JPH0127127B2 - - Google Patents

Info

Publication number
JPH0127127B2
JPH0127127B2 JP4691985A JP4691985A JPH0127127B2 JP H0127127 B2 JPH0127127 B2 JP H0127127B2 JP 4691985 A JP4691985 A JP 4691985A JP 4691985 A JP4691985 A JP 4691985A JP H0127127 B2 JPH0127127 B2 JP H0127127B2
Authority
JP
Japan
Prior art keywords
alloy
sealing
less
glass
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4691985A
Other languages
Japanese (ja)
Other versions
JPS61207509A (en
Inventor
Masakazu Umeda
Takeshi Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4691985A priority Critical patent/JPS61207509A/en
Publication of JPS61207509A publication Critical patent/JPS61207509A/en
Publication of JPH0127127B2 publication Critical patent/JPH0127127B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は軟質ガラスとの封着時の気泡の発生
を防止し、軟質ガラスとの密着性の良好なる封着
用合金の製造方法に関する。 〔従来技術〕 軟質ガラス封着用合金は従来よりブラウン管の
アノード、ボタン、デジタル表示管のリードフレ
ーム等に広く使用されている。封着用合金は鋳塊
を薄板にした後、焼鈍し、深絞り加工、打抜加工
或いはエツチング加工して所要形状に成形し、そ
の後、高温の湿潤H2雰囲気中で酸化被膜処理を
施してガラス封着される。 一般に封着用合金は、 熱膨脹特性が軟質ガラスの熱膨脹係数によく
一致していること。 合金表面の酸化被膜が合金素地に強固に密着
すること。 合金表面の酸化被膜表面に黄粉と呼ばれる針
状酸化物が生成しないこと。 ガラス封着時に封着強度を損なう気泡の発生
がないこと。 薄板や複雑な形状に深絞り加工して使用され
ることが多いので、加工性の優れていること。 等の性質を具備する必要がある。 〔発明が解決しようとする問題点〕 斯かる封着用合金としては従来よりFe−Ni40
〜55wt%−Cr4〜8wt%系合金が就中、前記特
性を満足することより使用されているが、この系
の合金中に含有のCが予備酸化被膜処理時に雰囲
気中のOと反応して、COガスとなつて合金基地
と酸化被膜との界面に空洞を形成して、酸化被膜
の密着性を低下し、また軟質ガラスとの封着時に
外界雰囲気中のOと反応してCOガスを生成し、
酸化被膜とガラス界面で気泡を発生し、封着強度
を著るしく低下させるため、合金内のC量を極力
低下せしめる必要がある。 発明者は合金内のC量について種々検討の結
果、C量を0.005wt%以下に低下させると、ガラ
ス封着条件に大きく左右されるが、実用上考えら
れる苛酷な条件下でも気泡を生成しないことが判
明した。しかしながら、C0.005wt%以下の極低
Cの合金を工業的に実現することは困難であつ
た。すなわち、合金内のC量を0.005wt%以下に
するために精選される低Cの配合原料を使用すれ
ば、製品コストが非常に高くなり、また溶解工程
にて極低Cに脱C処理するためには特殊な溶解設
備や特殊技術を必要とし、製品コストの上昇及び
製品歩留り低下を招来する惧れがあるからであ
る。 本発明は上記問題を解決し、この種ガラス封着
用合金中のCを0.005wt%以下に安定的かつ安価
に低下させ、封着時の気泡の発生その他欠陥を防
止し、軟質ガラスとの密着性の良好な封着用合金
の工業的製造法の提供を目的とする。 〔問題点を解決するための手段〕 この発明は、特定組成のFe−Ni40〜55wt%−
Cr4〜8wt%系ガラス封着用合金の薄板を予備酸
化被膜処理するに先立つて、大気中あるいはN2
中にて300〜500℃で30〜150分の熱処理を行なつ
た後、露点−30℃以下のH2雰囲気中にて800〜
1200℃で10〜60分の条件にて脱炭処理を行なつて
合金のC:0.005wt%以下にした後、予備酸化被
膜処理を行なうことを特徴とするものである。こ
の発明をさらに詳細に説明すると、 Ni:40〜55wt%、Cr:4〜8wt%、Si:0.05〜
0.50wt%、Mn:0.05〜0.5wt%、C:0.005〜
0.05wt%、O:30ppm以下、N2:30ppm以下の
他に、Al:0.05〜0.50wt%、Zr:0.001〜0.10wt
%、RE:0.001〜0.10wt%の少くとも1種を含有
し、残部はFeおよび不純物からなる合金鋳塊を
鍛造あるいは分塊後、熱間圧延、中間圧延後焼鈍
して製品板厚0.2〜0.5mmに冷間圧延し、焼鈍、深
絞り加工後、大気中あるいはN2中にて300〜500
℃で30〜150分の熱処理を行つた後、露点−30℃
以下のH2雰囲気中にて800〜1200℃で10〜60分の
条件にて脱炭処理を行なつて合金のC:0.005wt
%以下、好ましくは0.003wt%以下にした後、湿
潤H2ガス中にて1000〜1200℃で30分〜2時間の
酸化被膜処理を行ない、合金基地への密着性の極
めて優れた酸化被膜を形成せしめるもので、ガラ
ス封着時、気泡を発生させることなく、極めて信
頼性の高いガラス封着を可能とする軟質ガラス封
着用合金が得られるのである。 〔作用〕 次に本発明において処理合金の組成を限定した
理由を述べる。 Ni:Niが40wt%未満では合金の熱膨脹係数が軟
質ガラスのそれより小となり、また55wt%を
越えると逆に軟質ガラスのそれより大となり好
ましくないのでNiは40wt%〜55wt%とする。 Al、Si:脱酸及び予備酸化被膜の密着性を改善
するために添加含有されるが、Al及びSiは
0.05wt%より少ないと脱酸不十分となり被膜の
密着性が悪くなり、また0.50wt%より多いと冷
間加工性が劣下するのでAl及びSi共0.05〜
0.5wt%とする。 Mn:脱硫効果及び熱間加工性を良好にするため
含有させるが、0.05wt%未満では熱間加工性が
劣下し、また0.5wt%より多いと熱膨脹特性の
変移点が低温側に低下し、軟質ガラスの熱膨脹
特性と一致しなくなるので、Mnは0.05〜0.5wt
%とする。 Zr、RE:Zr、REは酸化物、炭化物、窒化物とし
て合金中のO、C、Nを固定し、酸化被膜の密
着性改善と封着界面の気泡発生を防止し、封着
強度向上に大なる効果があるが、Zr及びREは
0.001wt%未満では酸化被膜の密着性改善の効
果が少なく、また0.10wt%を越えると熱間圧延
性、冷間圧延性を悪くするので好ましくない。
従つてZr、REの範囲は0.001wt%〜0.10wt%と
する。 REは稀土類元素であれば何でもよいが、特
にLa、Ce、ミツシユメタルが好ましい。 O2、N2:30ppmを越えると加工性が劣下するの
で、O2、N2共に30ppm以下にする必要がある。 本発明において処理前合金薄板内のCが0.005
%よりも低いものを要求することは、既述の如く
製品コストの上昇を招くので、C下限を0.005wt
%とした。またCが0.05%を越えるものは本発明
方法の脱炭によつても酸化被膜処理前の合金薄板
のC量を0.005wt%以下にすることが難かしく長
時間を要するので好ましくない。 次に本発明の特徴である熱処理条件及び脱炭条
件を前記の如く規定した理由を説明する。 大気中またはN2中にて300〜500℃で30〜150分
の第1段の熱処理は、軟質ガラス封着用合金の加
工工程中、合金薄板表面に付着残存した炭素を含
む油脂類を弱酸化条件で焼失させ且つ表面層に薄
い酸化被膜を形成せしめ、次の露点−30℃以下の
H2雰囲気中にて800〜1200℃で10〜60分の脱炭処
理により、第1段の熱処理により生成した酸化被
膜と合金薄板中のCとを反応させて合金中のCを
著るしく速やかに除去して合金中のC量を
0.005wt%以下に脱Cする特徴あるもので、第1
段の熱処理において温度が300℃未満、時間が30
分未満では脱C処理での脱C効率が悪く、また温
度が500℃を越え、時間が150分を越えると脱C処
理での還元が不十分となり、後続工程での合金薄
板表面に生成する酸化被膜の封着特性が劣下する
ので好ましくない。 また脱C処理での雰囲気の露点が−30℃を越え
る場合は合金薄板表面に形成の酸化被膜が還元さ
れず、十分な脱C効果が得られない。脱C処理条
件の温度が800℃未満、また時間が10分未満では
脱Cが十分に行なわれず、後続のガラス封着工程
にて発砲を生じ、また密着性を悪化させるので好
ましくない。脱C処理条件の温度が1200℃を越
え、また時間が60分を越えると合金中のAl、Si、
Zr、RE等、酸素との親和力の大なる特定元素が
表面付近で内部酸化し、後続の予備酸化時に黄粉
が発生する等、封着性良好なる酸化被膜が得られ
ないので好ましくない。 〔実施例及び発明の効果〕 組成がNi:42.3wt%、Cr:6.3wt%、Si:
0.25wt%、Mn:0.20wt%、C:0.030wt%、
O2:15ppm、N2:18ppm、Al:0.30wt%、Zr:
0.05wt%、RE(La+Ce):0.02wt%を含有し、残
部はFe及び不純物からなる板厚0.2mmの合金薄板
を直径20mmφ、高さ10mmの円筒状に深絞り加工後
第1表に示す第1次熱処理条件、脱C処理条件に
て脱C後、雰囲気湿潤H2にて1200℃で60分間の
酸化被膜処理した場合の、本発明及び比較例各試
料の脱C処理後のC量、及び酸化被膜/ガラスの
封着強度、気泡発生状況を同表に表わす。
[Industrial Field of Application] The present invention relates to a method for producing a sealing alloy that prevents the generation of bubbles during sealing with soft glass and has good adhesion to soft glass. [Prior Art] Soft glass sealing alloys have been widely used for cathode ray tube anodes, buttons, digital display tube lead frames, and the like. The sealing alloy is made from an ingot, which is made into a thin plate, then annealed, deep drawn, punched or etched to form the desired shape, and then subjected to an oxide coating treatment in a humid H2 atmosphere at high temperature to form glass. Sealed. In general, sealing alloys should have thermal expansion characteristics that closely match the coefficient of thermal expansion of soft glass. The oxide film on the alloy surface firmly adheres to the alloy base. No needle-shaped oxides called yellow powder are formed on the oxide film surface of the alloy surface. There should be no air bubbles that impair the sealing strength during glass sealing. It has excellent workability as it is often used by deep drawing into thin plates and complex shapes. It is necessary to have the following characteristics. [Problems to be solved by the invention] Conventionally, Fe-Ni40 has been used as such a sealing alloy.
~55wt%-Cr4~8wt% alloy is particularly used because it satisfies the above characteristics, but the C contained in this alloy reacts with O in the atmosphere during preliminary oxide coating treatment. , CO gas forms cavities at the interface between the alloy matrix and the oxide film, reducing the adhesion of the oxide film, and also reacts with O in the external atmosphere during sealing with soft glass, producing CO gas. generate,
Since bubbles are generated at the interface between the oxide film and the glass, significantly reducing the sealing strength, it is necessary to reduce the amount of C in the alloy as much as possible. As a result of various studies regarding the amount of C in the alloy, the inventor found that if the amount of C is reduced to 0.005wt% or less, bubbles will not be generated even under the harshest conditions that can be considered in practical use, although this greatly depends on the glass sealing conditions. It has been found. However, it has been difficult to industrially realize an ultra-low C alloy of less than 0.005 wt% C. In other words, if a low C compound raw material that is carefully selected to reduce the C amount in the alloy to 0.005wt% or less is used, the product cost will be extremely high, and the C removal process to an extremely low C value is required in the melting process. This is because special melting equipment and special techniques are required, which may lead to an increase in product cost and a decrease in product yield. The present invention solves the above problems, stably and inexpensively lowers C in this type of glass sealing alloy to 0.005wt% or less, prevents bubbles from forming during sealing and other defects, and improves adhesion to soft glass. The purpose of this invention is to provide an industrial method for manufacturing a sealing alloy with good properties. [Means for solving the problem] This invention provides Fe-Ni of a specific composition of 40 to 55 wt%-
