JP3419008B2 - Method for manufacturing piezoelectric element - Google Patents

Method for manufacturing piezoelectric element

Info

Publication number
JP3419008B2
JP3419008B2 JP35964192A JP35964192A JP3419008B2 JP 3419008 B2 JP3419008 B2 JP 3419008B2 JP 35964192 A JP35964192 A JP 35964192A JP 35964192 A JP35964192 A JP 35964192A JP 3419008 B2 JP3419008 B2 JP 3419008B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric
substrate
ceramics
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35964192A
Other languages
Japanese (ja)
Other versions
JPH06196770A (en
Inventor
克彦 田中
洋一 持田
英一 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP35964192A priority Critical patent/JP3419008B2/en
Publication of JPH06196770A publication Critical patent/JPH06196770A/en
Application granted granted Critical
Publication of JP3419008B2 publication Critical patent/JP3419008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、圧電セラミックスと基
板とを接合一体化する圧電素子の製造方法に関するもの
である。 【0002】 【従来の技術】圧電セラミックスと基板とを接合してな
る圧電素子の製造方法として従来より図3に示すような
接合方法が一般的に知られている。これは、まず、図示
のように、ジルコンチタン酸鉛Pb(Zr Ti
1−X )O系圧電セラミックス1の接合面にガラス
層4を形成する。圧電セラミックス1をガラス層4を介
してシリコン等の基板2と重ね合わせた後、高温炉で加
熱してガラス層4を溶融させ、さらに加圧することによ
り圧電セラミックス1と基板2とを接合する。その後、
常温に至るまで冷却して圧電セラミックス1部分に電圧
を印加し、分極処理を施すことによって圧電素子を製造
する。 【0003】 【発明が解決しようとする課題】しかしながら、圧電セ
ラミックス1に電圧を加えて分極すると、この圧電セラ
ミックス1は分極方向に伸び、分極方向と直交する方向
には収縮して体積が変化するので、圧電セラミックス1
に内部歪みが生じ、その結果、内部歪みにより接合面
りが起きたり、接合面が剥離したり、さらに内部歪み
が大きいときには圧電素子が破壊するという問題が生じ
た。 【0004】本発明は、上記従来の課題を解決するため
になされたものであり、その目的は、圧電素子が破壊し
たり、接合面に反りや剥離が生ずることのない圧電素子
の製造方法を提供することにある。 【0005】 【課題を解決するための手段】本発明者は、圧電セラミ
ックス1に歪応力を加えると引っ張り歪み方向に分極す
るという現象に鑑みて、圧電セラミックス1と基板2に
熱膨張係数の違いをもたせて加熱接合することにより、
加熱処理から常温に至る冷却過程で圧電セラミックスに
歪応力を加え、分極処理を行うことができることを見出
すに至った。 【0006】本発明は上記目的を達成するために、次の
ように構成されている。すなわち、本発明の圧電素子の
製造方法は、圧電セラミックスと基板とを接合一体化し
て圧電素子を製造する方法において、圧電セラミックス
と基板の熱膨張係数に差をもたせ、圧電セラミックスと
基板とを常温よりも高い温度で接合し、接合後常温に至
る冷却過程で、圧電セラミックスと基板との熱膨張係数
の差を利用して圧電セラミックスを接合面と平行方向又
接合面と垂直方向に引っ張り歪みを発生させて、その
歪みの方向に圧電セラミックスを分極することを特徴と
して構成されている。 【0007】 【作用】熱膨張係数の異なる圧電セラミックスと基板と
を常温より高い温度で接合し、その後常温に至る冷却過
程で圧電セラミックスと基板との間に収縮率の差が生ず
るため、圧電セラミックスの接合面と平行方向又は圧電
セラミックスの接合面と垂直方向に引っ張り歪みが発生
する。例えば、圧電セラミックスの熱膨張係数を基板の
それに比べて小さく設定した場合には、冷却過程におい
て基板の方が圧電セラミックスよりも、より大きく収縮
し、この基板側のより大きな収縮が圧電セラミックスに
圧縮応力として作用し、圧電セラミックスにはその接合
面と垂直方向に引っ張り歪みが発生する。圧電セラミッ
クスはこの歪みの生じた垂直方向に分極する。 【0008】逆に、圧電セラミックスの熱膨張係数を基
板のそれに比べて大きく設定した場合には、冷却過程に
おいて、圧電セラミックスの方が基板より、より大きく
収縮するので、圧電セラミックスにはその接合面と平行
方向に引っ張り歪みが発生する。圧電セラミックスは、
この歪みの生じた平行方向に分極する。 【0009】 【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1には、本発明に係る圧電素子の製造方法の第
1の実施例が示されている。 【0010】図1において、ジルコンチタン酸鉛Pb
(Zr Ti1−X )O系圧電セラミックス1は正
方晶で結晶異方性のc軸がa軸よりも長いものを使用し
ている。この圧電セラミックス1の熱膨張係数はシリコ
ン等よりなる基板2の熱膨張係数である約2.6 ×10-6
℃よりも小さくなるよう形成されている。圧電セラミッ
クス1は、その組成を変化させることによって所望の熱
膨張係数に設定できる。この圧電セラミックス1の接合
面にスパッタ処理などにより厚さ約2μmのガラス層4
を無機系接着剤として形成する。基板2は圧電セラミッ
クス1とこのガラス層4を介して重なり合っており、こ
の状態で高温度で加熱することによってガラス層4を溶
融させ、かつ、圧電セラミックス1の上部側から加圧す
ることによって、圧電セラミックス1と基板2とを一体
的に接合する。 【0011】接合後、常温に至る冷却過程で、圧電セラ
ミックス1の熱膨張係数は基板2のそれよりも小さく形
成されているので、基板2の方が圧電セラミックス1よ
りも、より大きく収縮するので、この基板2側のより大
きな収縮力が圧電セラミックス1に作用して圧電セラミ
ックス1は、両サイドより内部側へ向けて圧縮応力が加
えられる。その結果、圧電セラミックス1にはこの圧縮
応力の方向と直交する方向に引っ張り歪みが発生し、圧
電セラミックス1のc軸は接合面と垂直方向に配向さ
れ、同方向に分極される。この状態で、図1の(b)の
ように圧電セラミックス1と基板2との接合体に電圧
を加えると、圧電セラミックス1の分極極性が一方向に
揃えられて圧電素子3が製造される。 【0012】この実施例によれば、圧電セラミックス1
と基板2とが接合してから後の冷却過程において、圧電
セラミックス1の接合面に徐々に圧縮応力が加わると、
その応力の方向に縮む一方において、この圧縮方向と直
交する方向に引っ張り歪みにより伸びが発生して引っ張
り歪み方向に分極し、圧電セラミックス1はこの分極
により自発的に収縮し、接合面上では縮んだ状態で分極
が完了する。したがって、自発的に縮んだ分だけ圧電セ
ラミックス1の接合面上での圧縮方向の内部歪みが小さ
くなるので、従来のように圧電セラミックス1の電圧
を用いた分極処理に起因する体積変化によ圧縮方向の
内部歪みが大きくなり、これに伴う接合面の歪みにより
接合面に反りや剥離が生じたり、圧電素子3が破壊する
というようなことはなく、接合面は安定したものとな
る。 【0013】図2には本発明に係る圧電素子の製造方法
の第2の実施例が示されている。この実施例の場合は、
前記とは逆に、圧電セラミックス1の熱膨張係数を基板
2のものよりも大きく形成している。したがって、前記
同様に圧電セラミックス1と基板2とを加熱・加圧処理
して接合一体化した後、常温に至る冷却過程で圧電セラ
ミックス1の方が基板2よりも、より大きく収縮するの
で、圧電セラミックス1は収縮の少ない基板2側から作
用を受けて両サイドより外側方向へ引っ張られるように
引っ張り応力が加わる。圧電セラミックス1のc軸は横
方向に一列に揃えられ、接合面と平行方向に配向され、
同方向に分極される。この状態で、図2の(b)のよう
圧電セラミックス1の両サイド間に電圧を加える
と、平行方向に配向された分極極性が一方向に揃えられ
て圧電素子3が製造される。 【0014】この実施例によれば、圧電セラミックス1
と基板2とが接合してから後の冷却過程において、圧電
セラミックス1の接合面に徐々に引っ張り応力が加わる
と、その応力の方向に伸びる一方において、この引っ張
り方向と平行方向に引っ張り歪みが発生してこの引っ張
り歪み方向に分極し、この分極時に圧電セラミックス1
が分極に必要な分だけ自発的に伸び、この伸びた状態で
分極が完了する。したがって、分極時の自発的な伸び分
だけ圧電セラミックス1の接合面上の引っ張り方向の内
部歪みが小さくなるので、この実施例の場合も前記
1の実施例同様の効果を奏する。 【0015】以上の各実施例において、圧電セラミック
ス1と基板2との熱膨張係数の差により、圧縮応力又は
引っ張り応力を圧電セラミックスに生じさせて分極させ
ているが、この分極により圧電セラミックス1の自発的
な収縮や伸び分が、前記圧縮応力又は引っ張り応力に相
当するよう圧電セラミックス1と基板2との熱膨張係数
の差を最適に設定した場合には、分極した圧電セラミッ
クス1の内部歪みは零となるので、その接合面において
反りや剥離は全く生じない安定なものとなる。 【0016】また、本実施例では圧電セラミックス1の
c軸を配向させて分極した後、電圧を印加して極性を揃
えたが、この電圧を印加しない状態、すなわち、極性が
不揃いの状態でもこの圧電素子3を光デバイス等に使用
することができる。 【0017】なお、本発明は上記各実施例に限定される
ことはなく、様々な実施の態様を採り得る。例えば、上
記各実施例では、圧電セラミックス1にジルコンチタン
酸鉛Pb(Zr Ti1−X )O系のものを用いた
が、その他のセラミックスでもよい。また、基板2とし
てシリコン材を用いたが、ゲルマニウムやヒ素ガリウム
等、他の半導体基板を用いてもよい。この場合、接着層
としてガラス層4の代わりにそれら基板2の材質と接着
性の良い接着層を形成することが好ましい。 【0018】また、上記各実施例では無機系接着剤とし
てのガラス層4を形成したが、エポキシ樹脂等の有機系
接着剤を用いて圧電セラミックス1と基板2とを接合し
てもよい。 【0019】さらに、上記各実施例は、圧電セラミッ
クス1と基板2との接合に様々な接合方法、例えば共晶
接合等も適用できる。 【0020】さらに、圧電セラミックス1の接合面にガ
ラス層4を形成し、このガラス層4を介して圧電セラミ
ックス1と基板2とを加熱処理と電圧印加処理によって
接合する陽極接合も本発明適用できる。 【0021】 【発明の効果】本発明によれば、圧電セラミックスと基
板とが接合してから後の冷却過程において、圧電セラミ
ックスと基板との熱膨張係数の差より圧電セラミックス
に基板から圧縮応力又は引っ張り応力が加わり、接合面
と垂直方向又は平行方向に引っ張り歪みが発生して分極
処理が行われ、このとき、圧電セラミックスには分極に
よる自発的な収縮や引っ張りが生ずるので、圧電セラミ
ックスの内部歪みはその分小さくなる。したがって、従
来のように圧電セラミックスの分極処理によ体積変化
によ圧縮方向又は引っ張り方向の内部歪みが大きく起
こり、これに伴う接合面の歪みにより接合面に反りや剥
離が生じたり、圧電素子が破壊することもない。 【0022】また、圧電セラミックスの分極が完了した
ときに内部歪みが零となるように圧電セラミックスの熱
膨張係数を最適に設定すれば、圧電セラミックスと基板
接合面はより安定したものとなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a piezoelectric element by joining and integrating a piezoelectric ceramic and a substrate. 2. Description of the Related Art As a method of manufacturing a piezoelectric element formed by bonding a piezoelectric ceramic and a substrate, a bonding method as shown in FIG. 3 has been generally known. First, as shown in the figure, lead zircon titanate Pb (Zr X Ti
1-X ) The glass layer 4 is formed on the bonding surface of the O 3 -based piezoelectric ceramic 1. After the piezoelectric ceramic 1 superimposed on the substrate 2 of silicon or the like through the glass layer 4, the glass layer 4 is melted by heating at a high temperature furnace, and a piezoelectric ceramic 1 and the substrate 2 by pressurizing the are al Join. afterwards,
The piezoelectric element is manufactured by cooling to room temperature, applying a voltage to the piezoelectric ceramics 1 portion, and performing a polarization process. [0003] The present invention is, however, when the polarization by adding a voltage to the piezoelectric ceramic 1, the piezoelectric ceramic 1 extends in the direction of polarization, contracted volume change in the direction orthogonal to the polarization direction So, the piezoelectric ceramics 1
Internal strain is generated in a result, the bonding surface by internal strain
Anti Ri but you experience, or joint surface peeling, a problem that the piezoelectric element is broken occurs when more internal strain is large. The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method of manufacturing a piezoelectric element which does not cause breakage of the piezoelectric element or warpage or peeling of a bonding surface. To provide. [0005] In view of the phenomenon that when a strain stress is applied to the piezoelectric ceramic 1, the piezoelectric ceramic 1 is polarized in the direction of tensile strain, the present inventor has determined that the piezoelectric ceramic 1 and the substrate 2 have different thermal expansion coefficients. By heating and joining with
It has been found that a polarization process can be performed by applying a strain stress to the piezoelectric ceramic in a cooling process from a heating process to a normal temperature. [0006] In order to achieve the above object, the present invention is configured as follows. That is, the method for manufacturing a piezoelectric element of the present invention is a method for manufacturing a piezoelectric element by joining and integrating a piezoelectric ceramic and a substrate, wherein a difference is made between the coefficients of thermal expansion of the piezoelectric ceramic and the substrate, and the piezoelectric ceramic and the substrate are kept at room temperature. bonded at a temperature higher than the cooling process leading to the room temperature after bonding, the difference tensile strain on the joint surface parallel direction or junction plane direction perpendicular to the piezoelectric ceramics by utilizing the thermal expansion coefficient between the piezoelectric ceramic and the substrate is generated, Ru Tei is configured as characterized by polarizing the piezoelectric ceramic in the direction of the distortion. The piezoelectric ceramic and the substrate having different coefficients of thermal expansion are joined at a temperature higher than room temperature, and a difference in shrinkage occurs between the piezoelectric ceramic and the substrate during the cooling process to room temperature. junction plane parallel direction or piezoelectric in
Tensile strain occurs in the direction perpendicular to the ceramic bonding surface . For example, if the coefficient of thermal expansion of the piezoelectric ceramic is set smaller than that of the substrate, the substrate shrinks more in the cooling process than the piezoelectric ceramic, and the larger shrinkage on the substrate side compresses the piezoelectric ceramic. Acting as a stress, tensile strain is generated in the piezoelectric ceramic in a direction perpendicular to the joint surface. The piezoelectric ceramic is polarized in the vertical direction resulting in the distortion. [0008] Conversely, when larger than the thermal expansion coefficient of the piezoelectric ceramic to that of the substrate, in the cooling process, from the substrate toward the piezoelectric ceramic, since the larger <br/> contraction, the piezoelectric ceramic Causes tensile strain in the direction parallel to the joint surface. Piezoelectric ceramics
Polarization occurs in the parallel direction in which the distortion has occurred. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of a method for manufacturing a piezoelectric element according to the present invention. In FIG . 1 , lead zircon titanate Pb
(Zr X Ti 1-X) O 3 based piezoelectric ceramic 1 c axis of the crystal anisotropy tetragonal uses that are longer than a-axis. The coefficient of thermal expansion of the piezoelectric ceramic 1 is about 2.6 × 10 -6 / which is the coefficient of thermal expansion of the substrate 2 made of silicon or the like.
It is formed to be lower than ° C. The piezoelectric ceramic 1 can be set to a desired coefficient of thermal expansion by changing its composition. A glass layer 4 having a thickness of about 2 μm is formed on the bonding surface of the piezoelectric ceramic 1 by sputtering or the like.
Is formed as an inorganic adhesive. Substrate 2 is each other becomes heavy through the glass layer 4 and the piezoelectric ceramic 1, a glass layer 4 is melted by heating at high temperature in this state, and, by pressurizing the upper side of the piezoelectric ceramic 1 Then, the piezoelectric ceramics 1 and the substrate 2 are integrally joined. [0011] After bonding, a cooling process leading to normal temperature, the thermal expansion coefficient of the piezoelectric ceramic 1 is formed smaller than that of the substrate 2, the direction of the substrate 2 than the piezoelectric ceramic 1, a greater contraction The larger contraction force on the side of the substrate 2 acts on the piezoelectric ceramics 1 to apply a compressive stress to the piezoelectric ceramics 1 from both sides toward the inside. As a result, tensile strain is generated in the piezoelectric ceramics 1 in a direction orthogonal to the direction of the compressive stress, and the c-axis of the piezoelectric ceramics 1 is oriented in a direction perpendicular to the bonding surface and is polarized in the same direction. In this state, as in FIG. 1 (b), the When a voltage is applied to the bonding of the piezoelectric ceramic 1 and the substrate 2, the piezoelectric element 3 is manufactured polarization polarity of the piezoelectric ceramic 1 is aligned in one direction . According to this embodiment, the piezoelectric ceramic 1
When a compressive stress is gradually applied to the bonding surface of the piezoelectric ceramics 1 in a cooling process after the bonding of the piezoelectric ceramics 1 and the substrate 2,
At one contracts in the direction of the stress, the elongation by tensile strain in a direction perpendicular to the compression direction is polarized in the distortion direction tensile occurs, the piezoelectric ceramic 1 is spontaneously contracted by the polarization, on the joint surface Polarization is completed in the contracted state. Therefore, the internal compressive strain direction on the joint surface of the shrunken amount corresponding piezoelectric ceramic 1 spontaneously becomes small, as in the prior art, the piezoelectric ceramic 1 voltage
Internal strain of the O Ri compression direction to the volume change due to polarization treatment increases with, or warpage or peeling occurs on the bonding surface by the distortion of the joint surface associated therewith can say, the piezoelectric element 3 is broken No, and the bonding surface becomes stable. FIG. 2 shows a second embodiment of the method for manufacturing a piezoelectric element according to the present invention. In this example,
On the contrary, the coefficient of thermal expansion of the piezoelectric ceramic 1 is formed larger than that of the substrate 2. Therefore, after the similarly integrally joined heating and pressurizing treatment to the piezoelectric ceramic 1 and the substrate 2, than it is the substrate 2 of the piezoelectric ceramic 1 in the cooling process leading to normal temperature, since a greater contraction, the piezoelectric The ceramics 1 is subjected to an action from the side of the substrate 2 where the contraction is small, and a tensile stress is applied so that the ceramics 1 is pulled outward from both sides. The c-axis of the piezoelectric ceramics 1 is aligned in a row in the horizontal direction, is oriented in a direction parallel to the bonding surface,
Polarized in the same direction. In this state, as in FIG. 2 (b), when a voltage is applied between the two sides of the piezoelectric ceramic 1, the polarization polarity oriented in the direction parallel piezoelectric elements 3 are aligned in one direction is produced. According to this embodiment, the piezoelectric ceramic 1
When a tensile stress is gradually applied to the bonding surface of the piezoelectric ceramic 1 in a cooling process after the bonding of the piezoelectric ceramic 1 and the substrate 2, a tensile strain is generated in a direction parallel to the tensile direction while extending in the direction of the stress. Then, the piezoelectric ceramics are polarized in the tensile strain direction.
Extend spontaneously by the amount required for polarization, and polarization is completed in this extended state. Therefore, the internal strain of the pulling direction of the joint surface of the spontaneous elongation amount corresponding piezoelectric ceramics 1 during polarization is reduced, also in this embodiment, the first
An effect similar to that of the first embodiment is obtained. In each of the above embodiments, a compression stress or a tensile stress is generated in the piezoelectric ceramic due to the difference in the coefficient of thermal expansion between the piezoelectric ceramic 1 and the substrate 2, and the piezoelectric ceramic 1 is polarized. When the difference in the coefficient of thermal expansion between the piezoelectric ceramics 1 and the substrate 2 is optimally set so that the spontaneous contraction or elongation corresponds to the compressive stress or the tensile stress, the internal strain of the polarized piezoelectric ceramics 1 is Since the value is zero, warpage or peeling does not occur at the joint surface at all and it is stable. Further, after the polarization by orienting the c-axis of the piezoelectric ceramic 1 in the present embodiment, although align polarity by applying a voltage, a state of not applying this voltage, i.e., polarity at irregular state this The piezoelectric element 3 can be used for an optical device or the like. It should be noted that the present invention is not limited to the above embodiments, but can take various embodiments. For example, in the above embodiments, although used as the piezoelectric ceramic 1 zirconate titanate Pb (Zr X Ti 1-X ) O 3 system, or other ceramics. Although a silicon material is used as the substrate 2, another semiconductor substrate such as germanium or arsenic gallium may be used. In this case, it is preferable to form an adhesive layer having good adhesion to the material of the substrate 2 instead of the glass layer 4 as the adhesive layer. Further, the above embodiments were formed glass layer 4 as an inorganic adhesive, an organic adhesive such as an epoxy resin may be bonded to the piezoelectric ceramic 1 and the substrate 2 by using. Furthermore, above each embodiment can various bonding method for bonding the piezoelectric ceramic 1 and the substrate 2, also for example eutectic bonding or the like applied. Further, a glass layer 4 is formed on a bonding surface of the piezoelectric ceramics 1, and an anode contact for bonding the piezoelectric ceramics 1 and the substrate 2 through the glass layer 4 by heat treatment and voltage application treatment. if it can also be applied to the present invention. According to the present invention, in the cooling process after the piezoelectric ceramics and the substrate are joined, the difference between the thermal expansion coefficients of the piezoelectric ceramics and the substrate causes the piezoelectric ceramics to apply a compressive stress or A tensile stress is applied and tensile strain is generated in a direction perpendicular or parallel to the joint surface, and polarization processing is performed. At this time, spontaneous shrinkage and tension due to polarization occur in the piezoelectric ceramic, so the internal strain of the piezoelectric ceramic is Becomes smaller by that amount. Therefore, internal strain of the conventional as piezoelectric ceramics polarized Ri compression direction or by the by that volume changes <br/> the pulling direction occurs large, warping or delamination on the bonding surface by the distortion of the joint surface due to this And no breakage of the piezoelectric element. Further, if the coefficient of thermal expansion of the piezoelectric ceramic is optimally set so that the internal strain becomes zero when the polarization of the piezoelectric ceramic is completed, the piezoelectric ceramic and the substrate
Joining surface is more stable and the.

【図面の簡単な説明】 【図1】本発明に係る圧電素子の製造方法の第1の実施
例を示し、(a)は圧電セラミックスの接合面と垂直方
向の分極状態を現す説明図、(b)は垂直方向に分極極
性が揃った状態を現す説明図である。 【図2】本発明の製造方法に係る第2の実施例を示し
(a)は圧電セラミックスの接合面と平行方向の分極状
態を現す説明図、(b)は平行方向に分極極性が揃った
状態を現す説明図である。 【図3】従来の圧電素子の製造方法を示す説明図であ
る。 【符号の説明】 1 圧電セラミックス 2 基板 3 圧電素子
BRIEF DESCRIPTION OF THE DRAWINGS shows a first embodiment of a method for manufacturing a piezoelectric element according to Figure 1 the present invention, (a) is bonded surface perpendicular how piezoelectric ceramics
FIG. 3B is an explanatory view showing a polarization state in a vertical direction.
It is explanatory drawing showing the state in which the property was uniform . FIG. 2 shows a second embodiment according to the manufacturing method of the present invention ,
(A) Polarized shape parallel to the bonding surface of the piezoelectric ceramic
Explanatory drawing showing the state, (b) the polarization polarities are aligned in the parallel direction
It is explanatory drawing showing a state . FIG. 3 is an explanatory view showing a conventional method for manufacturing a piezoelectric element. [Description of Signs] 1 piezoelectric ceramics 2 substrate 3 piezoelectric element

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−26087(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 41/22 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-26087 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 41/22

Claims (1)

(57)【特許請求の範囲】 【請求項1】 圧電セラミックスと基板とを接合一体化
して圧電素子を製造する方法において、圧電セラミック
スと基板の熱膨張係数に差をもたせ、圧電セラミックス
と基板とを常温よりも高い温度で接合し、接合後常温に
至る冷却過程で、圧電セラミックスと基板との熱膨張係
数の差を利用して圧電セラミックスを接合面と平行方向
又は接合面と垂直方向に引っ張り歪みを発生させて、そ
の歪みの方向に圧電セラミックスを分極する圧電素子の
製造方法。
(57) [Claim 1] In a method of manufacturing a piezoelectric element by joining and integrating a piezoelectric ceramic and a substrate, a method is provided in which a difference is made between the coefficients of thermal expansion of the piezoelectric ceramic and the substrate. the bonded at a temperature higher than the room temperature, leading to a room temperature after the bonding in the cooling step, pull the piezoelectric ceramic and the difference junction plane parallel direction or junction plane direction perpendicular to the piezoelectric ceramics by utilizing the thermal expansion coefficients of the substrate A method of manufacturing a piezoelectric element that generates distortion and polarizes piezoelectric ceramics in the direction of the distortion.
JP35964192A 1992-12-24 1992-12-24 Method for manufacturing piezoelectric element Expired - Fee Related JP3419008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35964192A JP3419008B2 (en) 1992-12-24 1992-12-24 Method for manufacturing piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35964192A JP3419008B2 (en) 1992-12-24 1992-12-24 Method for manufacturing piezoelectric element

Publications (2)

Publication Number Publication Date
JPH06196770A JPH06196770A (en) 1994-07-15
JP3419008B2 true JP3419008B2 (en) 2003-06-23

Family

ID=18465545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35964192A Expired - Fee Related JP3419008B2 (en) 1992-12-24 1992-12-24 Method for manufacturing piezoelectric element

Country Status (1)

Country Link
JP (1) JP3419008B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532736B1 (en) * 2000-09-27 2005-12-01 마쯔시다덴기산교 가부시키가이샤 Dielectric thin film element, actuator comprising it, ink jet head, and ink jet recorder
JP4931297B2 (en) * 2001-07-27 2012-05-16 京セラ株式会社 Piezoelectric element
JP4931302B2 (en) * 2001-08-29 2012-05-16 京セラ株式会社 Piezoelectric element
CN104185555B (en) * 2012-03-30 2016-09-28 京瓷株式会社 The manufacture method of piezo-activator, ink gun and piezo-activator
DE102016110209B3 (en) 2016-06-02 2017-11-02 Physik Instrumente (Pi) Gmbh & Co. Kg Method for connecting a ceramic friction element with a piezoceramic element

Also Published As

Publication number Publication date
JPH06196770A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
CN109786229B (en) Wafer bonding method and corresponding heterogeneous substrate preparation method
US5894651A (en) Method for encapsulating a ceramic device for embedding in composite structures
JP3104550B2 (en) Piezoelectric actuator and method of manufacturing the same
JP3419008B2 (en) Method for manufacturing piezoelectric element
JPH07206600A (en) Laminated ferroelectric substance and method for joining the same
Huang et al. Large stroke high fidelity PZN-PT single-crystal “Stake” actuator
Chandran et al. Crescent: a novel piezoelectric bending actuator
CN104752602B (en) Possesses the manufacture method of the sensor element of PZT film
JP4934924B2 (en) Ferroelectric actuator element and manufacturing method thereof
JP3419014B2 (en) Method for manufacturing piezoelectric element
JP2846994B2 (en) Semiconductor wafer bonding method
US5501876A (en) Process for the manufacture of PZT films
JPS5963783A (en) Piezoelectric bimorph element
JP3416968B2 (en) Heat bonding method of piezoelectric body and substrate
Dausch Asymmetric 90° domain switching in rainbow actuators
JP5731104B2 (en) Strain layer manufacturing method
JPH0153515B2 (en)
JP2830556B2 (en) Polarization method of piezoelectric body
JP3114460B2 (en) Method for manufacturing piezoelectric element
JP2009246366A5 (en)
JPS6134279B2 (en)
JPS5919383A (en) Piezoelectric bimorph
US11462676B2 (en) Method for adjusting the stress state of a piezoelectric film and acoustic wave device employing such a film
US20110043081A1 (en) Piezoelectric electrostrictive composition apparatus and method
KR20230128098A (en) Composite wafer and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees