JPH01271626A - Device for controlling fuel injection quantity of diesel engine - Google Patents

Device for controlling fuel injection quantity of diesel engine

Info

Publication number
JPH01271626A
JPH01271626A JP9759788A JP9759788A JPH01271626A JP H01271626 A JPH01271626 A JP H01271626A JP 9759788 A JP9759788 A JP 9759788A JP 9759788 A JP9759788 A JP 9759788A JP H01271626 A JPH01271626 A JP H01271626A
Authority
JP
Japan
Prior art keywords
fuel
amount
diesel engine
fuel injection
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9759788A
Other languages
Japanese (ja)
Other versions
JP2576183B2 (en
Inventor
Yoshiyasu Ito
嘉康 伊藤
Fumiaki Kobayashi
文明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63097597A priority Critical patent/JP2576183B2/en
Publication of JPH01271626A publication Critical patent/JPH01271626A/en
Application granted granted Critical
Publication of JP2576183B2 publication Critical patent/JP2576183B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the occurrence of a deceleration shock by lessening the reducing quantity of a fuel quantity according to a control means when a fuel quantity at the time of the previous injection stroke is judged to be a corresponding quantity to a driven operating condition further than when judged to be a corresponding quantity to a driving operating condition, at the time of decelerating an engine. CONSTITUTION:At the time of decelerating a Diesel engine M1, a control means M4 outputs a command for reducing a feeding fuel quantity to a fuel injecting means M3. At this time, a judging means M5 judges whether the fuel quantity commanded by the control means M4 at the time of previous injection stroke is a corresponding quantity to a driving operating condition above a fuel quantity corresponding to a minute load condition in the vicinity of the no-load operation of the engine M1, or a corresponding quantity to a driven operating condition below the fuel quantity corresponding to the minute load condition. When the fuel quantity at the time of the previous injection stroke is judged to be the corresponding quantity to the driven operating condition, a restricting means M6 is operated so as to lessen the reducing quantity of the fuel quantity according to the control means M4.

Description

【発明の詳細な説明】 1肌Ω亘皿 [産業上の利用分野コ 本発明は、ディーゼル機関に噴射される燃料の減速減量
に有効なディーゼル機関の燃料噴射量制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection amount control device for a diesel engine that is effective for reducing deceleration of fuel injected into a diesel engine.

[従来の技術] 一般に、ディーゼル機関は圧縮比が高いため、機械損失
が大きいので、減速運転時には大きな負トルクを発生し
、所謂、減速ショック現象を生じる。そこで、従来より
このような減速ショック現象を防止する技術として、例
えば、以下のようなものが提案されている。すなわち、 (1) 減速時における燃料の噴射量の減少速度に所定
の制限値を設けて減速の程度を制御し、急減速による違
和感や不快感を与えないように制御する「ディーゼルエ
ンジンの制御装置」 (特開昭57−28829号公報
)。
[Prior Art] Generally, a diesel engine has a high compression ratio and therefore has a large mechanical loss, and therefore generates a large negative torque during deceleration operation, resulting in a so-called deceleration shock phenomenon. Therefore, as a technique for preventing such a deceleration shock phenomenon, for example, the following techniques have been proposed. In other words, (1) A diesel engine control device that controls the degree of deceleration by setting a predetermined limit value on the rate at which the amount of fuel injected during deceleration decreases, so as not to cause discomfort or discomfort due to sudden deceleration. ” (Japanese Unexamined Patent Publication No. 57-28829).

(2) 燃料噴射量又はアクセル開度のなまし処理を行
なうに際して、その許容変化量を、エンジン冷却水温、
車両の走行速度、変速機の変速位置、エンジン回転速度
、アクセル開度の変化量の少なくともいずれか一つに応
じて変化させ、広い運転領域で加減速ショックを防止す
る「ディーゼルエンジンの燃料噴射量なまし制御方法」
 (特開昭60−19943号公報)。
(2) When smoothing the fuel injection amount or accelerator opening, the allowable change amount is calculated based on the engine cooling water temperature,
Diesel engine fuel injection amount changes in response to at least one of the following: vehicle speed, transmission shift position, engine speed, and accelerator opening amount to prevent acceleration/deceleration shocks over a wide range of driving conditions. Smoothing control method”
(Japanese Unexamined Patent Publication No. 19943/1983).

(3) 加減速開始後の経過時間に応じて、燃料噴射量
又はアクセル開度の許容変化量を変えて加減速状態に合
わせた適切ななまし処理を行ない、加減速ショックを低
減する「ディーゼルエンジンの燃料噴射量なまし制御方
法」 (特開昭60−32961号公報)。
(3) Depending on the elapsed time after the start of acceleration/deceleration, the allowable amount of change in fuel injection amount or accelerator opening is changed to perform appropriate smoothing processing according to the acceleration/deceleration state, reducing acceleration/deceleration shock. "An engine fuel injection amount smoothing control method" (Japanese Patent Application Laid-Open No. 60-32961).

[発明が解決しようとする課題] しかし、従来技術では、減速減量に際し、ディーゼル機
関の出力する駆動力と減速ショック現象発生との関係に
ついて同等考慮されていないという問題点があった。す
なわち、一般に、減速開始時からディーゼル機関の無負
荷運転状態近傍の微小負荷状態までは、ディーゼル機関
の出力する駆動力が負荷より大きいので、燃料カット等
の急激な減速減量を行なわなければ、減速ショック現象
は生じ難い。一方、ディーゼル機関の無負荷運転状態近
傍の微小負荷状態からさらに減速した場合は、ディーゼ
ル機関の出力する駆動力より負荷の方が大きくなり、デ
ィーゼル機関が被駆動状態、所謂エンジンブレーキ状態
に移行するので、減速減量を適切に行わないと、減速シ
ョック現象の発生、あるいは、エンジンブレーキ性能を
発揮できない状態を招く。ところが、従来技術では、減
速開始時からディーゼル機関の無負荷運転状態近傍の微
小負荷状態まで減速した場合と、微小負荷状態からさら
に減速した場合とを区別して燃料噴射量の減速減量を実
行していなかった。従って、減速減量時の燃料噴射量制
御の制御精度が低く、未だ不十分であった。
[Problems to be Solved by the Invention] However, in the prior art, when reducing the deceleration, there is a problem in that the relationship between the driving force output by the diesel engine and the occurrence of the deceleration shock phenomenon is not equally considered. In other words, in general, the driving force output by the diesel engine is greater than the load from the start of deceleration to the minute load state near the no-load operating state of the diesel engine. Shock phenomenon is unlikely to occur. On the other hand, if the diesel engine is decelerated further from a very small load state near the no-load operating state, the load becomes greater than the driving force output by the diesel engine, and the diesel engine shifts to a driven state, a so-called engine braking state. Therefore, if the deceleration reduction is not performed appropriately, a deceleration shock phenomenon may occur or a state where engine braking performance cannot be achieved will result. However, in the conventional technology, the deceleration reduction of the fuel injection amount is performed by distinguishing between the case where the diesel engine decelerates from the start of deceleration to a minute load state near the no-load operating state, and the case where the diesel engine further decelerates from the minute load state. There wasn't. Therefore, the control accuracy of fuel injection amount control during deceleration and reduction was low and still insufficient.