Before pre-oxidizing a thin plate of Cr4~8wt% glass sealing alloy, it is exposed to air or N2.
After heat treatment for 30 to 150 minutes at 300 to 500°C in
It is characterized in that after decarburizing the alloy at 1200° C. for 10 to 60 minutes to reduce the C content of the alloy to 0.005 wt% or less, a preliminary oxide film treatment is performed. To explain this invention in more detail, Ni: 40~55wt%, Cr: 4~8wt%, Si: 0.05~
0.50wt%, Mn: 0.05~0.5wt%, C: 0.005~
0.05wt%, O: 30ppm or less, N2 : 30ppm or less, Al: 0.05-0.50wt%, Zr: 0.001-0.10wt
%, RE: 0.001 to 0.10 wt%, and the balance is Fe and impurities. After forging or blooming, hot rolling, intermediate rolling, and annealing, the product plate thickness is 0.2 to 0.2 wt%. After cold rolling to 0.5mm, annealing and deep drawing, 300 to 500 in air or N2
After heat treatment for 30-150 minutes at ℃, dew point -30℃
Decarburize the alloy at 800-1200℃ for 10-60 minutes in the following H2 atmosphere: C: 0.005wt
% or less, preferably 0.003wt% or less, an oxide film treatment is performed at 1000 to 1200°C for 30 minutes to 2 hours in humid H2 gas to form an oxide film with extremely excellent adhesion to the alloy matrix. This makes it possible to obtain a soft glass sealing alloy that enables extremely reliable glass sealing without generating bubbles during glass sealing. [Function] Next, the reason for limiting the composition of the processed alloy in the present invention will be described. Ni: If Ni is less than 40 wt%, the coefficient of thermal expansion of the alloy will be smaller than that of soft glass, and if it exceeds 55 wt%, it will be larger than that of soft glass, which is undesirable, so Ni should be in the range of 40 wt% to 55 wt%. Al, Si: Added to improve deoxidation and adhesion of preliminary oxidation film, but Al and Si are
If it is less than 0.05wt%, deoxidation will be insufficient and the adhesion of the film will deteriorate, and if it is more than 0.50wt%, cold workability will deteriorate, so both Al and Si should be 0.05~
The content shall be 0.5wt%. Mn: Contains to improve desulfurization effect and hot workability, but if it is less than 0.05wt%, hot workability will deteriorate, and if it is more than 0.5wt%, the transition point of thermal expansion characteristics will decrease to the low temperature side. , Mn is 0.05~0.5wt because it will not match the thermal expansion characteristics of soft glass
%. Zr, RE: Zr, RE fixes O, C, and N in the alloy as oxides, carbides, and nitrides, improves the adhesion of the oxide film, prevents bubbles at the sealing interface, and improves the sealing strength. Although it has a great effect, Zr and RE
If it is less than 0.001 wt%, the effect of improving the adhesion of the oxide film is small, and if it exceeds 0.10 wt%, hot rolling properties and cold rolling properties are deteriorated, which is not preferable.
Therefore, the range of Zr and RE is 0.001wt% to 0.10wt%. Any rare earth element may be used as RE, but La, Ce, and Mitsushi metal are particularly preferable. O 2 , N 2 : If it exceeds 30 ppm, workability deteriorates, so it is necessary to keep both O 2 and N 2 below 30 ppm. In the present invention, C in the alloy thin plate before treatment is 0.005
As mentioned above, requiring a lower limit than C will increase the product cost, so the lower limit of C is set at 0.005wt.
%. Further, those containing more than 0.05% of C are not preferable because it is difficult and takes a long time to reduce the amount of C in the thin alloy sheet to 0.005wt% or less even in the decarburization method of the present invention before the oxide film treatment. Next, the reason why the heat treatment conditions and decarburization conditions, which are the characteristics of the present invention, are defined as described above will be explained. The first heat treatment at 300 to 500℃ in air or N2 for 30 to 150 minutes weakly oxidizes the carbon-containing oils and fats that remain attached to the surface of the alloy thin plate during the processing process of the soft glass sealing alloy. It burns out under certain conditions and forms a thin oxide film on the surface layer, then the next dew point is -30℃ or less.
By decarburizing treatment for 10 to 60 minutes at 800 to 1200℃ in an H2 atmosphere, the oxide film generated in the first stage heat treatment reacts with the C in the alloy thin plate, and the C in the alloy is significantly reduced. Quickly remove and reduce the amount of C in the alloy.
It has the characteristic of decarbonizing to 0.005wt% or less, and is the first
In stage heat treatment, the temperature is less than 300℃, the time is 30
If the temperature exceeds 500°C and the time exceeds 150 minutes, the reduction in the carbon removal process will be insufficient, and carbon will be formed on the surface of the alloy thin plate in the subsequent process. This is not preferred because the sealing properties of the oxide film deteriorate. Furthermore, if the dew point of the atmosphere during the carbon removal treatment exceeds -30°C, the oxide film formed on the surface of the alloy thin plate will not be reduced, and a sufficient carbon removal effect will not be obtained. If the temperature of the decarbonization treatment is less than 800° C. or the time is less than 10 minutes, decarbonization will not be carried out sufficiently, causing foaming in the subsequent glass sealing step and deteriorating the adhesion, which is not preferable. If the temperature of the carbon removal treatment exceeds 1200℃ and the time exceeds 60 minutes, Al, Si, and
Specific elements with a high affinity for oxygen, such as Zr and RE, are internally oxidized near the surface, and yellow powder is generated during subsequent preliminary oxidation, making it impossible to obtain an oxide film with good sealing properties, which is undesirable. [Examples and effects of the invention] Composition is Ni: 42.3wt%, Cr: 6.3wt%, Si:
0.25wt%, Mn: 0.20wt%, C: 0.030wt%,
O2 : 15ppm, N2 : 18ppm, Al: 0.30wt%, Zr:
0.05wt%, RE (La+Ce): 0.02wt%, and the balance is Fe and impurities.A thin alloy plate with a thickness of 0.2mm was deep-drawn into a cylindrical shape with a diameter of 20mmφ and a height of 10mm, as shown in Table 1. After decarbonization under the primary heat treatment conditions and decarbonization treatment conditions, the amount of C after decarbonization treatment for each sample of the present invention and comparative example when an oxide film treatment was performed at 1200°C for 60 minutes in a humid H2 atmosphere. , the sealing strength of the oxide film/glass, and the occurrence of bubbles are shown in the same table.

【表】【table】

【表】 第1表の封着強度は、外径20mm、高さ5mm、厚
さ2mmのパイプ状の軟質ガラスを上記封着合金試
料にのせ、1200℃×60秒(大気中)で加熱し、ガ
ラスを溶融、封着し、冷却後ガラスを木槌で破壊
し、合金素地の露出度合で評価した。 また気泡発生状況は、上記封着強度試験前(破
壊する前)に20倍の拡大鏡でガラス−合金界面を
観察し気泡の発生の有無を評価した。 第1表にみる如く、本発明方法による場合の試
料1〜10は何れも脱C後のC量が0.005wt%以下
の条件を満足し、封着時気泡発生なく、封着強度
良好、その他欠陥なしの優れた結果が得られてい
るに対して、本発明範囲外の比較例試料11〜14を
みると、1次熱処理を行なわなかつた資料11は脱
C処理後もC:0.02wt%と高く、封着時の気泡発
生が著るしい。 また1次熱処理の温度または時間条件が本発明
範囲外であつた試料12、13は、前者は残存C量が
高くて発泡多く、また残存C量が0.002wt%と低
く発泡のない後者も封着強度が不十分であつた。
最後の、1次熱処理条件は規定を満足するも脱C
処理で温度、時間条件が本発明の範囲外であつた
試料14は、黄粉が発生している。 以上に明らかなように、本発明は軟質ガラスの
封着時の気泡の発生を防止し、軟質ガラスとの密
着性が優れ、その他欠陥のないガラス封着用合金
が工業的安価に得られるものである。
[Table] The sealing strength in Table 1 is determined by placing a pipe-shaped soft glass with an outer diameter of 20 mm, a height of 5 mm, and a thickness of 2 mm on the above sealing alloy sample and heating it at 1200°C for 60 seconds (in the atmosphere). The glass was melted and sealed, and after cooling, the glass was broken with a mallet, and the degree of exposure of the alloy base was evaluated. In addition, the occurrence of bubbles was evaluated by observing the glass-alloy interface with a 20x magnifying glass before the above-mentioned sealing strength test (before breaking) to evaluate the presence or absence of bubbles. As shown in Table 1, samples 1 to 10 obtained by the method of the present invention all satisfied the condition that the amount of C after carbon removal was 0.005 wt% or less, no air bubbles were generated during sealing, the sealing strength was good, and so on. While excellent results with no defects were obtained, looking at Comparative Samples 11 to 14, which are outside the scope of the present invention, Sample 11, which was not subjected to primary heat treatment, had a carbon content of 0.02wt% even after the C removal treatment. This is very high, and the generation of air bubbles during sealing is significant. In addition, for Samples 12 and 13, in which the temperature or time conditions of the primary heat treatment were outside the range of the present invention, the former had a high residual C content and a lot of foaming, and the latter had a low residual C content of 0.002wt% and no foaming. The adhesion strength was insufficient.
The final, primary heat treatment conditions satisfied the regulations, but the carbon removal
Sample 14, in which the temperature and time conditions were outside the range of the present invention, produced yellow powder. As is clear from the above, the present invention prevents the generation of bubbles when sealing soft glass, provides excellent adhesion to soft glass, and provides an alloy for glass sealing that is free from other defects at an industrially low cost. be.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni:40〜55wt%、Cr:4〜8wt%、Si:0.05
〜0.50wt%、Mn:0.05〜0.5wt%、C:0.005〜
0.05wt%、O:30ppm以下、N2:30ppm以下の
他に、Al:0.05〜0.50wt%、Zr:0.001〜0.10wt
%、RE:0.001〜0.10wt%の少くとも1種を含有
し、残部はFeおよび不純物からなる合金の薄板
を、大気中あるいはN2中にて300〜500℃で30〜
150分の熱処理を行つた後、露点−30℃以下のH2
雰囲気中にて800〜1200℃で10〜60分の条件にて
脱炭処理を行つて合金のC:0.005wt%以下にし
た後、予備酸化被膜処理を行うことを特徴とする
軟質ガラス封着用合金の製造法。
1 Ni: 40-55wt%, Cr: 4-8wt%, Si: 0.05
~0.50wt%, Mn: 0.05~0.5wt%, C: 0.005~
0.05wt%, O: 30ppm or less, N2 : 30ppm or less, Al: 0.05-0.50wt%, Zr: 0.001-0.10wt
%, RE: 0.001 to 0.10 wt % of at least one element, with the remainder consisting of Fe and impurities.
After 150 minutes of heat treatment, H2 with dew point below -30℃
For soft glass sealing, characterized by performing decarburization treatment in an atmosphere at 800 to 1200°C for 10 to 60 minutes to reduce the C content of the alloy to 0.005 wt% or less, and then performing preliminary oxidation coating treatment. Alloy manufacturing method.
JP4691985A 1985-03-08 1985-03-08 Production of alloy for sealing soft glass Granted JPS61207509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4691985A JPS61207509A (en) 1985-03-08 1985-03-08 Production of alloy for sealing soft glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4691985A JPS61207509A (en) 1985-03-08 1985-03-08 Production of alloy for sealing soft glass

Publications (2)

Publication Number Publication Date
JPS61207509A JPS61207509A (en) 1986-09-13
JPH0127127B2 true JPH0127127B2 (en) 1989-05-26

Family

ID=12760738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4691985A Granted JPS61207509A (en) 1985-03-08 1985-03-08 Production of alloy for sealing soft glass

Country Status (1)

Country Link
JP (1) JPS61207509A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646086B2 (en) * 2000-03-21 2011-03-09 日新製鋼株式会社 Method for producing high purity Fe-Cr alloy
JP4691621B2 (en) * 2001-02-26 2011-06-01 日新製鋼株式会社 Method for producing high-purity Fe-Cr alloy

Also Published As

Publication number Publication date
JPS61207509A (en) 1986-09-13

Similar Documents

Publication Publication Date Title
JPH03133593A (en) Production of ni-based heat-resistant alloy welding wire
JPH10298653A (en) Manufacture of grain oriented silicon steel sheet with extremely low iron loss
JPH0127127B2 (en)
JPS646248B2 (en)
US2173312A (en) Silicon-iron alloy
US20050067067A1 (en) Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
US1358810A (en) Process of treating magnetizable material
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
JPH05320769A (en) Production of silicon steel sheet excellent in magnetism and film property
JPS60255924A (en) Manufacture of steel plate used for magnetic shielding member
JPS5815525B2 (en) Improvements in electrical steel
JP2735929B2 (en) Method for producing grain-oriented silicon steel sheet excellent in magnetic properties and coating properties
JPH0676650B2 (en) Fe-Ni alloy for shadow mask
JP3224186B2 (en) Method for producing high-strength low-thermal-expansion Fe-Ni-based alloy material excellent in punchability
KR820000330B1 (en) Process for low magnetic and high magnetic permeability material of ni-fe-mo alloy
JPH0159349B2 (en)
KR100312050B1 (en) Fe-Ni Alloy Used for a Shadow Mask and a Method for Producing a Shadow Mask
JPH0734199A (en) Fe-ni series electron gun electrode material
JPH0251973B2 (en)
JPH0238658B2 (en)
JPH07150252A (en) Production of cold rolled steel sheet for porcelain enameling by continuous annealing
JPH10219409A (en) Inner shielding material for magnetic shielding, and its production
JPH06122945A (en) Electrode material for fe-ni electron gun
JP3029670B2 (en) Method for producing Fe-Ni alloy
JPS63286524A (en) Production of shadow mask

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term