and polarization degree, the piezoelectric constant of conventional piezoelectric composite materials is small.

また、圧電材料に分極処理を施すとき次のような問題が
生じる。
Furthermore, the following problem occurs when polarizing a piezoelectric material.

(1)分極処理により絶紗破壊が生じる場合かある。(1) Polarization treatment may cause breakage of the wire.

(2)高密度に配列している高分解能プレイ素子では、
それらを均一に分極することが困難である。
(2) In high-resolution play elements arranged in high density,
It is difficult to polarize them uniformly.

課題を解決するための手段 基板上に形成され化学式が(P b x L a yX
 T I ZZ r w ) 03て表される圧電性薄
膜群と、前記圧電性薄膜群に付設された電極と、前記圧
電性薄膜群の少なくとも間隙に配された有機薄膜とを有
し、前記圧電性薄膜群の分極軸を高度に一方向に配向さ
せた構成とする。ただし、上式におけるX=  yT2
およびWは下記a、  bまたはCの条件を満足するも
のとする。
A means for solving the problem is formed on a substrate and has the chemical formula (P b x L a yX
A piezoelectric thin film group represented by T I ZZ r w ) 03, an electrode attached to the piezoelectric thin film group, and an organic thin film disposed at least in a gap between the piezoelectric thin film group, The polarization axes of the polar thin films are highly oriented in one direction. However, X in the above formula = yT2
and W shall satisfy the following conditions a, b, or c.

a) 0.7≦x≦1.0.9≦x+y≦1.0.95
≦z≦l、w=0b) x=l、 y=o、 0.2≦
z≦0.8. z+w=]c) 0.83≦x≦1. 
x+y=l、0.2≦z≦0.8゜0.96≦z十−≦
1 作用 り記の薄膜は、これをスパッタリング法により作製する
さい、充分に<001>方向に配向していれば、分極処
理を行わなくとも自発分極が揃っている(特開昭62−
205266号公報)。本発明はこの圧電性薄膜を利用
したもので、圧電定数が大きく、Psが既に揃った自然
分極が得られ、分極処理を行う必要がなく、歩留まり良
く高性能の複合薄膜素子が提供できる。
a) 0.7≦x≦1.0.9≦x+y≦1.0.95
≦z≦l, w=0b) x=l, y=o, 0.2≦
z≦0.8. z+w=]c) 0.83≦x≦1.
x+y=l, 0.2≦z≦0.8゜0.96≦z10−≦
When the thin film described in 1. Function is fabricated by the sputtering method, if it is sufficiently oriented in the <001> direction, the spontaneous polarization will be uniform even without polarization treatment (Japanese Patent Laid-Open No. 1983-1989).
205266). The present invention utilizes this piezoelectric thin film, has a large piezoelectric constant, can obtain natural polarization with Ps already uniform, does not require polarization treatment, and can provide a high-yield, high-performance composite thin film element.

実施例 第1図及び第2図はそれぞれ本発明の複合薄膜素子の構
成及び製造工程を示す図である。
Embodiment FIGS. 1 and 2 are diagrams showing the structure and manufacturing process of a composite thin film element of the present invention, respectively.

(100)でへき関したMgO単結単結晶基板上面に、
レジストで保護した部分を2次元に配列し、燐酸でエツ
チングして、深さ約lOμmの凹部群を形成した後、高
周波マグネトロンスパッタリング法で圧電性薄膜群2と
してP b Z rn5T 1iI503を4μm成長
させた(a)。雰囲気ガスにはA「と02の混合ガスを
用い、スパッタリングターゲットは、 1、 8PZT+0. 2PbO) の粉末である。
On the top surface of the MgO single crystal substrate separated by (100),
The parts protected by the resist were arranged two-dimensionally and etched with phosphoric acid to form a group of recesses with a depth of about 10 μm, and then P b Z rn5T 1iI503 was grown to a thickness of 4 μm as the piezoelectric thin film group 2 by high-frequency magnetron sputtering. (a). A mixed gas of A and 02 was used as the atmospheric gas, and the sputtering target was a powder of 1.8PZT+0.2PbO).

表1にスパッタリング条件を示す。Table 1 shows the sputtering conditions.

この圧電性薄膜群2上にAu電極薄膜3を蒸着により作
製した(b)。次ぎに圧電性薄膜群2の間隙に有Il薄
膜4を設けた(C)。上記有機薄膜4は感光性ポリイミ
ド系樹脂をスピンナで塗布し、紫外線に照射した後、2
00℃で熱処理したものである。次いで、電極薄膜3が
コンタクトホールを通してお互いに電気的に接触するよ
うに上部共通表1 電極3′を設ける(d)。さらに、圧電性薄膜群2の下
部におけるMgO基板基板熱濃燐酸によりエツチングし
、開口部5を設けた(e)。 凹部群に形成された圧電
性薄膜は同時に取り去った。この110部5を通して前
記圧電性薄膜群2の基板側の面にAu電極薄膜6を作製
した(f)。
On this piezoelectric thin film group 2, an Au electrode thin film 3 was fabricated by vapor deposition (b). Next, an Il-containing thin film 4 was provided in the gap between the piezoelectric thin film group 2 (C). The organic thin film 4 is formed by coating a photosensitive polyimide resin with a spinner and irradiating it with ultraviolet light.
It was heat treated at 00°C. Next, upper electrodes 3' are provided so that the electrode thin films 3 are in electrical contact with each other through the contact holes (d). Further, the MgO substrate at the bottom of the piezoelectric thin film group 2 was etched with hot concentrated phosphoric acid to form an opening 5 (e). The piezoelectric thin film formed in the group of recesses was removed at the same time. An Au electrode thin film 6 was formed on the substrate side surface of the piezoelectric thin film group 2 through this 110 part 5 (f).

なお、圧電性薄膜群2を高密度に配列しないとき、メタ
ルマスクで分離した。
Note that when the piezoelectric thin film group 2 was not arranged in high density, it was separated using a metal mask.

P b Z r [1,5T i n5037i4膜は
、分極軸(<001〉方向)の98%が一方向に配向し
ていた。この素子では、分極処理をしなくとも、圧電定
数d33は300x10−12C/N、電圧出力係数g
33は120xlO−3mV/Nとなり、分極処理を施
したPZT系セラミクスと比較して、d33の値をほぼ
保持しg33は5倍以上と著しく増大することができた
In the P b Z r [1,5T i 5037i4 film, 98% of the polarization axes (<001> direction) were oriented in one direction. In this element, even without polarization, the piezoelectric constant d33 is 300x10-12C/N, and the voltage output coefficient g
33 was 120xlO-3 mV/N, and compared to PZT ceramics subjected to polarization treatment, the value of d33 was almost maintained and g33 was significantly increased to more than 5 times.

本スパッタリング条件で菱面体晶系をもつ(001)配
向のP b Z r ta6T i [!、403薄膜
が得られた。菱面体晶系PZT薄膜の分極軸は(111
)方向であるにもかかわらず、d33及びg33は正方
品系PZTi膜と同等の値が得られた。
Under these sputtering conditions, (001)-oriented P b Z r ta6T i [! , 403 thin films were obtained. The polarization axis of the rhombohedral PZT thin film is (111
) direction, values of d33 and g33 were equivalent to those of the square PZTi film.

また、有機薄膜4にエポキシ系・シリコン系樹脂あるい
はポリフッ化ビニル、ポリカーボネート、ナイロン、テ
トロン等の圧電性高分子のいずれを用いてもその効果が
大なることは言うまでもないことである。
It goes without saying that the effect will be greater no matter which organic thin film 4 is made of epoxy/silicon resin or piezoelectric polymer such as polyvinyl fluoride, polycarbonate, nylon, or tetron.

このように本実施例に用いたPZTi膜では、薄膜作製
時に十分に<001>方向に配向していれば、分極処理
を行わなくても自発分極が揃っており、大きな圧電定数
d33及び電圧出力係数g33が得られることがわかっ
た。
In this way, in the PZTi film used in this example, if it is sufficiently oriented in the <001> direction during thin film fabrication, the spontaneous polarization will be uniform even without polarization treatment, and a large piezoelectric constant d33 and voltage output will be obtained. It was found that a coefficient g33 was obtained.

発明の効果 本発明によれば、製造される複合薄膜素子は、圧電特性
も優れていて、分極処理が不要であり、実用的に極めて
有効である。
Effects of the Invention According to the present invention, the composite thin film element manufactured has excellent piezoelectric properties, does not require polarization treatment, and is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における圧電性複合薄膜素子
の構成を示す図、第2図は同素子の製造工程を示す図で
ある。 l・・・基板、2・・・圧電性薄膜、3・・・電極薄膜
、4・・・有機薄膜、5・・・開口部、6・・・第2の
電極薄膜。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 上部電極 電極薄膜 第2図 、5  6第2の電極薄膜
FIG. 1 is a diagram showing the structure of a piezoelectric composite thin film element in one embodiment of the present invention, and FIG. 2 is a diagram showing the manufacturing process of the same element. 1... Substrate, 2... Piezoelectric thin film, 3... Electrode thin film, 4... Organic thin film, 5... Opening, 6... Second electrode thin film. Name of agent Patent attorney Toshio Nakao (1 person) Figure 1 Upper electrode electrode thin film Figure 2, 5 6 Second electrode thin film

Claims (1)

