JPH01270570A - Production of cubic boron nitride sintered compact - Google Patents

Production of cubic boron nitride sintered compact

Info

Publication number
JPH01270570A
JPH01270570A JP63094440A JP9444088A JPH01270570A JP H01270570 A JPH01270570 A JP H01270570A JP 63094440 A JP63094440 A JP 63094440A JP 9444088 A JP9444088 A JP 9444088A JP H01270570 A JPH01270570 A JP H01270570A
Authority
JP
Japan
Prior art keywords
sintering
cbn
pressure
temperature
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63094440A
Other languages
Japanese (ja)
Other versions
JP2610645B2 (en
Inventor
Hikari Hasegawa
光 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63094440A priority Critical patent/JP2610645B2/en
Publication of JPH01270570A publication Critical patent/JPH01270570A/en
Application granted granted Critical
Publication of JP2610645B2 publication Critical patent/JP2610645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To prevent reverse rearrangement of cubic BN to hexagonal BN powder and improve high-temperature stability and thermal conductivity by sintering a cubic BN powder containing Si and B in specific conditions. CONSTITUTION:<=5wt.% Si and 0.01-1.0wt.% B are added to hexagonal BN and the blend is heated at 1300-1600 deg.C under 40-60kb pressure in the presence of a catalyst expressed by the formula LiMBN2 (M is alkaline earth metal) and then unreacted hexagonal BN and catalyst, etc., are separated and pulverized to provide a cubic BN powder containing Si and B having <=30mum particle size, which is then sintered under >=50kb pressure at >=1600 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、立方晶窒化ほう素(以下、cBNという)粉
末を高温高圧装置でホットプレスして強固な焼結体を製
造する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing a strong sintered body by hot-pressing cubic boron nitride (hereinafter referred to as cBN) powder using a high-temperature, high-pressure device. It is.

(従来の技術) cBNは鉄系合金の切削用工具、研削用工具なととして
用いられ、その生産量は年々増大している。cBNを工
具等として1吏用するためにはc、BN粒子をバインダ
ーて固めることが多いが、バインダーによる硬度低下等
の問題がある、 cBNをバインダーなしで焼結するための一般的方法は
、例えば、°旧gh−pressure sinter
ingof cBN’、YitlSheB ct at
: Eur、 Symp、 PowdMetall、 
5th [3] ’78 p201−211に述べられ
ている如く圧力が高い程、高性能の焼結体が得られ、ま
た温度についてはcBN相が安定な範囲て適正な温度圧
力領域、例えば77kbの場合で、 1830℃である
(Prior Art) cBN is used as cutting tools and grinding tools for iron-based alloys, and its production volume is increasing year by year. In order to use cBN as a tool, cBN particles are often hardened with a binder, but there are problems such as a decrease in hardness due to the binder.The general method for sintering cBN without a binder is as follows. For example, °old gh-pressure sinter
ingof cBN',YitlSheB ct at
: Eur, Symp, PowdMetall,
5th [3] '78 p201-211, the higher the pressure, the higher the performance of the sintered body, and the temperature should be within the appropriate temperature and pressure range within which the cBN phase is stable, for example, 77 kb. In this case, the temperature is 1830℃.

しかしながらこの条件は、cBNを合成する条件である
50kb、 1500℃前後と比較して過酷であり、ま
たこの条件て焼結を実施するには、現在50kb程度の
圧力で運転されている合成装置とは別の焼結専用装置が
必要になることが多い。
However, these conditions are harsher than the cBN synthesis conditions of 50kb and around 1500℃, and sintering under these conditions requires synthesis equipment that is currently operated at a pressure of about 50kb. often requires separate sintering equipment.

別の方法としては例えは特公昭59−5547号に示さ
れた触媒を使用する焼結法がある。
Another method is a sintering method using a catalyst as disclosed in Japanese Patent Publication No. 59-5547.

さらに別の方法としては、cBN粒子と反応するかある
いはc[lNに対して濡れ性が良いTiN、Afi等の
添加剤を使用して50kb以、h、1500℃前後で焼
結する方法がある。この方法ては焼結緻密化反応の主要
IX!lPAであるc[IN粒子の塑性変形が充分に起
こらない。そこて焼結不充分を補うために、添加剤を通
常10容量゛。(以十使用する二とが必要(こなる3、
これにより焼結(イ〜の硬さ(オc B N ep−結
晶体の60%以下に減少する(’c[!Nの焼結」、植
田池、第25回高圧討論会講演要旨集、第86百゛84
参照)6cBNに関して」1記バインターなしの焼結技
術に属するものとして特開昭62−197357号公報
に3己載された、(ゴう素を化学量論量より多くしたc
[IN(ほう素すンヂc[lNといわれる)を1史用づ
−る焼結法がある。この方法において例示された圧カ5
0kb、温度1500’(は達成された焼結条1′1緩
和グ)指標である。
Still another method is to use additives such as TiN and Afi that react with cBN particles or have good wettability with c[lN, and sinter at around 1500°C for 50kb or more. . This method is the main IX of the sintering densification reaction! Plastic deformation of lPA c[IN particles does not occur sufficiently. Therefore, to compensate for insufficient sintering, 10 volumes of additives are usually added. (It is necessary to use 2 and 10) (Konaru 3,
As a result, the hardness of sintering (I) decreases to less than 60% of that of the crystal ('c [!N sintering], Ike Ueda, Abstracts of the 25th High Pressure Conference, 86th hundred 84th
Reference) Regarding 6cBN, described in JP-A-62-197357 as belonging to the sintering technology without a binder in 1.
[There is a sintering method that uses IN (boron, also known as IN). Pressure 5 exemplified in this method
0 kb, temperature 1500' (achieved sintered strip 1'1 relaxation) index.

どころて、E、Rapoport(ANCPA(015
] 91071ANN、C1l1M(PaC11l I
O[7]、 607(’ 85)によれは最近のhll
N(六)1晶窒化(Jう素) H’cBHの平衡線とし
ではp=o、o3TI0.3fP:kb、T:K)が与
えらノー仁でおり、さらにP・0.0235T−0,3
と高之品にシフトする可能性ちあるとされている。した
がって、前掲の特開昭62−197357−;テ例示さ
れテいル45kb、 15001:トイう条1′1−け
cBNの安定性に関し数kbの余裕があること(、二な
るが、この程度の余r谷では充分な安定性が達成された
とけ言えない。この、肖、(二関し、Brl″apr旧
1(C[1[1)χT[l胛、’lu[! LIATE
pHAAbl Noj、7(1986)T?’が述へて
いる如く試料セル内の不可避的なVt力分布不均一の故
に不可避的なhllNへの部分転換かあるから、数kb
の圧力余裕は充分な安定性を実現するとは考えられない
Korote, E, Rapoport (ANCPA (015
] 91071ANN, C1l1M (PaC11l I
O[7], 607 ('85) is a recent hll
The equilibrium line of N(6)1 crystal nitride (J ion) H'cBH is given by p=o, o3TI0.3fP:kb, T:K), and furthermore, P・0.0235T-0 ,3
It is said that there is a possibility of a shift to Takanohin. Therefore, there is a margin of several kb regarding the stability of cBN as exemplified in JP-A-62-197357-15001. It cannot be said that sufficient stability has been achieved in the remaining valleys.
pHAAbl Noj, 7 (1986) T? As mentioned in
A pressure margin of is not considered to provide sufficient stability.

一方、A、 11. Ma3ypcl+ko(lji 
(1bid、 No、 5.12°84)によれは、h
BNHcBN平衡線は(づい素をcBN単結晶に添加す
ることにより、数百度高温へシフトさせることが可能で
あるといわオとる。
On the other hand, A, 11. Ma3ypcl+ko(lji
According to (1 bid, No, 5.12°84), h
It is said that it is possible to shift the BNHcBN equilibrium line to a high temperature of several hundred degrees by adding nitrogen to the cBN single crystal.

一般的に吾って、焼結体へσ)添加剤は、焼結条件を緩
和し、硬さを著しく低下させるというTii+述の作用
の外に、cBN粒−7″−J)結合力を高めるという作
用かある。この結合力が充分な場合には、焼結体σ)タ
フネスは単結晶、Lつ高くなる、この場合す立枯1本の
タフイ・スはc[lN粒子がイ冊がい(Jと高くなる、
従って細かいCONを用い添加剤なして結合JJか充分
に大きい焼結(4(を製造3−ると、硬さはtji結晶
に近く、タフネスは単結晶31ミリ大であろcQN焼結
体を提供する二とかできる。
In general, σ) additives to the sintered body, in addition to the above-mentioned action of easing the sintering conditions and significantly reducing the hardness, also increase the bonding strength of cBN grains. If this bonding force is sufficient, the toughness of the sintered compact σ) becomes single crystal, and the toughness increases by L. In this case, the toughness of one standing dead is c [lN particles are equal to Gai (J and high,
Therefore, if a sufficiently large sintered JJ (4) is manufactured using fine CON without additives, the hardness will be close to that of the TJI crystal, and the toughness will be 31 mm as a single crystal, providing a cQN sintered body. I can do two things.

添加剤なしての焼結を試みる場合、cBN拉了の焼結緻
密化か焼結・ドI能に大きな影響を及はずのて、c[l
N粒子の焼結緻密(ヒをもたらずcBN粒子の塑性変形
に着目する尼・要かある。この点に関し、圧力か一定の
場合温度の増加により塑性変形を加速することかてきる
([多結晶c[ltJの性質に及(jず焼結条件の影響
J 、[1,c、 i++n+uoj臣、l0PIII
K、 METAjAl、1986. No、 1. p
71〜75 (1986) )。圧力はポ・川・プレス
装置の能力により限定されるが、温度は断熱手法の改善
等により比較的簡単に高めることができるので、温度は
c[IN焼結体製造の制約にはならないが、圧力は制約
となる。
If sintering without additives is attempted, c[l
There is some research that focuses on the plastic deformation of CBN particles when the N particles are sintered densely ([ Effects of sintering conditions on the properties of polycrystalline c [ltJ, [1, c, i++n+uoj, l0PIII
K., METAjAl, 1986. No, 1. p
71-75 (1986)). The pressure is limited by the capacity of the press equipment, but the temperature can be increased relatively easily by improving insulation techniques, so the temperature is not a constraint on the production of c[IN sintered bodies, but Pressure is a constraint.

この文献は、密度、硬さ等の特性が飽和する焼結体を得
る温度条1!1は、圧力80kbにおいて、2800〜
3000 Kであると述べている。
This document states that the temperature condition 1!1 for obtaining a sintered body in which properties such as density and hardness are saturated is 2800~2800 at a pressure of 80 kb.
It states that it is 3000K.

(発明が解決し」、うとする課題) 前記圧力条1゛(−の80kbはc[INの焼結を工業
的に実施するには高過ぎ過酷な焼結条件に該当する。
(Problem to be Solved by the Invention) The above-mentioned pressure condition 1゛ (-80 kb corresponds to sintering conditions that are too high for industrially carrying out the sintering of c[IN).

cBllの焼結圧力を比較的低圧にすると、圧力がc[
INの安定限界1づ下となる可能性かある。現在解明さ
izているcBNMh[ltJ (六方晶窒[ヒほう素
)平衡線 P=0.03T  lOj (fil−L、
Pは圧力(kb) :’rは温度(に)である)におい
てP=50kbとすると、T=2010にとなり、手記
2170にの温度ではhBN安定領域に入ってしまう。
When the sintering pressure of cBll is set to a relatively low pressure, the pressure becomes c[
There is a possibility that it will be one level below the IN stability limit. The currently elucidated cBNMH[ltJ (hexagonal nitrogen [hyboron)] equilibrium line P=0.03T lOj (fil-L,
If P is pressure (kb) and 'r is temperature (in), and P = 50 kb, then T = 2010, and at the temperature specified in Note 2170, it falls into the hBN stability region.

そこで、本発明者は比較的低圧てc[lNを焼結する方
法を提供することを目的として研究を行なった。
Therefore, the present inventor conducted research with the aim of providing a method for sintering c[IN] at a relatively low pressure.

ほう素リッチeDNのみを用いる方法は、BとN以外の
成分が不純物として作用することによる悪影響はないも
のの、欠陥が生み出す焼結推進力のみてhllNへの転
換を確実に防止することは困難である。よって、本発明
者等は、ほう素リッチcBNにおりる欠陥による焼結推
進力を利用するとともに、A、 11.1la3ypc
uko池の教示によるi−1い素め添加による高温安定
性を同一のc[lN粒子内て実現する方法を検討した。
Although the method using only boron-rich eDN does not have any negative effects due to components other than B and N acting as impurities, it is difficult to reliably prevent conversion to hllN due to the sintering driving force generated by defects. be. Therefore, the present inventors utilized the sintering driving force due to defects in boron-rich cBN, and
We studied a method of achieving high-temperature stability in the same c[lN particle by adding i-1 diluted metal as taught by Ukoike.

この結果、予め(]う素リすチて且つSiを含有するc
[INを合成し、その粉末を原料として焼結を行なうこ
とが、プロセノ、ト有利てあり、且つ焼結体の特性も白
土することが判明した。
As a result, the c
[It has been found that synthesizing IN and performing sintering using its powder as a raw material is advantageous for prosthesis, and the properties of the sintered body are also similar to clay.

(課題を解決するだめの手段) rcBN多結晶体の生成プロセスと物性へのSiの影9
」、A、 M、11a3ypcnko他I  C1lE
PXC11EPXTBEPjblEAnb1.NO5,
12C84)によれはSlを添加することによりcBN
安定領域を約500°C高めることを述べている。また
、A、 M、 Ma3ype++kolt!!の論文は
、けい素を15%以下添加してhBNからcBNへの直
接転換を行ないc[IN多結晶体を得ると、番つい素に
より転換が加速されることを述べている。
(Means to solve the problem) Impact of Si on the production process and physical properties of rcBN polycrystals 9
”, A, M, 11a3ypcnko et al. I C1lE
PXC11EPXTBEPjblEAnb1. NO5,
12C84), cBN can be obtained by adding Sl.
It states that the stability region is increased by approximately 500°C. Also, A, M, Ma3ype++kolt! ! The paper states that when 15% or less silicon is added to directly convert hBN to cBN to obtain c[IN polycrystals, the conversion is accelerated by the addition of silicon.

cBNを焼結するプロセスに応用し、原料cBN粉末に
、1μm以下に分級したけい素微粉末を1%以下添加し
、約50kb、 2000℃の条件でポットプレスした
ところ、hBNへの逆転は生しなかったが金属Siが析
出し、c[lN粒子の焼結を妨げ、満足な焼結体を得る
ことがてきなかった。
When applied to the cBN sintering process, adding less than 1% of silicon fine powder classified to 1 μm or less to the raw material cBN powder and pot pressing at approximately 50 kb at 2000°C, there was no reversal to hBN. However, metal Si was precipitated and interfered with the sintering of the c[IN particles, making it impossible to obtain a satisfactory sintered body.

このことは、けい素によるhBNへの逆転防止作用を利
用する一方てりい素による焼結阻害作用を取り除かなけ
れはならないことを意味する。これは、cBN粒子全体
にけい素を固溶させるとともに、固溶しない過剰けい素
を取り除いたcBN粉末を原料とすることにより達成さ
れ、かかる知見に基づいて、本発明者は特願昭62−2
89496号において予め合成したほう素リッチのc[
lNに、Siを含有するcBNまたは窒化けい素(以下
、5i−cBNと総称する)を添加して焼結を行なう方
法を提案した。
This means that the sintering inhibiting effect of silicon must be removed while utilizing the anti-reversal effect of silicon on hBN. This was achieved by dissolving silicon throughout the cBN particles and using cBN powder as a raw material from which excess silicon that did not dissolve in the solid solution was removed.Based on this knowledge, the present inventor filed a patent application filed in 2
The boron-rich c[
We proposed a method in which cBN containing Si or silicon nitride (hereinafter collectively referred to as 5i-cBN) is added to IN to perform sintering.

この焼結法ではほう素リッヂc[INと5i−cBNと
が別個の粒子として混合された原料において、焼結中に
それぞれの作用が独立して但し同時並行的に表われると
考えられる。その後の研究によると、同一のcBN粒子
中に共存する過剰ほう素およびSiは各作用を打ち消す
ことなく、けい素を予め含有させたほう素リッヂc[l
Nにおいては過剰ほう素により易焼結性を1ζを与され
、かつ結晶中に含有されるSiによって高温安定性にな
るとの知見が得られた。
In this sintering method, it is thought that in a raw material in which boron ridge c[IN and 5i-cBN are mixed as separate particles, each effect appears independently but simultaneously in parallel during sintering. According to subsequent research, excess boron and Si coexisting in the same cBN particle did not cancel each other's effects;
In N, it was found that excess boron imparts easy sinterability to 1ζ, and Si contained in the crystal provides high temperature stability.

この知見に基づいて、予め81どBを含有させた立方晶
窒化ほう素を粉砕、分級し、て得た粉末を焼結原料とし
て使用することにより、圧力50kb以上、温度160
0°C以J1cBNの逆転移温度未満という、従来は焼
結に不充分てあった条1′トでc[IN焼結体を製造す
ることか可能になった。
Based on this knowledge, by crushing and classifying cubic boron nitride containing 81 B in advance and using the obtained powder as a sintering raw material, the
It has now become possible to produce a c[IN sintered body with a strip 1' which is below the reverse transition temperature of J1cBN at 0°C or higher, which was previously insufficient for sintering.

c[IN焼結体用の原料を得るための手段としては本出
願人による特開昭59−199513及び特開昭59=
199514を相合わせることにより可能である。つま
り六方晶窒化ほう素(以下118Nと記す)に5重量%
以下のBと0.01〜1.0重量%の金属Siまたは化
合物Si(化合物て加える場合はSi換算重量)とを加
えL+M[1N2(但い1はアルカリ土類金属を触媒と
して高温(1300〜1600℃)、高圧(40〜60
kb )下てcBNを合成し、゛次いでこのcBN中の
未反応hBN、触媒等を比重分離等の手段によってとり
除くことにより、cBN焼結体用原料を得ることができ
る。
c [Means for obtaining raw materials for IN sintered bodies are disclosed in JP-A-59-199513 and JP-A-59= by the present applicant.
This is possible by combining 199514. In other words, 5% by weight of hexagonal boron nitride (hereinafter referred to as 118N)
Add the following B and 0.01 to 1.0% by weight of metal Si or compound Si (in terms of Si weight if compound is added) and add L + M [1N2 (However, 1 is a high temperature (1300 ~1600℃), high pressure (40~60℃)
kb), and then by removing unreacted hBN, catalyst, etc. from this cBN by means such as specific gravity separation, a raw material for a cBN sintered body can be obtained.

必要ならば、この原料を、好ましくは30μI以下に、
さらに微粉砕する。この合成法において、Bを5%以」
−1Siを1%を越えて加えても精製段階で除去される
のて意味がなく、両者0.01%未満ては焼結に対する
効果か及はない。上記原料を50kb以」二、1600
℃以上の条件で焼結することにより強固な焼結体を得る
ことが可能である。
If necessary, this raw material is preferably reduced to less than 30 μI.
Further pulverize. In this synthesis method, 5% or more of B
Even if -1Si is added in an amount exceeding 1%, it is meaningless as it will be removed in the refining step, and if both amounts are less than 0.01%, there will be no effect on sintering. 50kb or more of the above raw materials 2,1600
It is possible to obtain a strong sintered body by sintering at a temperature of ℃ or higher.

(作 用) Siは過剰のBと相まってNの欠陥の生成に寄与するも
のと考えられる。一方、予めほう素リッチcQNに固溶
されたけい素は、固溶限が1000〜1500ppI1
1であり、格子定数を高純度c[lNの格子定数はa。
(Function) It is thought that Si, together with excess B, contributes to the formation of N defects. On the other hand, silicon preliminarily dissolved in boron-rich cQN has a solid solubility limit of 1000 to 1500 ppI1.
1, and the lattice constant of high purity c[IN is a.

−3,616人と比較して増大させる。- Increase compared to 3,616 people.

固溶けい素はcBNの高温安定性を高め、これによりc
[lN粒子が塑性変形し、易い条件が整い、従来焼結に
不適であった比較的低圧条件でもcBNが添加剤なしで
焼結可能となる。一方固溶していない過剰のSiは、h
BNからのc[IN合成に対しては有害ではないが、c
BNの焼結にとっては有害であるため、けい素は固溶も
しくは極微粒子状介在物の形態て存在することが必要で
ある。
Solid solute increases the high temperature stability of cBN, thereby c
[The lN particles are plastically deformed, conditions are established, and cBN can be sintered without additives even under relatively low pressure conditions, which were conventionally unsuitable for sintering. On the other hand, the excess Si that is not in solid solution is h
c from BN [although not harmful to IN synthesis, c
Since silicon is harmful to the sintering of BN, it is necessary to exist in the form of solid solution or ultrafine particulate inclusions.

焼結原料としてのcBN中にQN組成に対し過剰に存在
するBの一部または全部が結晶格子中にNの欠陥を生じ
、その結果ホノ1へプレスに際しc[IN結晶の塑性変
形を助長し、高密度焼結1本を生しると推定される。
Part or all of B, which is present in excess of the QN composition in cBN as a sintering raw material, causes N defects in the crystal lattice, and as a result, when pressed into Hono 1, it promotes plastic deformation of the c[IN crystal. , it is estimated that one high-density sintered piece will be produced.

以下、実施例により本発明をより詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〈実施例) 実施例1 hllNに対しほう素0.05 tw/l)%、けい素
0005%。
<Example) Example 1 Boron 0.05 tw/l)%, silicon 0005% based on hllN.

触媒としてLiCa[1lt710%(粉末の粒度はい
ずれも325、メツシュ下)を加えた粉末混合物の圧粉
体を圧力50kb、 i高度1450℃の条件て10分
保持してctlNを合成し、比重分離によって未反応h
BN等を分離精製した。得られたcBNをプラズマ励起
発光分析法により分析し、B及びSiを求めたところ、
各436%(理論1直436%)及び5PPMであった
。このcBNを粉砕し、粒度20μ以下の部分を60k
b、1700℃の条件て30分ポットプレスし、得られ
た焼結体の密度を学派法により測定した。又わずかては
あるがX線回折法によりhBNか検出された、焼結体の
密度を他σ)実施例および比較例とともに表1に示す。
A green compact of a powder mixture to which LiCa[1lt710% (all powder particle sizes are 325, under mesh) as a catalyst was held at a pressure of 50 kb and an altitude of 1450°C for 10 minutes to synthesize ctlN, and then conduct specific gravity separation. unreacted by h
BN etc. were separated and purified. The obtained cBN was analyzed by plasma excitation emission spectrometry to determine B and Si.
They were 436% (theoretical 436% for 1st shift) and 5 PPM. This cBN is crushed and the part with a particle size of 20μ or less is 60k
b. Pot pressing was carried out for 30 minutes at 1700°C, and the density of the obtained sintered body was measured by the school method. In addition, the density of the sintered body in which hBN was detected by the X-ray diffraction method is shown in Table 1 along with other σ) Examples and Comparative Examples.

実施例 2 実施例1に於てc[IN合成原料であるh[l11に対
しほう素45%、(づい素09%とし、他の条件は変え
ずに合成して得られたc[lNを分析したところll−
46,0%。
Example 2 In Example 1, the c[IN obtained by synthesizing the c[IN synthesis raw material h[l11] with 45% boron and 09% (double element) without changing other conditions. The analysis showed that ll-
46.0%.

5i−600PI’llとなった。前例と同様にしてc
BNのこの焼結体を得た。焼結体からはhBNは検出さ
hな力・っな。
It became 5i-600PI'll. Similarly to the previous example, c
This sintered body of BN was obtained. hBN cannot be detected from the sintered body.

比較例1 ほう素のh(INへの添加を省略した他は実施例1と同
一の処理を行なった。
Comparative Example 1 The same treatment as in Example 1 was performed except that the addition of boron to h(IN) was omitted.

比較例2 りい素のhBNへの添加を省略した池は実施例1と同一
の処理を行なった。
Comparative Example 2 The same treatment as in Example 1 was performed for a pond in which the addition of lithium to hBN was omitted.

(以下余白) 表   1 〈発明の効果) 実施例て示した如く、本発明によれば極めて高密度なc
[lN焼結体か低温水/)・プレスて得ることができる
、また、比較的低温である1700℃(実施例のポット
プレス温度)で既に生しる可能性があるcBI+のhB
Nへの逆転移か防かれる。
(The following is a blank space) Table 1 <Effects of the invention> As shown in the examples, according to the present invention, extremely high-density c
hB of cBI+, which can be obtained by pressing [IN sintered body or low-temperature water/), and which may already be formed at a relatively low temperature of 1700°C (pot press temperature in the example)
Countertransference to N is prevented.

また、けい素は、粒界物質又は単独用としてはほとんど
存在しないので、本焼結体の熱伝導性は単結晶に匹敵す
るものとなり放熱基板等への応用も可能である。
Furthermore, since silicon hardly exists as a grain boundary substance or alone, the thermal conductivity of the present sintered body is comparable to that of a single crystal, and it can be applied to heat dissipation substrates and the like.

Claims (1)

【特許請求の範囲】[Claims] 1.SiおよびBを含有する立方晶窒化ほう素の粉末を
圧力50kb以上、温度約1600℃以上の条件下で焼
結することを特徴とする立方晶窒化ほう素焼結体の製造
方法。
1. A method for producing a cubic boron nitride sintered body, comprising sintering cubic boron nitride powder containing Si and B under conditions of a pressure of 50 kb or more and a temperature of about 1600° C. or more.
JP63094440A 1988-04-19 1988-04-19 Method for producing cubic boron nitride sintered body Expired - Lifetime JP2610645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094440A JP2610645B2 (en) 1988-04-19 1988-04-19 Method for producing cubic boron nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094440A JP2610645B2 (en) 1988-04-19 1988-04-19 Method for producing cubic boron nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01270570A true JPH01270570A (en) 1989-10-27
JP2610645B2 JP2610645B2 (en) 1997-05-14

Family

ID=14110318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094440A Expired - Lifetime JP2610645B2 (en) 1988-04-19 1988-04-19 Method for producing cubic boron nitride sintered body

Country Status (1)

Country Link
JP (1) JP2610645B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023074623A1 (en) * 2021-10-25 2023-05-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199514A (en) * 1983-04-26 1984-11-12 Showa Denko Kk Synthesis of boron nitride of cubic system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199514A (en) * 1983-04-26 1984-11-12 Showa Denko Kk Synthesis of boron nitride of cubic system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023074623A1 (en) * 2021-10-25 2023-05-04
WO2023074623A1 (en) * 2021-10-25 2023-05-04 住友電気工業株式会社 Cubic boron nitride sintered body

Also Published As

Publication number Publication date
JP2610645B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
TW201829299A (en) Method for producing high-purity silicon nitride powder
CN107663092B (en) Preparation method of AlN powder
KR100642840B1 (en) Superfine particulate diamond sintered product of high purity and high hardness and method for production thereof
JPH01270570A (en) Production of cubic boron nitride sintered compact
JPH06219840A (en) Silicon nitride sintered compact and its production
JPH0510282B2 (en)
JPS6117403A (en) Metallic boride, carbide, nitride, silicide and oxide group substance and manufacture thereof
RU2382690C1 (en) Method of receiving of composite ceramic powder on basis of silicium nitride and titanium nitride
JP2003112977A (en) Method for producing high purity silicon nitride powder
JPS6291409A (en) Production of easy-to-sinter boron nitride powder
JPS63277570A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS62271604A (en) Hard quality abrasive structure and its manufacture
Singh et al. Phase evolution and stability of aluminium titanate prepared by solid-state route: effect of two different particle size of Al2O3
JPS5891065A (en) Manufacture of silicon carbide ceramic sintered body
KR840008789A (en) High purity aluminum nitride fine powder, compositions thereof and sintered bodies thereof, and methods for producing them
JPH0455142B2 (en)
JPS6253218B2 (en)
JPH0594B2 (en)
JP2628668B2 (en) Cubic boron nitride sintered body
JPS60260472A (en) Alpha-sialon sintered body and manufacture
JPS6121977A (en) Manufacture of aluminum nitride sintered body
KR100346761B1 (en) Manufacturing method of spherical TiC powder
JPH05279002A (en) Production of al nitride powder
JPH01131068A (en) Production of cubic boron nitride calcined compact
JPS59199513A (en) Synthesis of boron nitride of cubic system