また、不適切な減速減量制御に起因して、要求駆動力に
対して弊害を生じない範囲で駆動力を効果的に減少でき
ないので、減速ショック現象発生の防止と、空走惑を与
えない充分なエンジンブレーキ性能の発揮および減速サ
ージ現象の抑制とを両立できないという問題もあった。
In addition, due to inappropriate deceleration reduction control, it is not possible to effectively reduce the driving force within a range that does not cause any adverse effects on the required driving force. There is also the problem that it is not possible to achieve both good engine braking performance and suppression of deceleration surge phenomena.

本発明は、減速時に、減速ショック現象の発生を防止す
ると共に、エンジンブレーキ性能の発揮および減速サー
ジ現象の回避を好適に実現するディーゼル機関の燃料噴
射制御装置の提供を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a fuel injection control device for a diesel engine that prevents the occurrence of a deceleration shock phenomenon during deceleration, and also appropriately achieves engine braking performance and avoids a deceleration surge phenomenon.

に一1皿 [課題を解決するための手段] 上記目的を達成するためになされた本発明は、第1図に
例示するように、 ディーゼル機関M1の運転状態を検出する運転状態検出
手段M2と、 外部から指令される量の燃料を上記ディーゼル機関M1
に供給する燃料噴射手段M3と、上記ディーゼル機関M
1の噴射行程に同期して上記運転状態検出手段M2の検
出した運転状態に応じて定めた燃料量の変化に基づき、
該ディーゼル機関M1が減速時にあるときは、供給する
燃料量を減量する指令を上記燃料噴射手段M3に出力す
る制御手段M4と、 を具備したディーゼル機関の燃料噴射量制御装置におい
て、 さらに、上記ディーゼル機関M1の減速時、前回の噴射
行程時に上記制御手段M4の指令した燃料量が、該ディ
ーゼル機関M1の無負荷運転状態近傍の微小負荷状態に
対応する燃料量以上である駆動運転状態相当量であるか
、該微小負荷状態に対応する燃料量未満である被駆動運
転状態相当量であるかを判定する判定手段M5と、 該判定手段M5により前回の噴射行程時の燃料量が、被
駆動運転状態相当量であると判定されたときは、駆動運
転状態相当量であると判定されたときより、上記制御手
段M4による燃料量の減量を少なくする制限手段M6と
、 を備えたことを特徴とするディーゼル機関の燃料噴射量
制御11装置を要旨とするものである。
[Means for Solving the Problems] The present invention, which has been made to achieve the above object, as illustrated in FIG. , the amount of fuel commanded from the outside is supplied to the diesel engine M1.
a fuel injection means M3 for supplying fuel to the diesel engine M3;
Based on the change in the fuel amount determined according to the operating state detected by the operating state detecting means M2 in synchronization with the first injection stroke,
A fuel injection amount control device for a diesel engine, further comprising: a control means M4 that outputs a command to reduce the amount of fuel to be supplied to the fuel injection means M3 when the diesel engine M1 is decelerating; When the engine M1 is decelerating, the amount of fuel commanded by the control means M4 during the previous injection stroke is an amount equivalent to the driving operation state, which is equal to or more than the amount of fuel corresponding to a minute load state near the no-load operation state of the diesel engine M1. a determination means M5 for determining whether the amount of fuel in the previous injection stroke is equal to or less than the amount of fuel corresponding to the driven operation state, which is less than the amount of fuel corresponding to the minute load condition; A limiting means M6 for reducing the amount of fuel reduced by the control means M4 when it is determined that the amount is equivalent to the driving operation state than when it is determined that the amount is equivalent to the driving operation state. The gist of this paper is a fuel injection amount control 11 device for a diesel engine.

[作用] 本発明のディーゼル機関の燃料噴射量制御装置は、第1
図に例示するように、ディーゼル機関M1の噴射行程に
同期して運転状態検出手段M2の検出した運転状態に応
じて定めた燃料量の変化に基づき、ディーゼル機関M1
が減速時にあるときは、制御手段M4が、供給する燃料
量を減量する指令を燃料噴射手段M3に出力する。この
上記ディーゼル機関M1の減速時に、判定手段M5は、
前回の噴射行程時に上記制御手段M4の指令した燃料量
が、ディーゼル機関M1の無負荷運転状態近傍の微小負
荷状態に対応する燃料量以上である駆動運転状態相当量
であるか、微小負荷状態に対応する燃料量未満である被
駆動運転状態相当量であるかを判定する。ここで、上記
判定手段M5により前回の噴射行程時の燃料量が、被駆
動運転状態相当量であると判定されたときは、制限手段
M6が、駆動運転状態相当量であると判定されたときよ
り、上記制御手段M4による燃料量の減量を少なくする
よう働く。
[Function] The fuel injection amount control device for a diesel engine of the present invention has a first
As illustrated in the figure, the diesel engine M1
When the engine is decelerating, the control means M4 outputs a command to reduce the amount of fuel to be supplied to the fuel injection means M3. During deceleration of the diesel engine M1, the determining means M5:
The amount of fuel commanded by the control means M4 during the previous injection stroke is an amount equivalent to a driving operation state that is greater than or equal to the amount of fuel corresponding to a minute load condition near the no-load operation condition of the diesel engine M1, or the amount of fuel is equivalent to a minute load condition in the vicinity of the no-load operation condition of the diesel engine M1. It is determined whether the amount corresponding to the driven driving state is less than the corresponding fuel amount. Here, when the determination means M5 determines that the fuel amount during the previous injection stroke is an amount equivalent to the driven operation state, and when the limiting means M6 determines that the amount of fuel during the previous injection stroke is the amount equivalent to the driven operation state. This works to reduce the reduction in fuel amount caused by the control means M4.

すなわち、ディーゼル機関M1の減速時、供給される燃
料量が、無負荷運転状態近傍の微小負荷状態に対応する
燃料量以上である駆動運転状態相当量であるときは駆動
力低下が悪影響を招かないので比較的速やかに減速減量
し、微小負荷状態に対応する燃料量未満である被駆動運
転状態相当量であるときは減速減量を少なく制限して駆
動力の急激な低下を抑制し、弊害を防止するのである。
In other words, when the diesel engine M1 is decelerated, if the amount of fuel supplied is an amount equivalent to the driving operation state, which is more than the amount of fuel corresponding to a small load state near the no-load operation state, the reduction in driving force will not cause an adverse effect. Therefore, the amount of deceleration is reduced relatively quickly, and when the amount of fuel is less than the amount of fuel corresponding to the minute load condition, which is equivalent to the amount of driven operation, the amount of deceleration is limited to a small amount to suppress a sudden drop in driving force and prevent harmful effects. That's what I do.

従って、本発明のディーゼル機関の燃料噴射量制御装置
は、減速時に、駆動力の急減少に起因する悪影響を生じ
ることなく、迅速かつ円滑に減速減量するよう働く。
Therefore, the fuel injection amount control device for a diesel engine of the present invention works to quickly and smoothly reduce the amount of fuel injected during deceleration without causing any adverse effects due to a sudden decrease in driving force.

以上のように本発明の各構成要素が作用することにより
、本発明の技術的課題が解決される。
The technical problems of the present invention are solved by each component of the present invention acting as described above.

[実施例コ 次に本発明の好適な実施例を図面に基づいて詳細に説明
する。本発明の一実施例であるディーゼルエンジンの燃
料噴射量制御装置のシステム構成を第2図に示す。
[Embodiment] Next, a preferred embodiment of the present invention will be described in detail based on the drawings. FIG. 2 shows a system configuration of a fuel injection amount control device for a diesel engine, which is an embodiment of the present invention.

同図に示すように、ディーゼルエンジンの燃料噴射量制
御I装置1は、ディーゼルエンジン2、ディーゼルエン
ジン2に高圧燃料を供給する分配型の燃料噴射ポンプ3
およびこれらを制i即する電子制御装置(以下、単にE
C(Jと呼ぶ。)4から構成されている。
As shown in the figure, a fuel injection amount control device 1 for a diesel engine includes a diesel engine 2 and a distribution type fuel injection pump 3 that supplies high-pressure fuel to the diesel engine 2.
and an electronic control device (hereinafter simply E) that controls these.
It is composed of C (referred to as J)4.

ディーゼルエンジン2は、シリンダ11、ピストン12
から主燃焼室13を形成し、主燃焼室13には副燃焼室
14が連設されている。副燃焼室14には、上記燃料噴
射ポンプ3から圧送された高圧燃料を噴射するノズル1
5、始動時や冷間時に吸気を予熱するグロープラグ16
が配設されている。
The diesel engine 2 has a cylinder 11 and a piston 12.
A main combustion chamber 13 is formed from the main combustion chamber 13, and a sub-combustion chamber 14 is connected to the main combustion chamber 13. A nozzle 1 for injecting high-pressure fuel pumped from the fuel injection pump 3 is provided in the sub-combustion chamber 14.
5. Glow plug 16 that preheats intake air when starting or when cold
is installed.

また、ディーゼルエンジン2の吸気系は、吸気管17の
上流側に配設されたターボチャージャ18のコンプレッ
サ19、アクセルペダル20aと機械的に連結されてア
クセル操作量に応じた開度となる主吸気紋り弁20、主
吸気紋り弁20を迂回する吸気通路であるベンチュリア
センブリ21に配設されてダイヤフラムアクチュエータ
22により全開状態、半開状態、全開状態の3段階に調
節される副吸気紋り弁23から構成されている。
In addition, the intake system of the diesel engine 2 is mechanically connected to a compressor 19 of a turbocharger 18 disposed on the upstream side of an intake pipe 17, and an accelerator pedal 20a, so that a main intake air whose opening degree corresponds to the amount of accelerator operation is connected. An auxiliary intake crest valve is disposed in the venturi assembly 21, which is an intake passage that bypasses the main intake crest valve 20, and is adjusted by a diaphragm actuator 22 to three stages: fully open, half open, and fully open. It consists of 23.

ダイヤフラムアクチュエータ22に内蔵された第1およ
び第2ダイヤフラム室には、バキュームポンプ24から
の負圧、あるいは、外部の大気圧が、第1負圧切換弁(
以下、単に第1VSVと呼ぶ。)25および第2負圧切
換弁(以下、単に第2VSVと呼ぶ。)26を介して供
給される。第1VSV25および第2VSV26は、上
記ECU4(7)制御の基に、負圧、もしくは、大気圧
をダイヤフラムアクチュエータ22の第1および第2ダ
イヤプラム室に導入し、副吸気紋り弁23の開度を調節
する。ECU4が、第1 VSV25および第2VSV
26の両者に通電しない(OFF)ときは副吸気紋り弁
23は全開状態、第1VSV25には通電(ON)して
第2VSV26には通電しない(OF F)ときは副吸
気絞り弁23は半開状態、第1VSV25および第2V
SV26(7)両者ニ通電する(ON)ときは副吸気絞
り弁23は全開状態になる。
A first negative pressure switching valve (
Hereinafter, it will simply be referred to as the first VSV. ) 25 and a second negative pressure switching valve (hereinafter simply referred to as the second VSV) 26. The first VSV 25 and the second VSV 26 introduce negative pressure or atmospheric pressure into the first and second diaphragm chambers of the diaphragm actuator 22 under the control of the ECU 4 (7), and control the opening of the sub-intake valve 23. Adjust. ECU4 is the first VSV25 and the second VSV
26 is not energized (OFF), the auxiliary intake throttle valve 23 is fully open, and when the first VSV 25 is energized (ON) and the second VSV 26 is not energized (OFF), the auxiliary intake throttle valve 23 is half open. State, 1st VSV25 and 2nd V
When both SV26(7) are energized (ON), the sub-intake throttle valve 23 is fully open.

一方、ディーゼルエンジン2の排気系は、排気管27の
下流側に配設されたターボチャージャ1日のタービン2
日、過給圧を調節するウェイストゲートバルブ29を備
えている。
On the other hand, the exhaust system of the diesel engine 2 includes a turbocharger installed on the downstream side of the exhaust pipe 27.
Additionally, a waste gate valve 29 is provided to adjust the boost pressure.

燃料噴射ポンプ3は、ディーゼルエンジン2の図示しな
いクランク軸から動力の伝達を受ける駆動軸31、駆動
軸31と連動して回転するカムプレート32、カムプレ
ート32と一体的に結合されてその軸方向に摺動自在に
支持されたプランジャ33、プランジャ33の一端部が
嵌入されるシリンダ34、プランジャ33の一端部とシ
リンダ34の内部とで形成される加圧室35、ECU4
の制御の基に加圧室35と低圧室3aとの連通を遮断し
て加圧室35をデリバリバルブ36にのみ連通させる燃
料制御弁37から構成されている。
The fuel injection pump 3 includes a drive shaft 31 that receives power from a crankshaft (not shown) of the diesel engine 2, a cam plate 32 that rotates in conjunction with the drive shaft 31, and is integrally coupled with the cam plate 32 and rotates in its axial direction. a plunger 33 slidably supported by a cylinder 34 into which one end of the plunger 33 is fitted, a pressurizing chamber 35 formed by one end of the plunger 33 and the inside of the cylinder 34, and an ECU 4.
The fuel control valve 37 cuts off communication between the pressurizing chamber 35 and the low pressure chamber 3a and communicates the pressurizing chamber 35 only with the delivery valve 36 under the control of the fuel control valve 37.

燃料噴射ポンプ3は、ディーゼルエンジン2の回転に同
期して駆動軸31が回転すると、カムプレート32およ
びプランジャ33が回転し、カムプレート32の突起が
ローラリング3日のカムローラを乗り下げる過程でプラ
ンジャ33はシリンダ34内部でその軸方向に後退して
低圧室3a内邪の燃料を加圧v35内部に吸入し、一方
、カムプレート32の突起がローラリング3日のカムロ
ーラに乗り上げる過程でプランジャ33はシリンダ34
内部に進入し、燃料制御弁37がECU4の制御信号に
より遮断状態(ON)になると、加圧室35内部の燃料
を加圧し始める。ローラリング38の位置は、ECU4
の制御の基に作動するタイミングコントロールバルブ3
9により調節され、燃料噴射時期制御が行われる。加圧
された燃料は、燃料制御弁37がECU4の制御信号に
より連通状態(OFF)になるまで、デリバリバルブ3
6に圧送される。このように、ECU4の制御に基づく
燃料制御弁37の切り換えにより、燃料噴射量制御が行
われる。なお、デリバリバルブ36は、燃料バイブ15
aを介してディーゼルエンジン2の各気菌のノズル15
に接続されている。
In the fuel injection pump 3, when the drive shaft 31 rotates in synchronization with the rotation of the diesel engine 2, the cam plate 32 and the plunger 33 rotate, and in the process of the protrusion of the cam plate 32 getting on and off the cam roller of the roller ring 3, the plunger 33 retreats in the axial direction inside the cylinder 34 and sucks the fuel in the low pressure chamber 3a into the pressurized v35. On the other hand, the plunger 33 cylinder 34
When the fuel enters the interior and the fuel control valve 37 is turned off (ON) by a control signal from the ECU 4, the fuel inside the pressurizing chamber 35 begins to be pressurized. The position of the roller ring 38 is
Timing control valve 3 that operates under the control of
9 to perform fuel injection timing control. The pressurized fuel is delivered to the delivery valve 3 until the fuel control valve 37 is turned off (OFF) by a control signal from the ECU 4.
6. In this way, fuel injection amount control is performed by switching the fuel control valve 37 based on the control of the ECU 4. Note that the delivery valve 36 is connected to the fuel vibrator 15.
Each air nozzle 15 of the diesel engine 2 through a
It is connected to the.

ディーゼルエンジンの燃料噴射量制御ll装置1は検出
器として、アクセルペダル20aの操作量を検出するア
クセルセンサ41、吸気管17内部の吸入空気温度を検
出する吸気温センサ42、ベンチュリアセンブリ21下
流側の吸気管圧力を検出する吸気圧センサ43、副燃焼
室14内部の着火による発光をフォトトランジスタで受
光して着火時期を検出する着火時期センサ44、ディー
ゼルエンジン2の冷却水温度を検出する水温センサ45
、燃料噴射ポンプ3の駆動軸31の回転速度、すなわち
、ディーゼルエンジン2の回転速度を検出する電磁ピッ
クアップ式の回転速度センサ46、駆動軸31と一体的
に回転するシグナルディスクプレート47aに近接対向
し、基準クランク角を検出するクランク角センサ47を
備える。
The diesel engine fuel injection amount control device 1 includes, as detectors, an accelerator sensor 41 that detects the operating amount of the accelerator pedal 20a, an intake air temperature sensor 42 that detects the intake air temperature inside the intake pipe 17, and a downstream side of the venturi assembly 21. An intake pressure sensor 43 that detects the intake pipe pressure, an ignition timing sensor 44 that detects the ignition timing by receiving light emitted by ignition inside the sub-combustion chamber 14 with a phototransistor, and a water temperature sensor 45 that detects the temperature of the cooling water of the diesel engine 2.
, an electromagnetic pickup type rotation speed sensor 46 for detecting the rotation speed of the drive shaft 31 of the fuel injection pump 3, that is, the rotation speed of the diesel engine 2; , a crank angle sensor 47 for detecting a reference crank angle.

上記各センサの検出信号はECU4に人力され、ECU
4はディーゼルエンジン2および燃料噴射ポンプ3を制
御する。
The detection signals of each of the above sensors are manually input to the ECU4, and the ECU
4 controls the diesel engine 2 and the fuel injection pump 3.

ECU4は、CPU4a、ROM4b、RAM4c、バ
ックアップRAM4dを中心に論理演算回路として構成
され、コモンバス4eを介して入出力部4fに接続され
て外部との人出力を行なう。
The ECU 4 is configured as a logic operation circuit mainly including a CPU 4a, a ROM 4b, a RAM 4c, and a backup RAM 4d, and is connected to an input/output section 4f via a common bus 4e to perform human output with the outside.

上記各センサの検出信号は人出力部4fを介してCPU
4aに人力され、一方、CPU4aは人出力部4fを介
シテ第1VSV25、第2VSV26、燃料制御弁37
、タイミングコントロールバルブ39、グロープラグ1
6を作動させるグローリレー4日に制御信号を出力する
The detection signals of each of the above sensors are sent to the CPU via the human output section 4f.
On the other hand, the CPU 4a operates through the human output section 4f to the first VSV 25, the second VSV 26, and the fuel control valve 37.
, timing control valve 39, glow plug 1
A control signal is output on the 4th to activate the glow relay 6.

次に、上記ECU4が実行する燃料噴射量制御処理を第
3図に示す、副吸気絞り弁制御処理を第4図に示す、各
フローチャートに基づいて説明する。
Next, the fuel injection amount control process executed by the ECU 4 will be described with reference to flowcharts shown in FIG. 3, and the sub-intake throttle valve control process shown in FIG. 4.

まず、燃料噴射量制御処理を第3図のフローチャートに
従って説明する。本燃料噴射量制御処理は、ECU4の
起動に伴い、ディーゼルエンジン2の噴射行程に同期し
て実行される。まず、ステップ100では、アクセル操
作量ACCPおよび回転速度Neを読み込む処理が行わ
れる。続くステップ110では、予め定められたマツプ
、あるいは、演算式に従い、アクセル操作量ACCPお
よび回転速度Neに応じて燃料噴射量Q(i)を算出す
る処理が行われる。次にステップ120に進み、今回算
出した燃料噴射量Q(i)が前回算出された燃料噴射量
Q (i−1)以上であるか否かを判定し、肯定判断さ
れるとステップ190に、一方、否定判断されるとステ
ップ130に、各々進む。今回算出した燃料噴射量Q 
(i)が前回より減量しているとき、すなわち、減速時
に実行されるステップ130では、前回算出した燃料噴
射量Q(i−1)が、ディーゼルエンジン単体に対する
無負荷トルク運転状態相当の燃料噴射量QTO以上であ
るか否かを判定し、肯定判断されるとステップ140に
、一方、否定判断されるとステップ150に、各々進む
。ここで、無負荷トルク運転状態相当の燃料噴射量QT
Oとは、単にアクセル操作量ACCPが値0であること
ではなく、ディーゼルエンジン2が単体で現在の回転速
度Neを維持可能な燃料噴射量を意味する。なお、無負
荷トルク運転状態相当の燃料噴射量QTOは一定値では
なく、例えば、回転速度Ne等、ディーゼルエンジン2
の運転状態に応じて変化する量である。従って、ECU
4のROM4b内部に、予め定められた回転速度Ne等
の運転状態と無負荷トルク運転状態相当の燃料噴射量Q
TOとの関係を規定するマツプ、もしくは、演算式が記
憶されており、ECU4は、このようなマツプ、あるい
は、演算式に基づいて、ステップ130で使用する無負
荷トルク運転状態相当の燃料噴射量QTOを算出する。
First, the fuel injection amount control process will be explained according to the flowchart shown in FIG. This fuel injection amount control process is executed in synchronization with the injection stroke of the diesel engine 2 upon activation of the ECU 4. First, in step 100, a process of reading the accelerator operation amount ACCP and the rotational speed Ne is performed. In the subsequent step 110, a process is performed to calculate the fuel injection amount Q(i) according to the accelerator operation amount ACCP and the rotational speed Ne according to a predetermined map or arithmetic expression. Next, the process proceeds to step 120, where it is determined whether or not the currently calculated fuel injection amount Q(i) is greater than or equal to the previously calculated fuel injection amount Q(i-1), and if an affirmative determination is made, the process proceeds to step 190. On the other hand, if the determination is negative, the process proceeds to step 130. Fuel injection amount Q calculated this time
(i) is decreased from the previous time, that is, in step 130 executed during deceleration, the previously calculated fuel injection amount Q(i-1) is the fuel injection equivalent to the no-load torque operating state for the diesel engine alone. It is determined whether the amount is equal to or greater than the amount QTO, and if the determination is affirmative, the process proceeds to step 140, while if the determination is negative, the process proceeds to step 150. Here, the fuel injection amount QT corresponding to the no-load torque driving state is
O does not simply mean that the accelerator operation amount ACCP is 0, but means a fuel injection amount that allows the diesel engine 2 to maintain the current rotational speed Ne by itself. It should be noted that the fuel injection amount QTO corresponding to the no-load torque operating state is not a constant value; for example, the rotational speed Ne etc.
This is an amount that changes depending on the operating state of the vehicle. Therefore, E.C.U.
In the ROM 4b of No. 4, predetermined operating conditions such as rotational speed Ne and fuel injection amount Q corresponding to the no-load torque operating condition are stored.
A map or calculation formula that defines the relationship with TO is stored, and the ECU 4 determines the fuel injection amount corresponding to the no-load torque driving state to be used in step 130 based on such a map or calculation formula. Calculate QTO.

前回算出した燃料噴射量Q(i−1)が無負荷トルク運
転状態相当の燃料噴射量QTO以上であるとき、すなわ
ち、ディーゼルエンジン2の出力する駆動トルクが負荷
トルクよりも大きい駆動運転状態にあるときに実行され
るステップ140では、前回算出した燃料噴射量Q(i
−1)から、比較的大きな減量値3.0 [mm3/s
 t/回]を減量して今回の燃料噴射量Q(i)を算出
する処理を行った後、ステップ160に進む。−方、前
回算出した燃料噴射量Q(i−1)が無負荷トルク運転
状態相当の燃料噴射量QTO未満であるとき、すなわち
、ディーゼルエンジン2の出力する駆動トルクが負荷ト
ルクよりも小さい被駆動運転状態にあるときに実行され
るステップ150では、前回算出した燃料噴射量Q(i
−1)から比較的小さな減量値0.7 [mm3/s 
t/回]を減量して今回の燃料噴射量Q (i)を算出
する処理を行った後、ステップ160に進む。ステップ
160では、減速減量制御中フラグFDを値1にセット
する処理が行われる。続くステップ170では、ステッ
プ140、あるいは、ステップ150の何れかで算出さ
れた今回の燃料噴射量Q(i)を噴射する噴射行程が終
了する時期をECU4内邪の図示しないコンベアレジス
タにセットする制御信号を出力する処理が行われる。本
ステップ170の処理により、クランク角センサ47の
検出信号により通電状態(ON)に設定されていた燃料
制御弁37は、噴射行程終了時期に非通電状態(OFF
)に切り替わり、燃料噴射が終了する。次にステップ1
80に進み、次回の処理に備えて、今回算出した燃料噴
射量Q (i)を前回算出の燃料噴射量Q (i−1)
に設定する処理を行った後、−旦、本燃料噴射量制御処
理を終了する。
When the previously calculated fuel injection amount Q(i-1) is greater than or equal to the fuel injection amount QTO corresponding to the no-load torque operating state, that is, the diesel engine 2 is in a driving operating state in which the driving torque output is larger than the load torque. In step 140, which is sometimes executed, the previously calculated fuel injection amount Q(i
-1), a relatively large weight loss value of 3.0 [mm3/s
t/time] and calculates the current fuel injection amount Q(i), the process proceeds to step 160. - On the other hand, when the previously calculated fuel injection amount Q(i-1) is less than the fuel injection amount QTO corresponding to the no-load torque operating state, that is, when the driving torque output by the diesel engine 2 is smaller than the load torque. In step 150, which is executed during the operating state, the previously calculated fuel injection amount Q(i
-1) to a relatively small weight loss value of 0.7 [mm3/s
t/time] and calculates the current fuel injection amount Q (i), the process proceeds to step 160. In step 160, a process of setting the deceleration reduction control flag FD to the value 1 is performed. In the subsequent step 170, control is performed to set the timing at which the injection stroke for injecting the current fuel injection amount Q(i) calculated in either step 140 or step 150 ends in a conveyor register (not shown) inside the ECU 4. Processing to output a signal is performed. Through the process of step 170, the fuel control valve 37, which had been set to the energized state (ON) based on the detection signal of the crank angle sensor 47, is turned to the de-energized state (OFF) at the end of the injection stroke.
) and fuel injection ends. Next step 1
Proceeding to 80, in preparation for the next process, the currently calculated fuel injection amount Q (i) is changed to the previously calculated fuel injection amount Q (i-1).
After performing the process of setting the fuel injection amount, the present fuel injection amount control process ends.

一方、上記ステップ120で、今回算出した燃料噴射量
Q (i)が増量しているとき、すなわち、減速時では
ないときに実行されるステップ190では、減速減量制
御中フラグFDを値0にリセットする処理を行った後、
上記ステップ170.180を実行し、−旦、本燃料噴
射量制御処理を終了する。以後、本燃料噴射量制御処理
はディーゼルエンジン2の噴射行程に同期して、上記ス
テップ100〜180を繰り返して実行する。
On the other hand, in step 190, which is executed when the currently calculated fuel injection amount Q (i) is increasing in step 120, that is, when the time is not deceleration, the deceleration reduction control flag FD is reset to the value 0. After processing the
The above steps 170 and 180 are executed, and then the present fuel injection amount control process is ended. Thereafter, this fuel injection amount control process repeats steps 100 to 180 in synchronization with the injection stroke of the diesel engine 2.

次に、副吸気紋り弁制御処理を第4図のフローチャート
に従って説明する。本副吸気紋り弁制御処理は、ECU
4の起動に伴い、8[m5ecコ毎に繰り返して実行さ
れる。まず、ステップ2゜Oでは、アクセル操作量AC
CPを読み込む処理が行われる。続くステップ210で
は、アクセルペダル20aが踏み込まれているか否かを
判定し、肯定判断されるとステップ260に、一方、否
定判断されるとステップ220に、各々進む。アクセル
ペダル20aが踏み込まれていないときに実行されるス
テップ220では、減速減量制御中フラグFDが値1に
セットされているか否かを判定し、肯定判断されるとス
テップ230に、一方、否定判断されるとステップ24
0に、各々進む。
Next, the sub-intake valve control process will be explained according to the flowchart shown in FIG. This sub-intake valve control process is performed by the ECU
4 is started, it is executed repeatedly every 8[m5ec]. First, in step 2°O, the accelerator operation amount AC
Processing to read the CP is performed. In the following step 210, it is determined whether or not the accelerator pedal 20a is depressed. If the determination is affirmative, the process proceeds to step 260, and if the determination is negative, the process proceeds to step 220. In step 220, which is executed when the accelerator pedal 20a is not depressed, it is determined whether the deceleration/reduction control flag FD is set to the value 1, and if an affirmative determination is made, the process proceeds to step 230; Step 24
0, respectively.

減速減量制御中に実行されるステップ230では、減速
減量制御終了後の経過時間を計測する経過時間カウンタ
CTの計数値を値0にリセットする処理を行った後、ス
テップ260に進む。一方、減速減量制御中ではないと
きに実行されるステップ240では、経過時間カウンタ
CTの計数値に値1を加算する処理を行った後、ステッ
プ250に進む。ステップ250では、経過時間カウン
タCTの計数値が値250以上か否かを判定し、肯定判
断されるとステップ270に、一方、否定判断されると
ステップ260に各々進む。経過時間カウンタCTの計
数値が値250未満であるとき、すなわち、減速減量制
御終了後、未だ2[sec]以上経過していないときに
実行されるステップ260では、副吸気紋り弁23を全
開状態にする制御信号を第1VSV25および第2 V
 S V 26 ニ出力する処理を行った後、−旦、本
副吸気紋り弁制御処理を終了する。
In step 230, which is executed during the deceleration reduction control, the count value of the elapsed time counter CT that measures the elapsed time after the end of the deceleration reduction control is reset to the value 0, and then the process proceeds to step 260. On the other hand, in step 240, which is executed when the deceleration reduction control is not in progress, the process proceeds to step 250 after adding a value of 1 to the count value of the elapsed time counter CT. In step 250, it is determined whether the count value of the elapsed time counter CT is equal to or greater than the value 250. If the determination is affirmative, the process proceeds to step 270, and if the determination is negative, the process proceeds to step 260. In step 260, which is executed when the count value of the elapsed time counter CT is less than the value 250, that is, when more than 2 [sec] have not yet elapsed after the end of the deceleration reduction control, the sub-intake valve 23 is fully opened. The first VSV25 and the second VSV
After performing the process of outputting SV26, the main sub-intake valve control process ends.

一方、上記ステップ250で、経過時間カウンタCTの
計数値が値250以上であるとき、すなわち、減速減量
制御終了後2[sec]以上経過したときに実行される
ステップ270では、経過時間カウンタCTの計数値を
値250に制限する処理が行われる。続くステップ28
0では、副吸気紋り弁23を半開状態にする制御信号を
第1vSv25および第2VSV26に出力する処理を
行った後、−旦、本副吸気紋り弁制御処理を終了する。
On the other hand, in step 270, which is executed when the count value of the elapsed time counter CT is equal to or greater than 250 in step 250, that is, when 2 [sec] or more have passed after the end of the deceleration reduction control, the elapsed time counter CT is A process is performed to limit the count value to the value 250. Next step 28
At 0, after a process of outputting a control signal for half-opening the sub-intake valve 23 to the first VSV 25 and second VSV 26, the main sub-intake valve control process is ended.

以後、本副吸気紋り弁制御処理は8[m5ec]毎に、
上記ステップ200〜280を繰り返して実行する。
From then on, the main sub-intake valve control process is performed every 8 [m5ec].
The above steps 200 to 280 are repeatedly executed.

なお本実施例において、ディーゼルエンジン2がディー
ゼル機関M1に、アクセルセンサ41と回転速度センサ
46とが運転状態検出手段M2に、燃料噴射ポンプ3と
ノズル15とが燃料噴射手段M3に、各々該当する。ま
た、ECU4および該ECU4の実行する処理のうちス
テップ(100〜120,170)が制御手段M4とし
て、ステップ(130)が判定手段M5として、ステッ
プ(140,150)が制限手段M6として各々機能す
る。
In this embodiment, the diesel engine 2 corresponds to the diesel engine M1, the accelerator sensor 41 and the rotational speed sensor 46 correspond to the operating state detection means M2, and the fuel injection pump 3 and the nozzle 15 correspond to the fuel injection means M3. . Further, among the ECU 4 and the processing executed by the ECU 4, steps (100 to 120, 170) function as a control means M4, step (130) as a determination means M5, and steps (140, 150) as a restriction means M6. .

以上説明したように本実施例によれば、減速時、前回噴
射時の燃料噴射量Q (i−1)が、無負荷トルク運転
状態相当の燃料噴射量QTO以上の間は、比較的大きな
減量値3.0 [mm3/s t/回コに設定し、燃料
噴射量QTO未満に減少すると、比較的小さな減量値0
. 7 [mm”/s t/回コに制限する、2段階区
分減速減量を実行し、燃料噴射量を急に減量させないで
、減速時のトルク急減少を回避するので、減速開始に伴
う減速ショック現象の発生を防止すると共に、乗員に違
和感を与える空走惑の発生も抑制できる。
As explained above, according to this embodiment, during deceleration, while the fuel injection amount Q (i-1) at the previous injection is equal to or greater than the fuel injection amount QTO corresponding to the no-load torque driving state, a relatively large reduction is achieved. If the value is set to 3.0 [mm3/s t/times] and the fuel injection amount decreases below QTO, a relatively small reduction value of 0
.. A two-stage deceleration reduction is performed that limits the fuel injection amount to 7 [mm”/s t/times], and the fuel injection amount is not suddenly reduced to avoid a sudden decrease in torque during deceleration, so there is no deceleration shock associated with the start of deceleration. In addition to preventing the phenomenon from occurring, it is also possible to suppress the occurrence of idling, which gives the occupants a sense of discomfort.

また、前回噴射時の燃料噴射量Q(i−1)が、無負荷
トルク運転状態相当の燃料噴射量070未満に減少する
と、減速減量値を小さな値に制限するので、燃料噴射量
Q (i)の減量に伴うトルク減少に起因する減速サー
ジ現象の抑制と、充分なエンジンブレーキ性能の発揮と
を両立できる。すなわち、第5図のタイミングチャート
に示すように、アクセル操作量ACCP最大値(主吸気
紋り弁全開状態)から減速した場合、本実施例(同図に
実線で示す。)の車両前後方向加速度Gの時間変化は少
なく、しかも、時間の経過に伴って速やかに減衰してい
る。このため、減速サージ現象は充分抑制される。しか
し、燃料噴射量の減速減量制御を行わず、アクセル操作
量ACCPの操作に伴って燃料噴射を中断する、所謂無
制御時(同図に一点鎖線で示す。)の車両前後方向加速
度Gの時間変化は大きく、しかも、時間が経過しても容
易に収束しない。従って、乗員に違和感を与える大きな
減速サージ現象を生じていた。ちなみに、減速時に、所
定量まで急減量し、その後はなまじ減量する従来技術(
同図に破線で示す。)の車両前後方向加速度Gの時間変
化は、本実施例より大きく、減衰も遅い。従って、減速
サージ現象は、未だ充分に抑制できなかった。
Furthermore, when the fuel injection amount Q (i-1) at the previous injection decreases to less than 070, which corresponds to the no-load torque driving state, the deceleration reduction value is limited to a small value, so the fuel injection amount Q (i ), it is possible to suppress the deceleration surge phenomenon caused by the decrease in torque associated with the reduction in torque, and to achieve sufficient engine braking performance. That is, as shown in the timing chart of FIG. 5, when the accelerator operation amount ACCP is decelerated from the maximum value (main intake valve fully open state), the vehicle longitudinal acceleration of this embodiment (shown by a solid line in the figure) is There is little change in G over time, and moreover, it attenuates quickly with the passage of time. Therefore, the deceleration surge phenomenon is sufficiently suppressed. However, the time period of vehicle longitudinal acceleration G during so-called no-control (indicated by a dashed line in the figure), in which fuel injection amount is not decelerated and reduced and fuel injection is interrupted in accordance with the operation of the accelerator operation amount ACCP. The changes are large and do not converge easily over time. Therefore, a large deceleration surge phenomenon occurs that gives a sense of discomfort to the occupants. By the way, when decelerating, the conventional technology (
It is shown by a broken line in the same figure. ) The temporal change in vehicle longitudinal direction acceleration G is larger than in this example, and the attenuation is also slower. Therefore, the deceleration surge phenomenon has not yet been sufficiently suppressed.

このように、減速時の燃料噴射量Q (i)を、ディー
ゼルエンジン2の無負荷トルク運転状態相当の燃料噴射
量QTOと比較して減速減量値を制限するので、減速減
量時の燃料噴射電制’+8の制御精度が高まる。
In this way, the fuel injection amount Q(i) during deceleration is compared with the fuel injection amount QTO corresponding to the no-load torque operating state of the diesel engine 2 to limit the deceleration reduction value, so the fuel injection amount during deceleration is reduced. The control accuracy of control '+8 is increased.

さらに、本実施例では、減速時であっても徐々に燃料噴
射量Q(i)を減量するので、減速と同時に燃料噴射量
Q (i)はカットされない。そこで、減速減量制御中
に、アクセル操作量ACCPに応じて、主吸気紋り弁2
0が全開状態となっても、副吸気紋り弁制御処理の実行
により、アクセル操作時、燃料噴射量の減速減量制御中
および減速減量制御終了後2[sec]経過するまでは
、副吸気紋り弁23を全開状態にして充分な吸入空気量
を確保する。このため、ディーゼルエンジン2の燃焼状
態悪化に伴う黒煙や白煙の発生を防止でき、減速減量時
の排気特性を良好に維持できる。
Furthermore, in this embodiment, since the fuel injection amount Q(i) is gradually reduced even during deceleration, the fuel injection amount Q(i) is not cut at the same time as deceleration. Therefore, during deceleration reduction control, the main intake valve 2
0 is in the fully open state, the execution of the sub-intake crest valve control process prevents the auxiliary intake crest during accelerator operation, during deceleration/reduction control of the fuel injection amount, and until 2 [sec] has elapsed after the end of the deceleration/reduction control. The valve 23 is fully opened to ensure a sufficient amount of intake air. Therefore, generation of black smoke and white smoke due to deterioration of the combustion state of the diesel engine 2 can be prevented, and exhaust characteristics during deceleration and weight loss can be maintained favorably.

なお、本実施例では減速時の燃料噴射量Q(i)を、デ
ィーゼルエンジン2の無負荷トルク運転状態相当の燃料
噴射量QTOと比較して減速減量値を2段階に変更した
。しかし、例えば、減速時の燃料噴射量Q(i)を、デ
ィーゼルエンジン2の定常走行負荷トルク運転状態相当
の燃料噴射量QR/Lおよび無負荷トルク運転状態相当
の燃料噴射量QTOと比較して減速減量値を3段階に区
分して徐々に減量するよう構成しても良い。このように
構成すると、走行状態により一層適合した減速時の燃料
噴射量制御を実現できる。
In this embodiment, the fuel injection amount Q(i) during deceleration is compared with the fuel injection amount QTO corresponding to the no-load torque operating state of the diesel engine 2, and the deceleration reduction value is changed into two stages. However, for example, when comparing the fuel injection amount Q(i) during deceleration with the fuel injection amount QR/L corresponding to the steady running load torque operating state of the diesel engine 2 and the fuel injection amount QTO corresponding to the no-load torque operating state, The deceleration reduction value may be divided into three stages and may be configured to be gradually reduced. With this configuration, it is possible to realize fuel injection amount control during deceleration that is more suitable for the driving condition.

また、本実施例では、減速時、前回噴射時の燃料噴射量
Q(i−1)が、無負荷トルク運転状態相当の燃料噴射
量070以上の間は、減量値を比較的大きな値3.O[
mm3/s t/回]に設定し、三方、燃料噴射量QT
O未満に減少すると、減量値を比較的小さな値0.7 
[mm3/s t/回コに制限するよう構成した。しか
し、例えば、減量値は、前回噴射時の燃料噴射量Q(i
−1)が、無1負荷トルク運転状態相当の燃料噴射量0
70以上の間の値に対して、燃料噴射量QTO未満に減
少したときの値が小さくなる関係を満たす所定減量値に
決定しても、本実施例と同様な効果を奏する。
Further, in this embodiment, during deceleration, when the fuel injection amount Q(i-1) at the previous injection is equal to or greater than 070, which corresponds to the no-load torque driving state, the reduction value is set to a relatively large value 3. O [
mm3/s t/times], and set the three-way fuel injection amount QT.
When decreased below 0, the weight loss value is reduced to a relatively small value of 0.7
[It was configured to be limited to mm3/s t/times. However, for example, the reduction value is the fuel injection amount Q(i
-1) is the fuel injection amount equivalent to the no-load torque operating state of 0.
Even if the predetermined reduction value is determined to satisfy the relationship that the value decreases when the fuel injection amount QTO is reduced for a value between 70 or more, the same effect as in this embodiment can be obtained.

以上本発明の実施例について説明したが、本発明はこの
ような実施例に同等限定されるものではなく、本発明の
要旨を逸脱しない範囲内において種々なる態様で実施し
得ることは勿論である。
Although the embodiments of the present invention have been described above, the present invention is not equally limited to these embodiments, and it goes without saying that it can be implemented in various forms without departing from the gist of the present invention. .

1豆り塾! 以上詳記したように本発明のディーゼル機関の燃料噴射
量制御装置は、ディーゼル機関の減速時、供給される燃
料量が、無負荷運転状態近傍の微小負荷状態に対応する
燃料量以上である駆動運転状態相当量であるときは駆動
力低下が悪影響を招かないので比較的速やかに減速減量
し、微小負荷状態に対応する燃料量未満である被駆動運
転状態相当量であるときは減速減量を少なく制限して駆
動力の急激な低下を抑制し、弊害を防止するよう構成さ
れている。このため、減速時、供給する燃料量を、所一
定減量および所定減量をさらに少なくした制限減量の2
段階に区分して減量し、要求駆動力に対して弊害を生じ
ない範囲で駆動力を減少させるので、減速ショック現象
発生の防止、空走感を与えない充分なエンジンブレーキ
性能の発揮および減速サージ現象の抑制を最適に実現す
るという優れた効果を奏する。
1 bean school! As described in detail above, the fuel injection amount control device for a diesel engine of the present invention is capable of driving a diesel engine in which the amount of fuel supplied during deceleration of the diesel engine is greater than or equal to the amount of fuel corresponding to a minute load state near a no-load operating state. When the amount of fuel is equivalent to the operating state, the decrease in driving force does not have any adverse effects, so the deceleration amount is reduced relatively quickly, and when the amount of fuel is equivalent to the driven operating state, which is less than the amount of fuel corresponding to the minute load state, the deceleration amount is reduced. It is configured to restrict the driving force to suppress a sudden drop in the driving force and prevent harmful effects. For this reason, during deceleration, the amount of fuel supplied is reduced to two levels: a predetermined constant reduction and a limit reduction that is further smaller than the predetermined reduction.
The amount is reduced in stages and the driving force is reduced within a range that does not cause any adverse effects on the required driving force, thereby preventing the occurrence of deceleration shock, providing sufficient engine braking performance that does not give a feeling of running idle, and deceleration surge. This has an excellent effect of optimally suppressing the phenomenon.

また、減速時の燃料量を、ディーゼル機関の無負荷運転
状態近傍の微小負荷状態に対応する燃料量に相当する駆
動運転状態相当量と比較して減量を制限するので、減速
減量時の燃料噴射量制御精度が飛躍的に向上する。
In addition, since the amount of fuel during deceleration is compared with the amount corresponding to the driving operation state, which corresponds to the amount of fuel corresponding to a minute load state near the no-load operation state of the diesel engine, and the amount of fuel is reduced, the amount of fuel injected during deceleration is reduced. Quantity control accuracy is dramatically improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の内容を概念的に例示した基本的構成図
、第2図は本発明一実施例のシステム構成図、第3図、
第4図は同じくその制御を示すフローチャート、第5図
は同じくその制御の様子を示すタイミングチャートであ
る。 Ml ・・・ ディーゼル機関 M2 ・・・ 運転状態検出手段 M3 ・・・ 燃料噴射手段 M4 ・・・ 制御手段 M5 ・・・ 判定手段 M6 ・・・ 制限手段 1 ・・・ ディーゼルエンジンの 燃料噴射量制御装置 2 ・・・ ディーゼルエンジン 3 ・・・ 燃料噴射ポンプ 4 ・・・ 電子制御装置(ECU) 4a”・・・ CPU      15  ・・・ ノ
ズル41 ・・・ アクセルセンサ 46 ・・・ 回転速度センサ
Fig. 1 is a basic configuration diagram conceptually illustrating the contents of the present invention, Fig. 2 is a system configuration diagram of an embodiment of the present invention, Fig. 3,
FIG. 4 is a flowchart showing the control, and FIG. 5 is a timing chart showing the control. Ml...Diesel engine M2...Operating state detection means M3...Fuel injection means M4...Control means M5...Judgment means M6...Limiting means 1...Fuel injection amount control of the diesel engine Device 2... Diesel engine 3... Fuel injection pump 4... Electronic control unit (ECU) 4a"... CPU 15... Nozzle 41... Accelerator sensor 46... Rotational speed sensor

Claims (1)

【特許請求の範囲】 1 ディーゼル機関の運転状態を検出する運転状態検出
手段と、 外部から指令される量の燃料を上記ディーゼル機関に供
給する燃料噴射手段と、 上記ディーゼル機関の噴射行程に同期して上記運転状態
検出手段の検出した運転状態に応じて定めた燃料量の変
化に基づき、該ディーゼル機関が減速時にあるときは、
供給する燃料量を減量する指令を上記燃料噴射手段に出
力する制御手段と、を具備したディーゼル機関の燃料噴
射量制御装置において、 さらに、上記ディーゼル機関の減速時、前回の噴射行程
時に上記制御手段の指令した燃料量が、該ディーゼル機
関の無負荷運転状態近傍の微小負荷状態に対応する燃料
量以上である駆動運転状態相当量であるか、該微小負荷
状態に対応する燃料量未満である被駆動運転状態相当量
であるかを判定する判定手段と、 該判定手段により前回の噴射行程時の燃料量が、被駆動
運転状態相当量であると判定されたときは、駆動運転状
態相当量であると判定されたときより、上記制御手段に
よる燃料量の減量を少なくする制限手段と、 を備えたことを特徴とするディーゼル機関の燃料噴射量
制御装置。
[Scope of Claims] 1. Operating state detection means for detecting the operating state of the diesel engine; fuel injection means for supplying the diesel engine with an amount of fuel commanded from the outside; When the diesel engine is decelerating, based on the change in fuel amount determined according to the operating state detected by the operating state detection means,
A fuel injection amount control device for a diesel engine, comprising: a control means for outputting a command to the fuel injection means to reduce the amount of fuel to be supplied; The amount of fuel commanded by the diesel engine is either an amount equivalent to the driving operation state that is greater than or equal to the amount of fuel corresponding to a minute load state near the no-load operation state of the diesel engine, or an amount of fuel that is less than the amount of fuel that corresponds to the minute load state of the diesel engine. a determining means for determining whether the amount of fuel in the previous injection stroke is equivalent to the driven driving state; A fuel injection amount control device for a diesel engine, comprising: limiting means for reducing the reduction in fuel amount by the control means when it is determined that there is a fuel injection amount.
JP63097597A 1988-04-20 1988-04-20 Fuel injection control system for diesel engine Expired - Lifetime JP2576183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63097597A JP2576183B2 (en) 1988-04-20 1988-04-20 Fuel injection control system for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63097597A JP2576183B2 (en) 1988-04-20 1988-04-20 Fuel injection control system for diesel engine

Publications (2)

Publication Number Publication Date
JPH01271626A true JPH01271626A (en) 1989-10-30
JP2576183B2 JP2576183B2 (en) 1997-01-29

Family

ID=14196645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63097597A Expired - Lifetime JP2576183B2 (en) 1988-04-20 1988-04-20 Fuel injection control system for diesel engine

Country Status (1)

Country Link
JP (1) JP2576183B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282569A (en) * 2004-03-30 2005-10-13 Williams Internatl Co Llc Hybrid electric vehicle energy management device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282569A (en) * 2004-03-30 2005-10-13 Williams Internatl Co Llc Hybrid electric vehicle energy management device

Also Published As

Publication number Publication date
JP2576183B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US6017100A (en) Apparatus for controlling vacuum pressure in internal combustion engine
JP2878439B2 (en) Fuel injection control device
JPH0799114B2 (en) Engine controller
JPS58210332A (en) Fuel injection system of diesel engine
JP3114787B2 (en) Exhaust brake device
EP1211404B1 (en) Fuel injection control device for diesel engines
JPH01271626A (en) Device for controlling fuel injection quantity of diesel engine
JP3341665B2 (en) Injection control system for diesel engine during transient
EP0809009B1 (en) Apparatus for controlling diesel engine
JP3832078B2 (en) Diesel engine stop device
JP2569749B2 (en) Fuel injection control device for diesel engine
JP3450765B2 (en) Air conditioner cut control method
JP3218895B2 (en) Engine speed control device
JP3489368B2 (en) Negative pressure control device for internal combustion engine
JP2560501B2 (en) Supercharging pressure controller for vehicle exhaust turbocharged engine
JPS648179B2 (en)
JP7023129B2 (en) Internal combustion engine control device
KR100501360B1 (en) Smoke decreasing device of diesel automobile and method to decrease it
JP3500935B2 (en) Torque control device for vehicle internal combustion engine
JP3189731B2 (en) Control device for in-cylinder injection spark ignition internal combustion engine
JPS58135345A (en) Cutoff method of fuel for internal-combustion engine
JP2841965B2 (en) Fuel injection control device for vehicle diesel engine
JPH09217639A (en) Torque control device of internal combustion engine
JP3123334B2 (en) Supercharging pressure control device for internal combustion engine
JPH0756227B2 (en) Fuel correction method during deceleration of electronically controlled engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12