【特許請求の範囲】  相互に分離されかつ二次元に配列された圧電性薄膜と
、前記圧電性薄膜に付設された電極と、前記圧電性薄膜
の少なくとも間隙に形成された有機薄膜とを有し、前記
圧電性薄膜は、化学式(Pb_xLa_y)(Ti_z
Zr_w)O_3で表され、a)0.7≦x≦1、0.
9≦x+y≦1、0.95≦z≦1、w=0b)x=l
、y=0、0.2≦z≦0.8、z+w=1c)0.8
3≦x≦1、x+y=1、0.2≦z≦0.8、0.9
6≦z+w≦1 のいずれかの組成をもち、〈001〉方向あるいは〈1
11〉方向に高度に配向しており、分極の方向も高度に
揃っていることを特徴とする圧電性複合薄膜素子。
[Scope of Claims] A piezoelectric thin film separated from each other and arranged two-dimensionally, an electrode attached to the piezoelectric thin film, and an organic thin film formed at least in a gap between the piezoelectric thin films. , the piezoelectric thin film has the chemical formula (Pb_xLa_y)(Ti_z
Zr_w) O_3, a) 0.7≦x≦1, 0.
9≦x+y≦1, 0.95≦z≦1, w=0b) x=l
, y=0, 0.2≦z≦0.8, z+w=1c)0.8
3≦x≦1, x+y=1, 0.2≦z≦0.8, 0.9
It has a composition of 6≦z+w≦1, and has a <001> direction or a <1
A piezoelectric composite thin film element characterized by being highly oriented in the 11> direction and having highly aligned polarization directions.
JP63102129A 1988-04-25 1988-04-25 Piezoelectric composite thin-film element Pending JPH01273373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102129A JPH01273373A (en) 1988-04-25 1988-04-25 Piezoelectric composite thin-film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102129A JPH01273373A (en) 1988-04-25 1988-04-25 Piezoelectric composite thin-film element

Publications (1)

Publication Number Publication Date
JPH01273373A true JPH01273373A (en) 1989-11-01

Family

ID=14319168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102129A Pending JPH01273373A (en) 1988-04-25 1988-04-25 Piezoelectric composite thin-film element

Country Status (1)

Country Link
JP (1) JPH01273373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502656A (en) * 2009-08-18 2013-01-24 イマージョン コーポレーション Haptic feedback using composite piezoelectric actuators

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013502656A (en) * 2009-08-18 2013-01-24 イマージョン コーポレーション Haptic feedback using composite piezoelectric actuators
US8878806B2 (en) 2009-08-18 2014-11-04 Immersion Corporation Haptic feedback using composite piezoelectric actuator
JP2015109090A (en) * 2009-08-18 2015-06-11 イマージョン コーポレーションImmersion Corporation Haptic feedback using composite piezoelectric actuator
US9671865B2 (en) 2009-08-18 2017-06-06 Immersion Corporation Haptic feedback using composite piezoelectric actuator

Similar Documents

Publication Publication Date Title
Du et al. Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films
Ballato Piezoelectricity: old effect, new thrusts
US5900274A (en) Controlled composition and crystallographic changes in forming functionally gradient piezoelectric transducers
JP6049895B2 (en) Magnetoelectric sensor and method for manufacturing the sensor
CN104064670B (en) Piezoelectric film-type element, piezoelectric transducer and vibrating electricity generator
JPS62205266A (en) Ferroelectric thin film element and its production
JP3104550B2 (en) Piezoelectric actuator and method of manufacturing the same
JP2012099636A (en) Piezoelectric element and manufacturing method thereof
US20060079619A1 (en) Piezoelectric transducing sheet
US20010035123A1 (en) Ferroelectric single crystal wafer and process for the preparation thereof
JPH01273373A (en) Piezoelectric composite thin-film element
CN110459671B (en) Flexible magnetoelectric coupling sensor and preparation method thereof
Chen et al. Sol-gel derived ferroelectric PZT thin films on doped silicon substrates
Li et al. Frequency-dependent electromechanical properties for sol-gel deposited ferroelectric lead zirconate titanate thin layers: Thickness and processing effects
Topolov The remarkable orientation and concentration dependences of the electromechanical properties of 0.67 Pb (Mg1/3Nb2/3) O3–0.33 PbTiO3 single crystals
Guo et al. Morphotropic Phase Boundary Perovskites, High Strain Piezoelectrics, and Dielectric Ceramics
KR100392754B1 (en) Ferroelectric single crystal and process for the preparation thereof
JP2003060251A (en) Ferroelectric actuator device and method of manufacturing the same
JPH10200369A (en) Piezoelectric thin film resonator
JPH0779030A (en) Preparation of pzt layer
JP3419008B2 (en) Method for manufacturing piezoelectric element
JP2553559B2 (en) Pyroelectric infrared array sensor
JPH0196368A (en) Manufacture of thin film of ferroelectric substance
JP2553569B2 (en) Pyroelectric infrared array sensor
JP2006510566A (en) Method for manufacturing ferroelectric single crystal film structure using vapor deposition method