JP2003060251A - Ferroelectric actuator device and method of manufacturing the same - Google Patents

Ferroelectric actuator device and method of manufacturing the same

Info

Publication number
JP2003060251A
JP2003060251A JP2001242872A JP2001242872A JP2003060251A JP 2003060251 A JP2003060251 A JP 2003060251A JP 2001242872 A JP2001242872 A JP 2001242872A JP 2001242872 A JP2001242872 A JP 2001242872A JP 2003060251 A JP2003060251 A JP 2003060251A
Authority
JP
Japan
Prior art keywords
ferroelectric
constant
ferroelectric substance
substance
actuator element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001242872A
Other languages
Japanese (ja)
Other versions
JP4934924B2 (en
Inventor
Masaya Nakatani
将也 中谷
Kazuki Komaki
一樹 小牧
Yuji Murashima
祐二 村嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001242872A priority Critical patent/JP4934924B2/en
Publication of JP2003060251A publication Critical patent/JP2003060251A/en
Application granted granted Critical
Publication of JP4934924B2 publication Critical patent/JP4934924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Micromachines (AREA)

Abstract

PROBLEM TO BE SOLVED: To overcome problems of at least two power sources being required, or a voltage being required to be divided so as to be applied to individual ferroelectrics, by utilizing a switching device, etc., since individual voltages need to be applied to two ferroelectrics for making distortions in free directions, which requires advanced control such as a simultaneous control of two or more power sources upon the control of a device with high precision. SOLUTION: Under a voltage condition lower than a predetermined voltage, d31 constant of is a piezoelectric characteristic of a first ferroelectric 1 shows a value higher than that of the d31 constant of a second ferroelectric 4. Under a higher voltage condition, the d31 constant of the first ferroelectric 1 shows a value lower than that of the d31 constant of the second ferroelectric 4. Under the predetermined voltage condition, the d31 constants of the first and second ferroelectrics 1, 4 become the same value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強誘電体の圧電特
性を利用して微小な変位を精度良く発生させるための強
誘電体アクチュエータ素子およびその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ferroelectric actuator element for accurately generating a minute displacement by utilizing the piezoelectric characteristic of a ferroelectric material, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、強誘電体の圧電特性を利用した微
小な変位を精度良く実現するアクチュエータ素子には次
のようなものがある。たとえば、図13(a)に示すよ
うな、強誘電体膜の一方の面に強誘電体膜30と同じ程
度の膜厚を持つ導電体からなる振動板膜31を、他方の
面に振動板膜よりは遥かに膜厚が小さい導電体膜32を
固着させたユニモルフ構造としたものである。このとき
強誘電体膜の分極軸が図中の矢印にあるように振動板膜
31側に向いているとき、ここで、このようなユニモル
フ構造のアクチュエータ素子の動作について説明する。
振動板膜31と導電体膜32の間に電圧を印加すると、
強誘電体膜の圧電特性により強誘電体膜の面内に伸縮変
位が発生する。このとき、印加する電場強度に対する発
生する伸縮率をd31定数と呼ぶ。たとえば、d31が
−100×10-12(クーロン毎ニュートン)、印加す
る電場強度が107(ボルト毎メートル)だとすると、
強誘電体膜は膜厚と垂直な面内において、およそ1メー
トルあたり1ミリメートルの割合で伸縮変位を起こそう
とする。しかし、このとき振動板膜が強誘電体膜に固着
されているので、強誘電体膜は面内でまっすぐ伸縮運動
することができず、アクチュエータ素子には曲げ応力が
発生するのである。発生する曲げ応力の方向は印加する
電圧の極性によって変えることができ、たとえば、図1
3(b)のように振動体側がプラスになるように電圧を
印加すると強誘電体膜の面内が延びるように変位するの
で、曲げ応力は振動板膜31側に発生する。逆に図13
(c)のように導電体膜32側がプラスになるように電
圧を印加すると曲げ応力は強誘電体膜30側に発生する
のである。これは電場の方向に従い、強誘電体膜の結晶
が歪む方向が変わるからである。つまり、ユニモルフ型
アクチュエータ素子では強誘電体に掛ける電圧の極性を
変えることで歪む方向を変えることができる。
2. Description of the Related Art Heretofore, there have been the following actuator elements for accurately realizing a minute displacement utilizing the piezoelectric characteristic of a ferroelectric substance. For example, as shown in FIG. 13A, a diaphragm film 31 made of a conductor having the same thickness as the ferroelectric film 30 is formed on one surface of the ferroelectric film, and the diaphragm film 31 is formed on the other surface. It has a unimorph structure in which a conductor film 32 having a film thickness much smaller than the film is fixed. At this time, when the polarization axis of the ferroelectric film faces the diaphragm film 31 side as shown by the arrow in the figure, the operation of the actuator element having such a unimorph structure will be described here.
When a voltage is applied between the diaphragm film 31 and the conductor film 32,
Due to the piezoelectric characteristics of the ferroelectric film, expansion / contraction displacement occurs in the plane of the ferroelectric film. At this time, the expansion / contraction ratio generated with respect to the applied electric field strength is referred to as a d31 constant. For example, if d31 is −100 × 10 −12 (Coulomb per Newton) and the applied electric field strength is 10 7 (Volt per meter),
The ferroelectric film tries to cause expansion / contraction displacement at a rate of about 1 millimeter per meter in a plane perpendicular to the film thickness. However, at this time, since the diaphragm film is fixed to the ferroelectric film, the ferroelectric film cannot extend and contract straight in the plane, and bending stress is generated in the actuator element. The direction of the bending stress generated can be changed by the polarity of the applied voltage.
When a voltage is applied so that the vibrating body side becomes positive as in 3 (b), the ferroelectric film is displaced so as to extend in the plane, so that bending stress is generated on the vibrating plate film 31 side. Conversely, FIG.
When a voltage is applied so that the conductor film 32 side becomes positive as in (c), bending stress is generated on the ferroelectric film 30 side. This is because the direction in which the crystal of the ferroelectric film is distorted changes according to the direction of the electric field. That is, in the unimorph type actuator element, the direction of distortion can be changed by changing the polarity of the voltage applied to the ferroelectric substance.

【0003】また、図14(a)のような2層の強誘電
体が図中の矢印のように互いに分極が反対になるような
方向で中間層を介して張り合わされたバイモルフ構造の
アクチュエータも従来より提案されている。バイモルフ
型アクチュエータでは、中間層が共通電極となるように
し、両側の強誘電体の外側に設けられた個別電極にそれ
ぞれ電圧を印加することで、各強誘電体の変位に差を設
けてどちらの側にも曲げ応力を発生させることができ
る。たとえば、図14(b)において下側の強誘電体3
6のみにプラスの電圧を掛けると曲げ応力は下側に発生
し、図14(c)のように上側の強誘電体35のみにプ
ラスの電圧を掛けると曲げ応力は上側に発生するのであ
る。なお37〜39は電極である。
Further, there is also a bimorph structure actuator in which two layers of ferroelectric substances are bonded to each other via an intermediate layer in directions such that polarizations are opposite to each other as shown by arrows in FIG. 14A. It has been proposed in the past. In the bimorph type actuator, the intermediate layer serves as a common electrode, and a voltage is applied to each of the individual electrodes provided on the outer sides of the ferroelectric bodies on both sides to provide a difference in displacement of each ferroelectric body. Bending stress can also be generated on the side. For example, in FIG. 14B, the lower ferroelectric substance 3
Bending stress is generated on the lower side when a positive voltage is applied only to 6, and bending stress is generated on the upper side when a positive voltage is applied only to the upper ferroelectric substance 35 as shown in FIG. 14C. Incidentally, 37 to 39 are electrodes.

【0004】[0004]

【発明が解決しようとする課題】しかし、ユニモルフ型
アクチュエータ素子では次のような問題がある。すなわ
ち、歪む方向を変えるために分極軸と逆方向に電場を発
生させると、分極は電場の強さに従って緩和されてい
き、ついには分極方向が反転すると言う問題がある。分
極の緩和・反転が起こると、強誘電体の圧電特性の劣化
となり、所望する特性を得られないことになる。つま
り、分極の緩和・反転を起こさないためには、逆方向へ
の電圧印加はさける方が望ましく、これにより、ユニモ
ルフ構造のアクチュエータ素子ではこれを自由な方向へ
歪ませることに制限がある。
However, the unimorph type actuator element has the following problems. That is, when an electric field is generated in the direction opposite to the polarization axis in order to change the direction of distortion, the polarization is relaxed according to the strength of the electric field, and finally the polarization direction is reversed. If relaxation or reversal of polarization occurs, the piezoelectric characteristics of the ferroelectric substance deteriorate, and desired characteristics cannot be obtained. In other words, in order to prevent the relaxation / reversal of polarization, it is desirable to avoid applying a voltage in the opposite direction, and this limits the distortion of the actuator element having a unimorph structure in any direction.

【0005】一方、バイモルフ側アクチュエータ素子で
は、電圧はどちらの強誘電体においても分極の順方向に
電圧を印加しているので分極の緩和・反転が起こる心配
がない。よって、自由に歪む方向を変えることができる
のである。しかし、バイモルフ型では次のような問題が
ある。すなわち、自由な方向に歪ませるためには、2つ
の強誘電体に対し、個別の電圧を印加する必要があり、
電源が少なくとも2つ必要であるか、もしくはスイッチ
素子などを利用して個別の強誘電体へ印加する電圧を分
ける必要がある。これは、素子を高精度に制御する上で
2つ以上の電源を同時に制御する必要があり、高度な制
御を必要とする。
On the other hand, in the bimorph side actuator element, since the voltage is applied in the forward direction of polarization in both ferroelectrics, there is no fear of relaxation or inversion of polarization. Therefore, the direction of distortion can be freely changed. However, the bimorph type has the following problems. That is, in order to distort in the free direction, it is necessary to apply individual voltages to the two ferroelectrics,
At least two power supplies are required, or it is necessary to use a switching element or the like to divide the voltage applied to each ferroelectric substance. This requires high-level control because it is necessary to control two or more power supplies at the same time in order to control the element with high precision.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の発明
は、特に、所定の電圧より低電圧条件の下では第二の強
誘電体の圧電特性であるd31定数は第一の強誘電体の
d31定数よりも低い値を示し、高電圧条件の下では第
二の強誘電体のd31定数が第一の強誘電体特性のd3
1定数より高い値を示し、前記所定の電圧条件下では、
第一および第二の強誘電体のd31定数が同じ値となる
ものであり、第一および第二の強誘電体に単一の電源よ
り同位相の同電圧を印加しても、d31定数の比がこれ
ら強誘電体に印加する電圧の値により変化するので、た
とえば、所定の電圧より低い電圧の場合は、第二の強誘
電体のd31定数が第一の強誘電体のd31定数より低
いので、第一の強誘電体側へ曲げ応力が発生し、所定の
電圧より高い電圧の場合は、逆に第二の強誘電体側へ曲
げ応力が発生するという作用を有する。
According to a first aspect of the present invention, the d31 constant, which is the piezoelectric characteristic of the second ferroelectric substance, is the first ferroelectric substance, especially under a voltage condition lower than a predetermined voltage. The d31 constant of the second ferroelectric substance is lower than the d31 constant of the first ferroelectric substance under a high voltage condition.
It shows a value higher than one constant, and under the predetermined voltage condition,
The d31 constants of the first and second ferroelectrics are the same, and even if the same voltage of the same phase is applied to the first and second ferroelectrics from a single power source, Since the ratio changes depending on the value of the voltage applied to these ferroelectrics, for example, when the voltage is lower than a predetermined voltage, the d31 constant of the second ferroelectric is lower than the d31 constant of the first ferroelectric. Therefore, the bending stress is generated on the first ferroelectric side, and when the voltage is higher than a predetermined voltage, the bending stress is generated on the second ferroelectric side.

【0007】請求項2に記載の発明は、特に第一の強誘
電体は結晶構造の大部分が正方相体であるチタン酸ジル
コン酸鉛で、上記第二の強誘電体は結晶構造が正方相体
と菱面相体が混在するチタン酸ジルコン酸鉛であるもの
で、第一の強誘電体が正方相体であるチタン酸ジルコン
酸鉛であることにより、d31定数は電圧に対して依存
性を持たない圧電特性とすることができる、一方第二の
強誘電体が正方相体と菱面相体の混合であるチタン酸ジ
ルコン酸鉛であることにより、d31定数は電圧に対し
て依存性を持つようになり、所定の電圧以下では第一の
強誘電体のd31定数より低い値となり、所定の電圧以
上では第一の強誘電体のd31定数より高い値となる、
請求項1に記載の強誘電体アクチュエータ素子を実現で
きるという作用を有する。
According to a second aspect of the present invention, in particular, the first ferroelectric substance is lead zirconate titanate whose crystal structure is mostly tetragonal, and the second ferroelectric substance has a tetragonal crystal structure. Since the lead zirconate titanate in which the phase body and the rhombohedral phase body are mixed and the first ferroelectric body is lead zirconate titanate which is the tetragonal phase body, the d31 constant depends on the voltage. It is possible to obtain a piezoelectric characteristic not having, while the second ferroelectric is lead zirconate titanate, which is a mixture of a tetragonal phase body and a rhombohedral phase body, so that the d31 constant has a dependency on voltage. The value becomes lower than the d31 constant of the first ferroelectric substance at a predetermined voltage or lower, and becomes higher than the d31 constant of the first ferroelectric substance at a predetermined voltage or higher,
This has the effect of realizing the ferroelectric actuator element according to claim 1.

【0008】請求項3に記載の発明は、中間層は導電体
であるもので中間層が導体であることにより、中間層を
共通電極として利用できるという作用を有する。
According to the third aspect of the invention, since the intermediate layer is a conductor and the intermediate layer is a conductor, the intermediate layer can be used as a common electrode.

【0009】請求項4に記載の発明は、結晶構造の大部
分が正方相体である第一の強誘電体と、正方相体と菱面
相体が混在する第二の強誘電体を有し、中間層の両面に
上記第一および第二の強誘電体が、それぞれの自発分極
の主なる方向が反対になるように張り合わされているこ
とを特徴とする強誘電体アクチュエータの製造方法であ
って、前記第一の強誘電体としてチタン酸ジルコン酸鉛
は酸化マグネシウム単結晶板上にスパッタ法により形成
してなり、第二の強誘電体としてチタン酸ジルコン酸鉛
はシリコン基板上にスパッタ法で形成してなるもので、
酸化マグネシウム単結晶板の上にスパッタ法により形成
したチタン酸ジルコン酸鉛は、そのほとんどが正方相体
である結晶構造となり、シリコン基板の上にスパッタ法
により形成したチタン酸ジルコン酸鉛は正方相体と菱面
相体が混在した結晶構造となるのである。さらに、酸化
マグネシウム単結晶板とシリコン基板は、それぞれリン
酸溶液によるウエットエッチングや、6弗化硫黄ガス、
2弗化キセノンガスなどを用いたドライエッチングによ
り容易に除去できるので、酸化マグネシウム単結晶板と
シリコン基板に形成したそれぞれのチタン酸ジルコン酸
鉛を張り合わせた後、これら基板部を除去すれば容易に
バイモルフ強誘電体アクチュエータ素子を得ることがで
きるという作用を有する。
According to a fourth aspect of the present invention, there is provided a first ferroelectric substance whose crystal structure is mostly a tetragonal phase body and a second ferroelectric substance in which the tetragonal phase body and the rhombohedral phase body are mixed. The method for manufacturing a ferroelectric actuator is characterized in that the first and second ferroelectrics are laminated on both sides of the intermediate layer so that the main directions of the respective spontaneous polarizations are opposite to each other. The lead zirconate titanate as the first ferroelectric is formed on the magnesium oxide single crystal plate by the sputtering method, and the lead zirconate titanate as the second ferroelectric is formed on the silicon substrate by the sputtering method. It is formed by
Most of lead zirconate titanate formed by sputtering on a magnesium oxide single crystal plate has a crystal structure that is a tetragonal phase body, and lead zirconate titanate formed by sputtering on a silicon substrate is tetragonal The crystal structure is a mixture of the body and the rhombohedral phase body. Further, the magnesium oxide single crystal plate and the silicon substrate are wet etched with a phosphoric acid solution, sulfur hexafluoride gas,
Since it can be easily removed by dry etching using xenon difluoride gas, etc., it is easy to remove these substrate parts after bonding the magnesium oxide single crystal plate and each lead zirconate titanate formed on the silicon substrate. It has an effect that a bimorph ferroelectric actuator element can be obtained.

【0010】[0010]

【発明の実施の形態】(実施の形態1)次に図を用い
て、本発明の強誘電体アクチュエータ素子について詳し
く説明する。図1(a)は本発明による強誘電体アクチ
ュエータ素子の断面拡大図である。図において、1はそ
の結晶構造のほとんどが正方相体であるチタン酸ジルコ
ン酸鉛からなる第一の強誘電体であり、一方の面には白
金からなる第一の電極2が設けられており、一方の面は
金からなる第二の電極3が設けられている。また、4は
その結晶構造が正方相体と菱面相体が混在したチタン酸
ジルコン酸鉛からなる第二の強誘電体であり、一方の面
に白金からなる第三の電極5、もう一方の面に金よりな
る第四の電極6が設けられている。さらに、第二の電極
3と第四の電極6は樹脂よりなる接着層7によって張り
合わせた構造となっている。また、第二の電極と第四の
電極および第一の電極と第三の電極はそれぞれ外部にお
いて短絡された構造である。ここで、第一の強誘電体の
分極軸は図中の矢印で示したように、第二の電極3側に
実質的に向いており、一方、第二の強誘電体の分極軸は
図中の矢印に示すように第四の電極6側に実質的に向い
ている。ここで、分極軸が実質的に向いていると表現し
たのは、実際には各強誘電体の結晶の中には分極軸が他
方を向いている場合も存在するからであるが、このよう
な分極は全体から見ればわずかであり、実質的には一様
に同方向を向いている。
BEST MODE FOR CARRYING OUT THE INVENTION (Embodiment 1) Next, the ferroelectric actuator element of the present invention will be described in detail with reference to the drawings. FIG. 1A is an enlarged sectional view of a ferroelectric actuator element according to the present invention. In the figure, reference numeral 1 is a first ferroelectric substance made of lead zirconate titanate, which is a tetragonal phase structure, and a first electrode 2 made of platinum is provided on one surface. The second electrode 3 made of gold is provided on one surface. Further, 4 is a second ferroelectric substance made of lead zirconate titanate whose crystal structure is a mixture of a tetragonal phase substance and a rhombohedral phase substance, and a third electrode 5 made of platinum on one surface, and another on the other side. A fourth electrode 6 made of gold is provided on the surface. Further, the second electrode 3 and the fourth electrode 6 are laminated by an adhesive layer 7 made of resin. Further, the second electrode and the fourth electrode and the first electrode and the third electrode have a structure short-circuited to the outside, respectively. Here, the polarization axis of the first ferroelectric substance is substantially oriented toward the second electrode 3 side, as indicated by the arrow in the figure, while the polarization axis of the second ferroelectric substance is shown in the figure. It substantially faces the fourth electrode 6 side as shown by the arrow in the middle. Here, the expression that the polarization axis is substantially oriented is because in some crystals of each ferroelectric substance, the polarization axis may be oriented in the other direction. The total polarization is slight when viewed from the whole, and is substantially uniformly oriented in the same direction.

【0011】ここでこの強誘電体アクチュエータ素子の
結晶構造について図を用いてさらに詳しく述べる。図2
および図3は正方相体であるチタン酸ジルコン酸鉛と菱
面相体であるチタン酸ジルコン酸鉛の結晶構造を示した
ものであるが、図1における第一の強誘電体1は正方相
体であるチタン酸ジルコン酸鉛であり、その結晶構造
は、図2に示すように鉛11が正方相体(酸素は図示せ
ず)をなし、内部に位置するチタンあるいはジルコン1
2が中心よりわずかに<001>面側(図面では上側)
へずれた位置にある。すなわち、電荷を持ったチタンあ
るいはジルコン12によって結晶内部では分極が生じて
いる。<001>面側とはつまり第一の強誘電体1にお
ける第二の電極3側であり、本発明においてはこのよう
な状態を分極が第二の電極3側へ向いていると呼んでい
る。このような結晶構造を持つ第一の強誘電体におい
て、これに印加する電圧とd31特性との関係を図4に
示したが、電圧の値を変えてもd31定数はほぼ変わら
ないことを実験で確認している。
Here, the crystal structure of the ferroelectric actuator element will be described in more detail with reference to the drawings. Figure 2
3 and FIG. 3 show crystal structures of lead zirconate titanate, which is a tetragonal phase body, and lead zirconate titanate, which is a rhombohedral phase body. The first ferroelectric substance 1 in FIG. 1 is a tetragonal phase body. 2 is lead zirconate titanate, and its crystal structure is such that lead 11 forms a tetragonal phase body (oxygen is not shown) as shown in FIG.
2 is slightly on the <001> plane side from the center (upper side in the drawing)
It is in a deviated position. That is, polarization occurs inside the crystal due to charged titanium or zircon 12. The <001> plane side is the second electrode 3 side of the first ferroelectric substance 1, and in the present invention, such a state is called that the polarization is directed to the second electrode 3 side. . FIG. 4 shows the relationship between the voltage applied to the first ferroelectric substance having such a crystal structure and the d31 characteristic. Experiments have shown that the d31 constant hardly changes even if the voltage value is changed. Have confirmed in.

【0012】一方、第二の強誘電体の結晶構造は、上記
のような正方相体と図3で示すような菱面相体が混在し
た結晶であり、菱面相体では、分極は<111>面へ向
かって生じていると考えられている。つまり、第二の強
誘電体において、正方晶体の結晶は第四の電極側である
<001>面へ分極が生じており、菱面晶体の結晶は第
四の電極側とは少しずれた方向である<111>面へ向
かって生じている。また、チタン酸ジルコン酸鉛は結晶
構造が正方相体と菱面相体の境界上にあるとき最も高い
圧電特性を示すと言われているが、その理由はまだ明ら
かにされていない。推測によると、菱面相体の結晶では
<111>方向へ分極が生じているため、電荷を持った
チタンあるいはジルコンの可動距離が正方晶体における
<001>面に生じている場合よりも長い。このことに
より、チタンあるいはジルコンは結晶の中を大きく動く
こととなり、よってd31定数は正方相体のチタン酸ジ
ルコン酸鉛よりも大きくなると考えられている。さら
に、印加する電圧はこの<111>方向とは少しずれた
方向であるため、チタンあるいはジルコンは結晶の中を
本来の可動方向<111>とはずれた方向に動こうとす
るので、ねじれが発生する。このことにより印加する電
圧とd31定数の関係は、電圧の値が大きくなるに従っ
て、d31定数の値も大きくなると考えられる。この関
係は実験で確認したので図5に示す。さらに実験による
と、電圧値約10Vを境に第一の強誘電体のd31定数
を超えることがわかった。
On the other hand, the crystal structure of the second ferroelectric substance is a crystal in which the tetragonal phase body as described above and the rhombohedral phase body as shown in FIG. 3 are mixed, and in the rhombohedral phase body, the polarization is <111>. It is believed that they are occurring toward the surface. That is, in the second ferroelectric substance, the tetragonal crystal has polarization in the <001> plane, which is the fourth electrode side, and the rhombohedral crystal is in a direction slightly deviated from the fourth electrode side. Is generated toward the <111> plane. Further, lead zirconate titanate is said to exhibit the highest piezoelectric characteristics when the crystal structure is on the boundary between the tetragonal phase body and the rhombohedral phase body, but the reason has not been clarified yet. According to the estimation, since the rhombohedral crystal has polarization in the <111> direction, the movable distance of charged titanium or zircon is longer than that in the tetragonal <001> plane. It is considered that this causes titanium or zircon to largely move in the crystal, and therefore the d31 constant becomes larger than that of the tetragonal lead zirconate titanate. Furthermore, since the applied voltage is in a direction slightly deviated from the <111> direction, titanium or zircon tries to move in the crystal in a direction deviating from the original movable direction <111>, which causes twisting. To do. As a result, the relationship between the applied voltage and the d31 constant is considered to increase as the voltage value increases. This relationship was confirmed by experiments and is shown in FIG. Further, according to the experiment, it was found that the d31 constant of the first ferroelectric was exceeded at a voltage value of about 10V.

【0013】次に本発明の、それぞれのd31定数が印
加電圧に対する依存性が異なる強誘電体を張り合わせて
なる強誘電体アクチュエータの動作について説明する。
図1(b)および図1(c)に示すように第一の電極と
第三の電極間は外部の配線によって短絡されており、ま
た、第二の電極と第四の電極は張り合わせる際に短絡さ
れている。電圧を印加する際に、境界電圧値10V以上
の電圧では、第二の強誘電体のd31定数の方が大きい
ので、図1(b)に示すように第二の強誘電体側に曲げ
応力が働き、境界電圧値10V以下の電圧では、第二の
強誘電体のd31定数の方が小さいので、図1(c)に
示すように第一の強誘電体側へ曲げ応力が働くのであ
る。なお、印加電圧が境界電圧値にある場合は、第一の
強誘電体1と第二の強誘電体4のd31定数は同じ値を
示すので曲げ応力は発生せず、アクチュエータ素子には
延びが生ずるのみである。
Next, the operation of the ferroelectric actuator according to the present invention, which is formed by laminating the ferroelectrics whose d31 constants have different dependences on the applied voltage, will be described.
As shown in FIGS. 1 (b) and 1 (c), the first electrode and the third electrode are short-circuited by an external wiring, and the second electrode and the fourth electrode are stuck together. Shorted to. When a voltage is applied, the d31 constant of the second ferroelectric substance is larger at a boundary voltage value of 10 V or more, so that bending stress is applied to the second ferroelectric substance side as shown in FIG. 1 (b). At a boundary voltage value of 10 V or less, the d31 constant of the second ferroelectric substance is smaller, so that bending stress acts on the first ferroelectric substance side as shown in FIG. 1 (c). When the applied voltage is at the boundary voltage value, the d31 constants of the first ferroelectric substance 1 and the second ferroelectric substance 4 show the same value, so that bending stress does not occur and the actuator element is not extended. It only happens.

【0014】次に本発明のバイモルフ型強誘電体アクチ
ュエータ素子の製造方法について説明する。図6から図
12は本発明のアクチュエータ素子の製造方法を示すた
めの各工程における断面図である。
Next, a method for manufacturing the bimorph type ferroelectric actuator element of the present invention will be described. 6 to 12 are cross-sectional views in each step showing the method for manufacturing the actuator element of the present invention.

【0015】まず図6および図8に示すように、酸化マ
グネシウム基板21とシリコン基板22にそれぞれ、白
金23および26とチタン酸ジルコン酸鉛24および2
7をスパッタ法により形成する。この時、白金およびチ
タン酸ジルコン酸鉛を形成する条件としては、特に差を
設ける必要がなく、同条件で形成すればよい。こうする
ことで、酸化マグネシウム単結晶板21上に形成したチ
タン酸ジルコン酸鉛24はその大部分が正方相体の結晶
構造となり、シリコン基板22上に形成したチタン酸ジ
ルコン酸鉛27は正方相体と菱面相体が混在した結晶構
造となる。この理由はまだ明らかにされていないが、形
成する基板の熱膨張係数が関与しているらしいと言われ
ている。
First, as shown in FIGS. 6 and 8, platinum 23 and 26 and lead zirconate titanate 24 and 2 are provided on a magnesium oxide substrate 21 and a silicon substrate 22, respectively.
7 is formed by the sputtering method. At this time, the conditions for forming platinum and lead zirconate titanate do not have to be particularly different, and may be formed under the same conditions. As a result, most of the lead zirconate titanate 24 formed on the magnesium oxide single crystal plate 21 has a tetragonal crystal structure, and the lead zirconate titanate 27 formed on the silicon substrate 22 is tetragonal phase. It has a crystal structure in which the body and the rhombohedral phase body are mixed. The reason for this has not been clarified yet, but it is said that the thermal expansion coefficient of the substrate to be formed seems to be involved.

【0016】次に図7および図9に示すように、それぞ
れの基板に金25および28をスパッタ法や蒸着など通
常の手段で形成し、さらに図10に示すように、樹脂層
29によって張り合わせる。本発明のようにこのように
金を形成しておくことで、金25および28は第二およ
び第四の電極として作用するだけでなく、樹脂の密着性
を向上する効果ももたらす。
Next, as shown in FIGS. 7 and 9, gold 25 and 28 are formed on the respective substrates by a usual method such as a sputtering method or vapor deposition, and further bonded by a resin layer 29 as shown in FIG. . By forming gold in this manner as in the present invention, the gold 25 and 28 not only act as the second and fourth electrodes, but also have the effect of improving the adhesiveness of the resin.

【0017】次に、図11にあるように酸化マグネシウ
ム単結晶板をリン酸溶液により除去する。リン酸溶液は
白金を浸食しないので、酸化マグネシウム単結晶板のみ
を除去することが可能である。さらに図12にあるよう
にシリコン基板を六弗化硫黄ガスによるプラズマエッチ
ングにより除去する。ただし、六弗化硫黄ガスによるプ
ラズマエッチングでは白金を侵してしまう可能性もある
ので、その場合は弗化キセノンをエッチングガスとして
使用すると、白金との選択性が増し、シリコン基板のみ
を除去できるのである。
Next, as shown in FIG. 11, the magnesium oxide single crystal plate is removed with a phosphoric acid solution. Since the phosphoric acid solution does not erode platinum, it is possible to remove only the magnesium oxide single crystal plate. Further, as shown in FIG. 12, the silicon substrate is removed by plasma etching with sulfur hexafluoride gas. However, since plasma etching with sulfur hexafluoride gas may attack platinum, in that case, when xenon fluoride is used as an etching gas, selectivity with platinum is increased and only the silicon substrate can be removed. is there.

【0018】以上、本発明の製造方法により、印加電圧
に対するd31定数の依存性が違う2種類の強誘電体を
張り合わせてなるバイモルフ型のアクチュエータ素子を
得ることができる。
As described above, according to the manufacturing method of the present invention, it is possible to obtain a bimorph type actuator element in which two types of ferroelectrics having different dependences of the d31 constant on the applied voltage are laminated.

【0019】[0019]

【発明の効果】上記のような方法によって、印加電圧に
対するd31定数の依存性が違う2種類の強誘電体を張
り合わせて得られるバイモルフ型のアクチュエータ素子
は、単一の電源のみでアクチュエータ素子を自由な方向
へ歪みを発生させることができるようになる。また、そ
れぞれの強誘電体において分極の緩和・反転が起こる方
向には電圧を印加しないので、圧電特性が劣化する心配
がないのである。
According to the method described above, the bimorph type actuator element obtained by bonding two kinds of ferroelectrics having different d31 constants with respect to the applied voltage can be freely used with only a single power source. Distortion can be generated in any direction. In addition, since no voltage is applied in the direction in which relaxation or inversion of polarization occurs in each ferroelectric, there is no concern that the piezoelectric characteristics will deteriorate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態における強誘電体アクチ
ュエータの構造と変位の様子を説明する断面図
FIG. 1 is a sectional view illustrating a structure of a ferroelectric actuator and a state of displacement according to an embodiment of the present invention.

【図2】同要部である正方相の結晶構造を示す模式図FIG. 2 is a schematic diagram showing a crystal structure of a tetragonal phase, which is a main part of the same.

【図3】同要部である菱面相の結晶構造を示す模式図FIG. 3 is a schematic diagram showing a crystal structure of a rhombohedral phase, which is a main part of the same.

【図4】同印加電圧とd31定数の関係を示す図FIG. 4 is a diagram showing a relationship between the applied voltage and a d31 constant.

【図5】同印加電圧とd31定数の関係を示す図FIG. 5 is a diagram showing the relationship between the applied voltage and the d31 constant.

【図6】同製造工程を示す断面図FIG. 6 is a cross-sectional view showing the same manufacturing process.

【図7】同断面図FIG. 7 is a sectional view of the same.

【図8】同断面図FIG. 8 is a sectional view of the same.

【図9】同断面図FIG. 9 is a sectional view of the same.

【図10】同断面図FIG. 10 is a sectional view of the same.

【図11】同断面図FIG. 11 is a sectional view of the same.

【図12】同断面図FIG. 12 is a sectional view of the same.

【図13】従来の強誘電体アクチュエータの構造と変位
の様子を説明する断面図
FIG. 13 is a cross-sectional view illustrating a structure of a conventional ferroelectric actuator and a state of displacement.

【図14】同断面図FIG. 14 is a sectional view of the same.

【符号の説明】[Explanation of symbols]

1 第一の強誘電体 2 第一の電極 3 第二の電極 4 第二の強誘電体 5 第三の電極 6 第四の電極 7 接着層 1 First ferroelectric 2 First electrode 3 Second electrode 4 Second ferroelectric 5 Third electrode 6 Fourth electrode 7 Adhesive layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村嶋 祐二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yuji Murashima             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第一の強誘電体と第二の強誘電体とを有
し、中間層の両面に上記第一および第二の強誘電体が、
それぞれの自発分極の主なる方向が反対になるように張
り合わされているバイモルフ型強誘電体アクチュエータ
素子であって、所定の電圧より低電圧条件の下では第二
の強誘電体の圧電特性であるd31定数は第一の強誘電
体のd31定数よりも低い値を示し、高電圧条件の下で
は第一の強誘電体のd31定数より第二の強誘電体特性
のd31定数が高い値を示し、前記所定の電圧条件下で
は、第一および第二の強誘電体のd31定数が同じ値と
なる強誘電体アクチュエータ素子。
1. A first ferroelectric substance and a second ferroelectric substance, wherein the first and second ferroelectric substances are provided on both surfaces of an intermediate layer, respectively.
A bimorph type ferroelectric actuator element laminated so that the main directions of respective spontaneous polarizations are opposite to each other, and having a piezoelectric characteristic of a second ferroelectric substance under a voltage condition lower than a predetermined voltage. The d31 constant shows a lower value than the d31 constant of the first ferroelectric substance, and under a high voltage condition, the d31 constant of the second ferroelectric substance shows a higher value than the d31 constant of the first ferroelectric substance. A ferroelectric actuator element in which the d31 constants of the first and second ferroelectrics have the same value under the predetermined voltage condition.
【請求項2】 第一の強誘電体は結晶構造の大部分が正
方相体であるチタン酸ジルコン酸鉛で、上記第二の強誘
電体は結晶構造が正方相体と菱面相体が混在するチタン
酸ジルコン酸鉛である請求項1記載の強誘電体アクチュ
エータ素子。
2. The first ferroelectric substance is lead zirconate titanate whose crystal structure is mostly tetragonal, and the second ferroelectric substance is a mixture of tetragonal and rhombohedral crystal structures. The ferroelectric actuator element according to claim 1, which is lead zirconate titanate.
【請求項3】 中間層は、導電体である請求項1記載の
強誘電体アクチュエータ素子。
3. The ferroelectric actuator element according to claim 1, wherein the intermediate layer is a conductor.
【請求項4】 結晶構造の大部分が正方相体である第一
の強誘電体と、正方相体と菱面相体が混在する第二の強
誘電体を有し、中間層の両面に上記第一および第二の強
誘電体が、それぞれの自発分極の主なる方向が反対にな
るように張り合わされているもので、前記第一の強誘電
体としてチタン酸ジルコン酸鉛は酸化マグネシウム単結
晶板上にスパッタ法により形成してなり、第二の強誘電
体としてチタン酸ジルコン酸鉛はシリコン基板上にスパ
ッタ法で形成してなる強誘電体アクチュエータ素子の製
造方法。
4. A first ferroelectric substance having a tetragonal phase body as a major part of a crystal structure and a second ferroelectric substance in which a tetragonal phase body and a rhombohedral phase body are mixed, and both sides of the intermediate layer are provided. The first and second ferroelectrics are laminated so that the main directions of their respective spontaneous polarizations are opposite to each other, and lead zirconate titanate is a magnesium oxide single crystal as the first ferroelectric. A method of manufacturing a ferroelectric actuator element, which is formed on a plate by a sputtering method, and lead zirconate titanate as a second ferroelectric is formed on a silicon substrate by a sputtering method.
JP2001242872A 2001-08-09 2001-08-09 Ferroelectric actuator element and manufacturing method thereof Expired - Fee Related JP4934924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001242872A JP4934924B2 (en) 2001-08-09 2001-08-09 Ferroelectric actuator element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001242872A JP4934924B2 (en) 2001-08-09 2001-08-09 Ferroelectric actuator element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003060251A true JP2003060251A (en) 2003-02-28
JP4934924B2 JP4934924B2 (en) 2012-05-23

Family

ID=19073077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001242872A Expired - Fee Related JP4934924B2 (en) 2001-08-09 2001-08-09 Ferroelectric actuator element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4934924B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107140A (en) * 2004-10-05 2006-04-20 Sony Corp Input/output device with tactile function, and electronic device
WO2009050812A1 (en) * 2007-10-18 2009-04-23 Fujitsu Limited Display unit and display system
JP2010529555A (en) * 2007-06-05 2010-08-26 イマージョン コーポレーション Method and apparatus for a tactile compliant flexible touch sensitive surface
US9405368B2 (en) 2013-04-26 2016-08-02 Immersion Corporation Passive stiffness and active deformation haptic output devices for flexible displays
US9939900B2 (en) 2013-04-26 2018-04-10 Immersion Corporation System and method for a haptically-enabled deformable surface
US10203757B2 (en) 2014-08-21 2019-02-12 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
US10440848B2 (en) 2017-12-20 2019-10-08 Immersion Corporation Conformable display with linear actuator
US10518170B2 (en) 2014-11-25 2019-12-31 Immersion Corporation Systems and methods for deformation-based haptic effects

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122580A (en) * 1988-10-31 1990-05-10 Yokogawa Electric Corp Manufacture of bimorph type actuator
JPH06172027A (en) * 1992-12-02 1994-06-21 Toto Ltd Ferroelectric porcelain composition
JPH08116103A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Piezoelectric actuator and manufacture thereof
JP2000332313A (en) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd Thin film piezoelectric bimorph element and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122580A (en) * 1988-10-31 1990-05-10 Yokogawa Electric Corp Manufacture of bimorph type actuator
JPH06172027A (en) * 1992-12-02 1994-06-21 Toto Ltd Ferroelectric porcelain composition
JPH08116103A (en) * 1994-10-17 1996-05-07 Matsushita Electric Ind Co Ltd Piezoelectric actuator and manufacture thereof
JP2000332313A (en) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd Thin film piezoelectric bimorph element and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107140A (en) * 2004-10-05 2006-04-20 Sony Corp Input/output device with tactile function, and electronic device
JP4543863B2 (en) * 2004-10-05 2010-09-15 ソニー株式会社 I / O device with tactile function and electronic device
JP2010529555A (en) * 2007-06-05 2010-08-26 イマージョン コーポレーション Method and apparatus for a tactile compliant flexible touch sensitive surface
US9823833B2 (en) 2007-06-05 2017-11-21 Immersion Corporation Method and apparatus for haptic enabled flexible touch sensitive surface
WO2009050812A1 (en) * 2007-10-18 2009-04-23 Fujitsu Limited Display unit and display system
US9405368B2 (en) 2013-04-26 2016-08-02 Immersion Corporation Passive stiffness and active deformation haptic output devices for flexible displays
US9939900B2 (en) 2013-04-26 2018-04-10 Immersion Corporation System and method for a haptically-enabled deformable surface
US9971409B2 (en) 2013-04-26 2018-05-15 Immersion Corporation Passive stiffness and active deformation haptic output devices for flexible displays
US10203757B2 (en) 2014-08-21 2019-02-12 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
US10509474B2 (en) 2014-08-21 2019-12-17 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
US10518170B2 (en) 2014-11-25 2019-12-31 Immersion Corporation Systems and methods for deformation-based haptic effects
US10440848B2 (en) 2017-12-20 2019-10-08 Immersion Corporation Conformable display with linear actuator

Also Published As

Publication number Publication date
JP4934924B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP3521499B2 (en) Piezoelectric / electrostrictive film type element
JP5168002B2 (en) Vibrator and oscillator
JP5506035B2 (en) Actuator manufacturing method
JPH03128680A (en) Piezoelectric/electrostrictive actuator
US20060049715A1 (en) Method and appartus for driving electro-mechanical transducer
JP6179669B2 (en) Piezoelectric thin film and piezoelectric thin film element
JP4934924B2 (en) Ferroelectric actuator element and manufacturing method thereof
JPH08116103A (en) Piezoelectric actuator and manufacture thereof
JPH10209517A (en) Piezoelectric element
JP5233466B2 (en) Vibrator, oscillator, and method for producing the vibrator
JPH1126832A (en) Piezoelectric film type element
JPH04315484A (en) Driving method of piezoelectric actuator
JP2016019012A (en) Ultrasonic probe
JPH06232469A (en) Driving method of piezoelectric actuator
WO2021256370A1 (en) Drive method, drive circuit, and displacement drive device
WO2013183242A1 (en) Method for driving non-volatile semiconductor device
JPS6372171A (en) Manufacture of electrostrictive driver
JP2009170631A (en) Piezoelectric element and method of manufacturing the same, and piezoelectric application device using the same
JP6972630B2 (en) Piezoelectric sensor
WO2005124447A1 (en) Production method for polarization inversion unit
JP6960889B2 (en) Optical scanning device and its driving method
WO2022153696A1 (en) Mems switch
JPH0582855A (en) Piezoelectric actuator
JPH0443684A (en) Laminated bimorph type piezoelectric element
JP2000223754A (en) Thin film piezoelectric transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080612

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees