JPH01273357A - Non-volatile semiconductor storage device - Google Patents

Non-volatile semiconductor storage device

Info

Publication number
JPH01273357A
JPH01273357A JP63101810A JP10181088A JPH01273357A JP H01273357 A JPH01273357 A JP H01273357A JP 63101810 A JP63101810 A JP 63101810A JP 10181088 A JP10181088 A JP 10181088A JP H01273357 A JPH01273357 A JP H01273357A
Authority
JP
Japan
Prior art keywords
column line
voltage limiter
control signal
line
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63101810A
Other languages
Japanese (ja)
Other versions
JP2638916B2 (en
Inventor
Naotaka Sumihiro
住廣 直孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10181088A priority Critical patent/JP2638916B2/en
Publication of JPH01273357A publication Critical patent/JPH01273357A/en
Application granted granted Critical
Publication of JP2638916B2 publication Critical patent/JP2638916B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent an erroneous erasing by connecting a first voltage limiter to the sheathed electrode of an FET and a row line at a first node to a drain electrode and inputting an erasing control signal by a gate while connecting a second voltage limiter to the row line at the first node. CONSTITUTION:A first diode D1 represents a voltage limiter at VL1 to approximately 16V and a second diode D2 a voltage limiter at VL2 to approximately 12V. A MISFETQ2 is turned ON on writing operation, and a writing power supply VPP1 is transmitted over a row line Y. Since an erasing control signal EC is brought to a high level, however, a MISFETQ4 is turned ON, and row-line potential is clamped at VL2 by the second diode D2. The erasing control signal EC (an over-bar) is brought to the high level, a MISFETQ 3 is turned ON and an erasing power supply VPP2 is transmitted over the row line on erasing operation, but the row-line potential is clamped at VL1 by the first diode D1.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は不揮発性半導体記憶装置に関し、特に電気的に
消去、書換え可能な読み出し専用メモリ(以下EEPR
OMという)に間する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a nonvolatile semiconductor memory device, and particularly to an electrically erasable and rewritable read-only memory (hereinafter referred to as EEPR).
OM).

[従来の技術] EEFROMにはその用途に応じて様々な構造、動作原
理のものがあるが、その中で最も大規模集積化に適する
ものに、いわゆるFLASHEEPROMがある(例え
ばl5SCC1987WPM7.4)。第4図にこのF
LASHEEPROMのメモリトランジスタの断面構造
図を示す。
[Prior Art] EEFROMs have various structures and operating principles depending on their uses, and among them, the so-called FLASHEEPROM is the most suitable for large-scale integration (for example, 15SCC1987WPM7.4). This F is shown in Figure 4.
A cross-sectional structural diagram of a memory transistor of LASHEEPROM is shown.

1はP型の半導体基板、2はn形のドレイン、3はソー
ス、4は厚さ200吟以下の薄い第1のゲート酸化膜、
5は浮遊ゲート、6は第2のゲート酸化膜、7は制御ゲ
ートである。書き込みは制御ゲート7に約20Vの電圧
を印加し、ドレイン2に約10Vの電圧を印加し半導体
基板1及びソース3を接地することによりトレイン近傍
で発生したホットエレクトロンを浮遊ゲート5に注入し
結果として負の電荷を蓄積する。消去は制御ゲート7と
ソース3と半導体基板1を接地しドレイン2に約19V
の電圧を印加し、Fowler−N。
1 is a P-type semiconductor substrate, 2 is an N-type drain, 3 is a source, 4 is a thin first gate oxide film with a thickness of 200 gin or less,
5 is a floating gate, 6 is a second gate oxide film, and 7 is a control gate. For writing, a voltage of about 20 V is applied to the control gate 7, a voltage of about 10 V is applied to the drain 2, and the semiconductor substrate 1 and source 3 are grounded, thereby injecting hot electrons generated near the train into the floating gate 5. Accumulates negative charge as . For erasing, ground the control gate 7, source 3, and semiconductor substrate 1, and apply approximately 19V to the drain 2.
Fowler-N.

rdheim)ンネリングで浮遊ゲート5からドレイン
2ヘエレクトロンを放出し結果として正の電荷を蓄積す
る。
rdheim) electrons are released from the floating gate 5 to the drain 2 by tunneling, and as a result, positive charges are accumulated.

このメモリトランジスタで不揮発性半導体装置を構成す
る場合の回路図を第5図に示す。Q2は書き込み制御信
号PGM(オーバーパー)とデータ信号を入力とするN
OR回路N0RIの出力をゲート入力とするMIS電解
効果トランジスタ、Q3は消去特高レベル信号となる消
去制御信号EC(オーバーパー)をゲート入力とするM
I S電解効果トランジスタ、Ml、 M2.  ・・
・Mnはメモリトランジスタでドレインは列線Yに接続
されソースはソース線に接続され制御ゲートは行線Xi
、  X2.  ・・・Xnに接続されている。
FIG. 5 shows a circuit diagram when a nonvolatile semiconductor device is constructed using this memory transistor. Q2 is an N input that receives the write control signal PGM (over par) and the data signal.
Q3 is an MIS field effect transistor whose gate input is the output of the OR circuit N0RI, and Q3 is an M whose gate input is the erase control signal EC (over par), which is an erase extra high level signal.
IS field effect transistor, Ml, M2.・・・
・Mn is a memory transistor whose drain is connected to the column line Y, whose source is connected to the source line, and whose control gate is connected to the row line Xi.
, X2. ...Connected to Xn.

[発明が解決しようとする問題点コ 上述した従来の不揮発性半導体装置には以下に述べる重
大な欠点がある。第6図で曲線A、  B、Cはメモリ
トランジスタのI−V曲線で、Aは書き込み開始時点、
B、  Cは書き込みが進行しメモリトランジスタの浮
遊ゲートにエレクトロンが注入されてオン電流が減少し
た時点での■−v曲線を示す。曲線りは負荷曲線を示し
VA、  VB、  VCはそれぞれの時点での列線電
位を表す。VEは消去動作時の列線電位、VEiは消去
可能な列線の最低電位を示す。VBDI、VBD2は書
き込まれたメモリトランジスタのドレイン−半導体基板
間降伏(アバランシェブレークダウン)電圧を示す。書
き込み動作時列線電位は書き込みの進行にともないVA
からVBを経てVCへと上昇していく。この時列線電位
が消去可能な列線の最低型(ffVEiを越えてしまう
と同じ列線に接続されている他のメモリトランジスタで
は消去が開始されてしまう。第5図において例えばメモ
リトランジスタM1を書き込むとき、書き込みが進行し
て列線電位がVEiを越えるとメモリトランジスタM2
・・・M(1ては消去が開始され書き込みマージンの減
少や誤消去が生じてしまう。
[Problems to be Solved by the Invention] The conventional nonvolatile semiconductor device described above has the following serious drawbacks. In Fig. 6, curves A, B, and C are the IV curves of the memory transistor, and A is the point at which writing starts;
B and C show the ■-v curves at the point in time when writing progresses and electrons are injected into the floating gate of the memory transistor and the on-current decreases. The curved line shows the load curve, and VA, VB, and VC represent the column line potential at each point in time. VE indicates a column line potential during an erase operation, and VEi indicates the lowest potential of an erasable column line. VBDI and VBD2 indicate the drain-semiconductor substrate breakdown (avalanche breakdown) voltage of the written memory transistor. During write operation, the column line potential changes to VA as the write progresses.
From there, it goes up to VB and then to VC. At this time, if the column line potential exceeds the lowest erasable column line (ffVEi), other memory transistors connected to the same column line will start erasing. During writing, if the writing progresses and the column line potential exceeds VEi, the memory transistor M2
. . .M(1) erase starts, resulting in a decrease in the write margin and erroneous erasure.

次に消去動作時の問題を述べる。書き込まれたメモリト
ランジスタのドレイン−半導体基板間降伏電圧は浮遊ゲ
ートに注入されたエレクトロンの負電荷により低下する
。したがってメモリトランジスタの書き込みレベルによ
り変動する。第6図においてドレイン−半導体基板間降
伏電圧がVBDの場合消去時列線電位VEより高いため
トレイン−半導体基板間で7バランシエブレークダウン
を生じることなく消去が進行するがドレイン−半導体基
板間降伏電圧がVBD2の場合VEより低いためアバラ
ンシェブレークダウンを生してしまう、アバランシェブ
レークダウンはドレイン近傍のゲート酸化膜へダメージ
を与え、書き込み特性の劣化、読み出し特性の劣化、消
去特性の劣化及び書換え可能回数の減少を引き起こす。
Next, we will discuss problems during erasing operations. The drain-to-semiconductor substrate breakdown voltage of the written memory transistor is lowered by the negative charge of electrons injected into the floating gate. Therefore, it varies depending on the write level of the memory transistor. In FIG. 6, when the breakdown voltage between the drain and the semiconductor substrate is VBD, since it is higher than the erase time line potential VE, erasing proceeds without causing a 7-balancier breakdown between the train and the semiconductor substrate, but the breakdown voltage between the drain and the semiconductor substrate occurs. When the voltage is VBD2, it is lower than VE, which causes avalanche breakdown. Avalanche breakdown damages the gate oxide film near the drain, resulting in deterioration of write characteristics, read characteristics, erase characteristics, and rewritability. causing a decrease in the number of times.

上述した書き込み時および消去時の問題に対し、製造バ
ラツキなどを考慮して適性化することは非常に困難であ
った。
It has been extremely difficult to take into account manufacturing variations and to optimize the problems during writing and erasing described above.

[発明の従来技術に対する相違点] 上述した従来の不揮発性半導体記憶装置に対し、本発明
は書き込み動作時の列線の電位を消去可能な列線の最低
電位より低い電圧でクラシブし、消去動作時の列線電位
をメモリトランジスタのトレインと半導体基板間の降伏
電圧より低い電位てクランプすると言う相違点を有する
[Differences between the invention and the prior art] In contrast to the conventional non-volatile semiconductor memory device described above, the present invention scrubs the potential of the column line during a write operation with a voltage lower than the lowest potential of the column line that can be erased. The difference is that the column line potential at the time is clamped at a potential lower than the breakdown voltage between the memory transistor train and the semiconductor substrate.

[問題点を解決するための手段] 本発明はドレイン電極が列線に接続されソース電極がソ
ース線に接続されゲート電極が行線に接続された浮遊ゲ
ートを有する第1電界効果トランジスタ(メモリトラン
ジスタ)と、ドレイン電極が第1電源に接続されソース
電極が第1接続点において列線に接続され書き込み制御
信号をゲート人力とする第2電界効果トランジスタと、
ドレイン電極が第2電源に接続されソース電極が第1接
続点に接続され消去制御信号をゲート入力とする第3電
界効果トランジスタと、第1電圧リミッタ−と、ドレイ
ン電極が第1接続点に接続されソース電極が第1電圧リ
ミッタ−に接続され消去制御進行をゲート入力とする第
4電界効果トランジスタと、第1接続点に接続された第
2電圧リミッタ−とを含んで構成される。
[Means for Solving the Problems] The present invention provides a first field effect transistor (memory transistor) having a floating gate in which a drain electrode is connected to a column line, a source electrode is connected to a source line, and a gate electrode is connected to a row line. ), a second field effect transistor having a drain electrode connected to the first power supply, a source electrode connected to the column line at the first connection point, and having a write control signal as a gate input;
a third field effect transistor having a drain electrode connected to a second power supply, a source electrode connected to the first connection point, and having an erase control signal as a gate input; a first voltage limiter; and a drain electrode connected to the first connection point. The fourth field effect transistor has a source electrode connected to the first voltage limiter and receives erase control progress as a gate input, and a second voltage limiter connected to the first connection point.

[実施例コ 次に本発明について図面を参照して説明する。[Example code] Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1実施例の回路図である。FIG. 1 is a circuit diagram of a first embodiment of the present invention.

VPPIは書き込み電源、Q2は書き込み制御信号とデ
ータ信号を人力とするNOR回路NOR1の出力をゲー
ト人力とするMIS電界効果トランジスタ、VPP2は
消去電源、Q3は消去制御信号EC(オーバーパー)を
ゲート入力とするMIS電界効果トランジスタ、Jは第
1の接続点、Dlは第1のダイオード、D2は第2のダ
イオード、ECは消去制御信号でEC(オーバーパー)
の反転信号、Q4はECをゲート人力とするMIS電界
効果トランジスタ、Yは列線、Ml、M2・・・Mnは
メモリトランジスタ、Sはソース線、Xl、X2・・・
Xnは行線である。
VPPI is the write power supply, Q2 is the MIS field effect transistor whose gate power is the output of the NOR circuit NOR1 which uses the write control signal and data signal, VPP2 is the erase power supply, and Q3 is the gate input of the erase control signal EC (over par). where J is the first connection point, Dl is the first diode, D2 is the second diode, and EC is the erase control signal EC (over par).
Q4 is the MIS field effect transistor with EC as the gate power, Y is the column line, Ml, M2...Mn is the memory transistor, S is the source line, Xl, X2...
Xn is a row line.

第1のダイオードDIはVLI〜約16Vの電圧リミッ
タ−で、第2のダイオードD2はVL2〜約2〜Vの電
圧リミッタ−である。書き込み動作時MIS電界効果ト
ランジスタQ2はオンして、書き込み電源VPPIを列
線Yに伝えるが、消去制御信号ECが高レベルであるた
めMIS電界効果トランジスタQ4がオンして列線電位
は第2のダイオードD2によりVL2でクランプされる
The first diode DI is a voltage limiter from VLI to about 16V, and the second diode D2 is a voltage limiter from VL2 to about 2V. During a write operation, the MIS field effect transistor Q2 turns on and transmits the write power supply VPPI to the column line Y. However, since the erase control signal EC is at a high level, the MIS field effect transistor Q4 turns on and the column line potential changes to the second column line. It is clamped at VL2 by diode D2.

次に消去動作時消去制御信号EC(オーバーパー)が高
レベルになりMIS電界効果トランジスタQ3がオンし
て消去電源VPP2を列線に伝えるが列線電位は第1の
ダイオードD1によりVLIでクランプされる。この時
消去制御信号ECは低レベルであるからMIS電界効果
トランジスタQ4はオフするため第2のダイオードD2
は電圧リミッタ−として作動しない。
Next, during the erase operation, the erase control signal EC (over par) becomes high level, the MIS field effect transistor Q3 is turned on, and the erase power supply VPP2 is transmitted to the column line, but the column line potential is clamped at VLI by the first diode D1. Ru. At this time, since the erase control signal EC is at a low level, the MIS field effect transistor Q4 is turned off, so that the second diode D2
does not operate as a voltage limiter.

次に第2図に従って説明する。曲線A、  Cはメモリ
トランジスタのI−V曲線てAは書込開始時点を示し、
Cは書き込みが進行した時点でのI−7曲線を示す。L
は負荷曲線である。書き込みが開始すると列線電位はV
Aから上昇していくが第2のダイオードD2によりVL
2〜約2〜Vでクランプされそれ以上上がらない。VL
2は消去可能な列線の最低電位VEi〜約14Vより低
いため書込レベルの低下や誤消去の問題は一切生じない
。消去動作時列線電位は第1のダイオードで1によりV
LI〜約16Vでクランプされる。VLlはメモリトラ
ンジスタのドレイン−半導体基板間降伏電圧VBD〜1
8Vより低いためアバランシェブレークダウンは一切生
じない。したがってドレイ、ン近傍のゲート酸化膜への
ダメージはなく、書き込み特性、消去特性、読み出し特
性、書換え可能回数の劣化などの問題は生じず信頼性の
高い不揮発性半導体記憶装置が得られる。
Next, explanation will be given according to FIG. Curves A and C are the IV curves of the memory transistor, A indicates the writing start point,
C shows the I-7 curve at the time when writing has progressed. L
is the load curve. When writing starts, the column line potential becomes V
The voltage rises from A, but VL increases due to the second diode D2.
It is clamped at 2 to about 2 to V and does not rise any higher. VL
2 is lower than the lowest potential VEi of the erasable column line - about 14 V, so there is no problem of lowering the write level or erroneous erasing. During the erase operation, the column line potential is set to V by the first diode.
It is clamped at about 16V from LI. VLl is the drain-semiconductor substrate breakdown voltage VBD~1 of the memory transistor
Since it is lower than 8V, no avalanche breakdown occurs. Therefore, there is no damage to the gate oxide film in the vicinity of the drain, and there is no problem such as deterioration of write characteristics, erase characteristics, read characteristics, and possible number of rewrites, and a highly reliable nonvolatile semiconductor memory device can be obtained.

さらに第1の接続点Jと列線Yが列線選択信号をゲート
入力とするセレクト用トランジスタを介して接続されて
も本発明に包含されることは容易に類推てきる。
Furthermore, it can be easily inferred that even if the first connection point J and the column line Y are connected via a selection transistor whose gate input is a column line selection signal, the invention is also included.

第3図は本発明の第2実施例の回路図である。FIG. 3 is a circuit diagram of a second embodiment of the present invention.

Q6はゲート電極をドレイン電極に接続したしきい値が
約16VのMIS電界効果トランジスタ、消去特電圧リ
ミッタ−として作動し、Q5はゲート電極をドレイン電
極に接続したしきい値が約12VのMIS電界効果トラ
ンジスタで書き込み時電圧リミッタ−として作動する。
Q6 is an MIS field effect transistor whose gate electrode is connected to the drain electrode and whose threshold value is approximately 16V, and operates as an erase special voltage limiter, and Q5 is an MIS field effect transistor whose gate electrode is connected to the drain electrode and whose threshold value is approximately 12V. It is an effect transistor and operates as a voltage limiter during writing.

[発明の効果] 以上説明したように本発明は第1電圧リミッタ−と、ソ
ース電極を第1電圧リミッタ−に接続され、ドレイン電
極を第1接続点で列線に接続され、消去制御信号をゲー
ト入力とする電界効果トランジスタと、第1接続点で列
線に接続された第2電圧リミッタ−とを含んで構成され
ることにより、書き込み動作時の列線電位を消去可能な
列線の最低電位より低い電圧でクランプし書き込みレベ
ルの減少や誤消去を完全に防ぐことができ、さらに消去
動作時の列線電位をメモリトランジスタのトレインと半
導体基板間の降伏電圧より低い電位でクランプしアバラ
ンシェブレークダウンを防ぎ書き込み特性、消去特性、
読み出し特性、書換え可能回数などの劣化を防止し、信
頼性の高い不揮発性半導体記憶装置を与える効果がある
[Effects of the Invention] As explained above, the present invention includes a first voltage limiter, a source electrode connected to the first voltage limiter, a drain electrode connected to a column line at a first connection point, and an erase control signal. The structure includes a field effect transistor as a gate input, and a second voltage limiter connected to the column line at the first connection point, so that the column line potential can be erased at the lowest level of the column line during a write operation. By clamping at a voltage lower than the potential, it is possible to completely prevent a decrease in the write level and erroneous erasing.Furthermore, the column line potential during erase operation is clamped at a potential lower than the breakdown voltage between the memory transistor train and the semiconductor substrate, resulting in avalanche break. Write characteristics, erase characteristics,
This has the effect of preventing deterioration of read characteristics, number of rewrites, etc., and providing a highly reliable nonvolatile semiconductor memory device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の回路図、第2図は第1実
施例の特性を示すグラフ、第3図は本発明の第2実施例
の回路図、第4図はメモリトランジスタの断面構造図、
第5図は従来例の回路図、第6図は従来の問題点を示す
グラフである。 VPPI、VPP2・・・電源、 PGM(オーバーパー)・・・書き込み制御信号、EC
(オーバーパー)、EC・・・消去制御信号、Q2.Q
3.  Q4゜ Q5.Q6・・・・MI S電界効果トランジスタ、D
I、D2・・・ダイオード、 J・・・・・・・第1の接続点、 Y・・・・・・・列線、 XI、X2.  ・・・Xn・・・・・・行線、S・・
・・・ソース線、 Ml、M2.  ・・・Mn・・メモリトランジスタ、
1・・・・・半導体基板、 2・・・・・ドレイン、 3・ ・ ・ ・ ・ソース、 4・・・・・第1のゲート酸化膜、 5・・・・・浮遊ゲート、 6・・・・・第2のゲート酸化膜、 7・・・・・制御ゲート。 特許出願人  日本電気株式会社 代理人 弁理士  桑 井 清 − 「 第5図 第4図 「 第5図
Fig. 1 is a circuit diagram of the first embodiment of the present invention, Fig. 2 is a graph showing the characteristics of the first embodiment, Fig. 3 is a circuit diagram of the second embodiment of the invention, and Fig. 4 is a memory transistor. Cross-sectional structural diagram of
FIG. 5 is a circuit diagram of a conventional example, and FIG. 6 is a graph showing problems with the conventional example. VPPI, VPP2...power supply, PGM (over par)...write control signal, EC
(over par), EC... erasure control signal, Q2. Q
3. Q4゜Q5. Q6...MIS field effect transistor, D
I, D2...Diode, J...First connection point, Y...Column line, XI, X2. ...Xn... row line, S...
...source line, Ml, M2. ...Mn...memory transistor,
1... Semiconductor substrate, 2... Drain, 3... Source, 4... First gate oxide film, 5... Floating gate, 6... ...Second gate oxide film, 7...Control gate. Patent Applicant: NEC Corporation Representative, Patent Attorney Kiyoshi Kuwai - "Figure 5Figure 4" Figure 5

Claims (1)

【特許請求の範囲】[Claims] ドレイン電極が列線に接続されソース電極がソース線に
接続されゲート電極が行線に接続されたメモリ機能を有
する第1導電型の第1の電界効果トランジスタと、ドレ
イン電極が第1電源に接続されソース電極が第1の接続
点において前記列線に接続され書き込み制御信号をゲー
ト入力とする第1導電型の第2電界効果トランジスタと
、ドレイン電極が第2電源に接続されソース電極が前記
第1の接続点に接続され消去制御信号をゲート入力とす
る第1導電型の第3電解効果トランジスタとを含む不揮
発性半導体記憶装置において、第1電圧リミッターと、
ドレイン電極が前記第1接続点に接続されソース電極が
前記第1電圧リミッターに接続され消去制御信号をゲー
ト入力とする第1導電型の第4電解効果トランジスタと
、前記第1接続点に接続された第2電圧リミッターとを
含んで構成されることを特徴とする不揮発性半導体記憶
装置。
a first field effect transistor of a first conductivity type having a memory function, the drain electrode being connected to the column line, the source electrode being connected to the source line, and the gate electrode being connected to the row line; and the drain electrode being connected to a first power source. a first conductivity type second field effect transistor having a source electrode connected to the column line at a first connection point and having a write control signal as a gate input; a drain electrode connected to a second power source and a source electrode connected to the column line; a first voltage limiter;
a fourth field effect transistor of a first conductivity type, the drain electrode of which is connected to the first connection point, the source electrode of which is connected to the first voltage limiter, and whose gate input is an erase control signal; 1. A nonvolatile semiconductor memory device comprising: a second voltage limiter;
JP10181088A 1988-04-25 1988-04-25 Nonvolatile semiconductor memory device Expired - Fee Related JP2638916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10181088A JP2638916B2 (en) 1988-04-25 1988-04-25 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10181088A JP2638916B2 (en) 1988-04-25 1988-04-25 Nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPH01273357A true JPH01273357A (en) 1989-11-01
JP2638916B2 JP2638916B2 (en) 1997-08-06

Family

ID=14310489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10181088A Expired - Fee Related JP2638916B2 (en) 1988-04-25 1988-04-25 Nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2638916B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012525A1 (en) * 1991-12-09 1993-06-24 Fujitsu Limited Flash memory improved in erasing characteristic, and circuit therefor
US5815440A (en) * 1992-12-03 1998-09-29 Fujitsu Limited Semiconductor memory device with electrically controllable threshold voltage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693A (en) * 1979-06-15 1981-01-06 Nec Corp Write-in circuit for non-volatile semiconductor memory
JPS6124094A (en) * 1984-07-11 1986-02-01 Hitachi Micro Comput Eng Ltd Memory device for semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693A (en) * 1979-06-15 1981-01-06 Nec Corp Write-in circuit for non-volatile semiconductor memory
JPS6124094A (en) * 1984-07-11 1986-02-01 Hitachi Micro Comput Eng Ltd Memory device for semiconductor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012525A1 (en) * 1991-12-09 1993-06-24 Fujitsu Limited Flash memory improved in erasing characteristic, and circuit therefor
US5592419A (en) * 1991-12-09 1997-01-07 Fujitsu Limited Flash memory with improved erasability and its circuitry
US5608670A (en) * 1991-12-09 1997-03-04 Fujitsu Limited Flash memory with improved erasability and its circuitry
US5619450A (en) * 1991-12-09 1997-04-08 Fujitsu Limited Drive circuit for flash memory with improved erasability
US5631597A (en) * 1991-12-09 1997-05-20 Fujitsu Limited Negative voltage circuit for a flash memory
US5640123A (en) * 1991-12-09 1997-06-17 Fujitsu Limited Substrate voltage control circuit for a flash memory
US5770963A (en) * 1991-12-09 1998-06-23 Fujitsu Limited Flash memory with improved erasability and its circuitry
US5815440A (en) * 1992-12-03 1998-09-29 Fujitsu Limited Semiconductor memory device with electrically controllable threshold voltage
US6288945B1 (en) 1992-12-03 2001-09-11 Fujitsu Limited Nonvolatile semiconductor memory device having electrically and collectively erasable characteristics
US6414874B2 (en) 1992-12-03 2002-07-02 Fujitsu Limited Nonvolatile semiconductor memory device having electrically and collectively erasable characteristics
US6563738B2 (en) 1992-12-03 2003-05-13 Fujitsu Limited Nonvolatile semiconductor memory device having electrically and collectively erasable characteristics
US6611464B2 (en) 1992-12-03 2003-08-26 Fujitsu Limited Nonvolatile semiconductor memory device having electrically and collectively erasable characteristics
US6618288B2 (en) 1992-12-03 2003-09-09 Fujitsu Limited Nonvolatile semiconductor memory device having electrically and collectively erasable characteristics
US6646920B2 (en) 1992-12-03 2003-11-11 Fujitsu Limited Nonvolatile semiconductor memory device having electrically and collectively erasable characteristics

Also Published As

Publication number Publication date
JP2638916B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US5222040A (en) Single transistor eeprom memory cell
US5677873A (en) Methods of programming flash EEPROM integrated circuit memory devices to prevent inadvertent programming of nondesignated NAND memory cells therein
US7164606B1 (en) Reverse fowler-nordheim tunneling programming for non-volatile memory cell
JPH03219496A (en) Nonvolatile semiconductor memory device
JP2754887B2 (en) Nonvolatile semiconductor memory device and write / erase method therefor
US6751125B2 (en) Gate voltage reduction in a memory read
JP2933090B2 (en) Nonvolatile semiconductor memory device
JP2638654B2 (en) Semiconductor nonvolatile storage device
JPH0325876B2 (en)
JP2701757B2 (en) Writing method for semiconductor memory device
JPH0757486A (en) Driving method for nand type nonvolatile memory
JPH06302828A (en) Nonvolatile semiconductor memory device
JPH01273357A (en) Non-volatile semiconductor storage device
JP2590764B2 (en) Nonvolatile semiconductor memory device
JPH05326981A (en) Non-volatile semiconductor storage device
JP3228188B2 (en) Electrically writable / erasable nonvolatile semiconductor memory device
JPH0512889A (en) Nonvolatile semiconductor storage
JP3230323B2 (en) Control method of nonvolatile storage device
JP3106473B2 (en) Nonvolatile semiconductor memory device
JP3074939B2 (en) Nonvolatile semiconductor device
JP3095918B2 (en) Non-volatile semiconductor memory
JP3324691B2 (en) Nonvolatile semiconductor memory device and data rewriting method for nonvolatile semiconductor memory device
JPH0320838B2 (en)
JPH03252994A (en) Non-volatile semiconductor memory device
JP2850655B2 (en) Nonvolatile semiconductor memory device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees