JPH01270553A - Production of set material of coal ash - Google Patents

Production of set material of coal ash

Info

Publication number
JPH01270553A
JPH01270553A JP63099149A JP9914988A JPH01270553A JP H01270553 A JPH01270553 A JP H01270553A JP 63099149 A JP63099149 A JP 63099149A JP 9914988 A JP9914988 A JP 9914988A JP H01270553 A JPH01270553 A JP H01270553A
Authority
JP
Japan
Prior art keywords
weight
parts
coal ash
gypsum
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63099149A
Other languages
Japanese (ja)
Other versions
JPH0524873B2 (en
Inventor
Tsunetaka Hasegawa
長谷川 恒孝
Hiromitsu Katsube
勝部 博充
Yutaka Yokomichi
横道 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP63099149A priority Critical patent/JPH01270553A/en
Publication of JPH01270553A publication Critical patent/JPH01270553A/en
Publication of JPH0524873B2 publication Critical patent/JPH0524873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To simply reduce kinds of agents added and to shorten setting time by adding water to a mixture of a given amount of coal ash and alpha type hemihydrate, kneading and molding at normal temperature under normal pressure. CONSTITUTION:20-80 pts.wt. coal ash is blended with 80-20 pts.wt. alpha type hemihydrate to give 100 pts.wt. mixture, which is kneaded with 40-50 pts.wt. water to give mixed powder slurry. Then the slurry is cast into a mold at normal temperature under normal pressure to produce set materials.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、石炭灰を使用してボード等の建月に利用出来
る硬化体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a hardened body that can be used for building boards and the like using coal ash.

(従来の技術) 石炭火力発電所のボイラーから排出される石炭灰の発生
量は近々年間1000万tに達するとも言われているが
、その一部は有効利用されているものの、大部分は埋立
用や灰捨場へ投棄処分されている。しかし、廃業物処理
法への対応から多くの課題があり、石炭灰利用の技術開
発が望まれる。
(Conventional technology) It is said that the amount of coal ash emitted from the boilers of coal-fired power plants will reach 10 million tons per year in the near future, and although some of it is effectively used, the majority is landfilled. The waste is being disposed of as waste or being dumped in ash dumps. However, there are many issues related to compliance with the Waste Disposal Law, and it is desirable to develop technologies for utilizing coal ash.

石炭灰の有効利用分野はセメント、土木、骨材、建材な
とであり、粉体として素材のまま利用するか、固化して
利用するかに大別出来る。
Coal ash can be used effectively in cement, civil engineering, aggregate, and building materials, and can be roughly divided into whether it is used as a raw material in the form of powder or it is used after solidification.

周知の通り、石炭灰はそのままでは硬化しないので、今
までに多くの固化方法が提案されている特開昭57−9
2560号では石炭灰に石灰と石膏を加え180°Cの
水蒸気養生を行う方法、特公昭55−36615号では
、450〜600’Cで焼成した石膏を石炭灰と混練す
る方法、特開昭53−134023号では石炭灰にα半
水石膏と発泡剤を加えて多泡質硬化体を製造する方法、
特公昭59−53228号では石炭灰に石灰と石膏を加
える方法、特開昭56−17961号では石炭灰に石灰
を混合し1350〜〕500°Cで焼成する方法、特公
昭58−30262号では石炭灰と石灰と強アルカリを
用いる方法が示されている。
As is well known, coal ash does not harden as it is, so many solidification methods have been proposed.
No. 2560 describes a method of adding lime and gypsum to coal ash and subjecting it to steam curing at 180°C; JP-A-55-36615 describes a method of kneading gypsum calcined at 450 to 600°C with coal ash; -134023 discloses a method for producing a porous hardened body by adding α hemihydrate gypsum and a foaming agent to coal ash;
Japanese Patent Publication No. 59-53228 describes a method of adding lime and gypsum to coal ash, Japanese Patent Publication No. 56-17961 discloses a method of mixing lime with coal ash and calcining the mixture at 1350 to 500°C, and Japanese Patent Publication No. 58-30262 discloses a method of adding lime and gypsum to coal ash. A method using coal ash, lime and strong alkali is shown.

いずれも、石炭灰に石灰を添加しゆっくりしたボヅラン
反応を利用して同化するもの、あるいは石灰と石膏を力
lえて長時間かけてエトリンガイトを生成させるもの、
あるいは溶解塩類や発泡剤などの薬品を添加したり加熱
処理したりするものであり、■硬化物製造時間を短11
hすること■工程を簡単にすること、■添加薬晶種を少
なくすることの要求に応えられるものはなかった。
In either case, lime is added to coal ash and assimilated using the slow Boduran reaction, or lime and gypsum are combined to form ettringite over a long period of time.
Alternatively, chemicals such as dissolved salts and blowing agents are added or heat treatment is performed, which shortens the production time of cured products.
There was no one that could meet the demands of (1) simplifying the process, and (2) reducing the amount of added drug crystal species.

(発明が解決しようとする問題点) 石炭灰からボード等の建材に利用出来る硬化体を製造す
るに際し ■硬化物製造工程を簡単にすること ■惰力11薬晶種を少なくすること ■硬化速度の遅い工l−リンガイI−及びボヅランを利
用せず、硬化時間を短くすること の従来の問題が本発明によって解決できる聞ぢ、本発明
は石炭火力発電所から(Jl、出される石炭灰と排煙脱
硫することによって得られる排脱2水石真から製造出来
るα型半水石膏を利用して、石炭灰の硬化体を製造する
方法を提供するもので、石灰を使用しないので工I・リ
ンガイト及びボヅランを含まない硬化体を簡単にすばや
く製造出来るが、それはα型手水石膏を石炭灰に混練す
ることによって達成される。
(Problems to be Solved by the Invention) When producing a cured product that can be used as building materials such as boards from coal ash, ■ Simplifying the process for producing the cured product ■ Reducing the amount of inertia 11 drug crystal species ■ Curing speed The present invention solves the conventional problem of shortening the curing time without utilizing the slow process of coal ash and coal ash produced from coal-fired power plants. This method provides a method for producing hardened coal ash by using α-type hemihydrate gypsum, which can be produced from exhaust dihydrate gypsum obtained by flue gas desulfurization. It is possible to easily and quickly produce a hardened product that does not contain any of the following: a.

α型半水石膏の代わりに周知の如く焼石膏と称されるβ
型半水石膏を使用するのと硬化体製造に時間がかかり、
硬化体強度も低いのでボード等の建材に利用出来る硬化
体はα型半水石膏を利用する場合に111%定される。
Instead of α-type hemihydrate gypsum, β is known as calcined gypsum.
It takes time to use mold hemihydrate gypsum and to manufacture the hardened body.
Since the strength of the hardened product is low, the hardened product that can be used for building materials such as boards is 111% when α-type hemihydrate gypsum is used.

(問題点を解決するための手段) 本発明は石炭灰にα型手水石膏を混合することにより混
練水量を最小限にして常温常圧下で混練、成型し、高強
度の硬化体を製造するものであるここで、α型半水石肝
は火力発電所の排脱石膏(2水石−K)から力11圧水
7容液法で製造したものが利用できる。本発明の石炭灰
の硬化体製造方法は火力発電所内で利用するのが極めて
好都合である(発明の構成) そこで本発明は、 (1)石炭灰を原料とした硬化体を製造する方法に於い
て石炭灰20〜80重量部α型半水石膏80〜20重量
部からなる混合物100重量部に水40〜50重景部を
重量混練と成型を常温常圧下で行うことを特徴とする石
炭灰の硬化体製造方法と、 (2)石炭灰を原料とした硬化体を製造する方法に於い
て石炭灰20〜80重量部2水石膏80〜20重量部か
らなる混合物100重量部に水45〜80重量部を力I
Iえて、加圧・JJII熱下で混練し乍ら2水石膏をα
型半水石膏に転化し、次いで、成型を常圧常温下で行う
ことを特徴とする石炭灰の硬化体製造方法とを提供する
ものである。
(Means for Solving the Problems) The present invention mixes α-type handwash gypsum with coal ash, minimizes the amount of kneading water, and kneads and molds at room temperature and normal pressure to produce a high-strength hardened product. Here, the α-type hemihydrate liver can be used, which is produced from waste gypsum (dihydrate-K) from a thermal power plant by a 11-pressure water 7-volume liquid method. The method for producing a hardened body of coal ash according to the present invention is extremely convenient for use in a thermal power plant (Structure of the Invention) Therefore, the present invention provides: (1) a method for producing a hardened body using coal ash as a raw material; 100 parts by weight of a mixture consisting of 20 to 80 parts by weight of coal ash and 80 to 20 parts by weight of α-type hemihydrate gypsum and 40 to 50 parts by weight of water are mixed by weight and molded at room temperature and normal pressure. (2) A method for producing a hardened body using coal ash as a raw material, in which 100 parts by weight of a mixture consisting of 20 to 80 parts by weight of coal ash and 80 to 20 parts by weight of dihydrate gypsum and 45 to 45 parts by weight of water. 80 parts by weight
Then, while kneading under pressure and JJII heat, add dihydrate gypsum to α.
The present invention provides a method for producing a hardened product of coal ash, which is characterized in that the coal ash is converted into mold hemihydrate gypsum, and then molded under normal pressure and normal temperature.

〔実施例〕〔Example〕

本発明(1)の具体的実施例を以下に説明する。第1図
は比較例として、石炭灰にβ型半水石膏を加えた混合粉
体を混練する際の石炭灰配合割合と、7昆鍾水量の関係
を調べたものである。第2図ば本発明による具体例とし
て、石炭灰にα型手水石膏をノ用えた場合を具用べたも
のである。ここに7昆8東水量GJ混合粉体100重量
部に加えた混純水の重量部を示したものである。/Ft
+合扮体を水て混錬したスラリーを型枠に流展し、成型
して硬化体を得る方法において、スラリーが充分な流動
性を有することが、成型の容易さ等の面で重要である。
Specific examples of the present invention (1) will be described below. FIG. 1 shows, as a comparative example, the relationship between the coal ash blending ratio and the amount of water when kneading a mixed powder of coal ash and β-type hemihydrate gypsum. FIG. 2 shows a specific example of the present invention in which α-type hand plaster is applied to coal ash. Here, the parts by weight of mixed pure water added to 100 parts by weight of GJ mixed powder are shown. /Ft
In the method of obtaining a hardened product by spreading the slurry made by kneading the composite material with water into a mold and molding it, it is important that the slurry has sufficient fluidity in terms of ease of molding. be.

第1図および、第2図に示すとおり、流動性のあるスラ
リーを得るための最小限の混純水量は、α型半水石膏を
用いた場合ば、混合粉体100重量部に対して25〜4
5重量部であり、β型半水石珂では60〜63重量部で
あった。混練水量が多くなると、成型時の凝結時間を遅
延し、乾燥熱量も多く必要とすることから、α型手水石
膏を用いれば、より短い時間で成型でき、さらにより少
ない熱量で乾燥して硬化体を得ることが可能である。
As shown in Figures 1 and 2, the minimum amount of mixed pure water to obtain a fluid slurry is 25 parts by weight per 100 parts by weight of the mixed powder when α-type hemihydrate gypsum is used. ~4
5 parts by weight, and 60 to 63 parts by weight for β-type hemihydrate stone. If the amount of kneading water is large, the setting time during molding will be delayed and a large amount of drying heat will be required. Therefore, if α-type hand plaster is used, it can be molded in a shorter time and furthermore, it dries and hardens with less heat. It is possible to obtain a body.

第1表に、本発明によって得られた硬化体と、β型半水
石膏を用いた硬化体の物性測定結果を示す。
Table 1 shows the physical property measurement results of the cured product obtained by the present invention and the cured product using β-type hemihydrate gypsum.

比較例1 石炭灰を配合しないβ型半水石膏100重量部に水61
重量部を加えて混練し、これを4 cm X 4 cm
 X16cmの型枠に流展・成型し硬化体を得た。この
硬化体の物性値は第1表のとおりであった。
Comparative Example 1 100 parts by weight of β-type hemihydrate gypsum without coal ash mixed with 61 parts of water
Add parts by weight and knead, and mix this into a 4 cm x 4 cm
A cured product was obtained by spreading and molding in a mold of 16 cm x 16 cm. The physical properties of this cured product were as shown in Table 1.

比較例2 石炭灰50重量部にβ型半水石膏50重量部を加えた混
合粉体100重量部に、水60重量部を加えた以外は、
全て比較例1と同じ方法で硬化体を得た。
Comparative Example 2 Except that 60 parts by weight of water was added to 100 parts by weight of a mixed powder obtained by adding 50 parts by weight of β-type hemihydrate gypsum to 50 parts by weight of coal ash.
A cured product was obtained in the same manner as in Comparative Example 1.

硬化体の物性値は、第1表のとおりであった。The physical properties of the cured product were as shown in Table 1.

比較例3 石炭灰80重量部にβ型半水石膏20重量部を加えた混
合粉体100重量部に、水60重量部を加えた以外は、
全て比較例1と同じ方法で硬化体を得た。
Comparative Example 3 Except that 60 parts by weight of water was added to 100 parts by weight of a mixed powder of 80 parts by weight of coal ash and 20 parts by weight of β-type hemihydrate gypsum.
A cured product was obtained in the same manner as in Comparative Example 1.

硬化体の物性値は、第1表のとおりであった。The physical properties of the cured product were as shown in Table 1.

実施例4 石炭灰50重量部にα型水石膏50重量部を加えた混合
粉体100重量部に、水45重量部を加えた以外は全て
比較例1と同じ方法で硬化体を得た。硬化体の物性値は
第1表のとおりであった。
Example 4 A cured product was obtained in the same manner as in Comparative Example 1 except that 45 parts by weight of water was added to 100 parts by weight of a mixed powder obtained by adding 50 parts by weight of α-type water gypsum to 50 parts by weight of coal ash. The physical properties of the cured product were as shown in Table 1.

実施例5 石炭灰80重量部にα型半水石膏20重量部を加えた混
合粉体100重量部に、水55重量部を加えた以外はす
べて比較例1と同じ方法で硬化体を得た。
Example 5 A hardened body was obtained in the same manner as in Comparative Example 1 except that 55 parts by weight of water was added to 100 parts by weight of a mixed powder of 80 parts by weight of coal ash and 20 parts by weight of α-type hemihydrate gypsum. .

硬化体の物性値は第1表のとおりであった。The physical properties of the cured product were as shown in Table 1.

第1表に示すとおり、石炭灰80重量部とα型半水石膏
20重量部から成る硬化体は、石炭灰80重量部とβ型
半水石膏20重量部から成る同一配合割合の硬化体に比
べて高い強度を有する。又石炭灰50重量部にα型半水
石膏50重量部から成る硬化体はβ型半水石膏のみから
成る硬化体と比べてもほぼ同等の強度を有することがわ
かる。
As shown in Table 1, a hardened body made of 80 parts by weight of coal ash and 20 parts by weight of α-type hemihydrate gypsum is mixed with a hardened body made of 80 parts by weight of coal ash and 20 parts by weight of β-type hemihydrate gypsum with the same mixing ratio. It has higher strength compared to other materials. It can also be seen that a hardened body made of 50 parts by weight of coal ash and 50 parts by weight of α-type hemihydrate gypsum has almost the same strength as a hardened body made of only β-type hemihydrate gypsum.

第1表 *(β)はβ型半水石こう、 (α)はα担手水石こう
を表わす。
Table 1 * (β) represents β-type hemihydrate gypsum, and (α) represents α-carrying water gypsum.

以上のように本発明(1)によれば、石炭灰にα型半水
石膏と最小量の混純水を加え、混練と成型を常温・常圧
下で行うことによって強度の大きい石炭灰硬化体を■簡
単に、■ポゾラン硬化体やエトリンガイトを得るための
添加薬品種を用いず、■短い硬化時間で製造することが
できる。
As described above, according to the present invention (1), by adding α-type hemihydrate gypsum and a minimum amount of mixed pure water to coal ash, and performing kneading and molding at room temperature and normal pressure, a hardened coal ash product with high strength is obtained. It can be produced easily, without the use of additives to obtain hardened pozzolan or ettringite, and in a short curing time.

つぎに本発明(2)に関する実施例について以下に説明
する。
Next, examples related to the present invention (2) will be described below.

排脱2水石膏から加圧水溶液法によってα型半水石膏を
製造する方法では、排脱2水石膏100重量部に対して
混純水量500重量部が使用されるが、このα型は半水
石膏の希薄なスラリーをそのまま石炭灰に加えただけで
は、充分な強度の硬化体を得ることが困難である。本発
明(2)は、石炭灰に排脱2水石膏を加えた混合粉体を
出来る限り最少比の混練水量で加圧・加熱混練しながら
、2水石膏をα型半水石膏に転化し、常温常圧下で、成
型して石炭灰の硬化体を製造する方法である。そこで第
3図に示すとおり石炭灰に排脱2水石膏を加えた混合粉
体を混練する際の石炭灰配合割合と一混練水量の関係を
調べた。
In the method of producing α-type hemihydrate gypsum from eliminated dihydrate gypsum by a pressurized aqueous solution method, 500 parts by weight of pure water is used for 100 parts by weight of eliminated dihydrate gypsum. If a dilute slurry of gypsum is simply added to coal ash, it is difficult to obtain a hardened material with sufficient strength. The present invention (2) involves converting dihydrate gypsum into α-type hemihydrate gypsum while pressurizing and heating and kneading a mixed powder obtained by adding expelled dihydrate gypsum to coal ash with the minimum amount of mixing water possible. This is a method of producing a hardened body of coal ash by molding it at room temperature and pressure. Therefore, as shown in Fig. 3, the relationship between the coal ash blending ratio and the amount of water per kneading was investigated when kneading a mixed powder of coal ash and removed dihydrate gypsum.

第3図より、上記混合粉体が流動性のあるスラリーとな
るに要する最少比の混純水量は、混合粉体100重量部
に対して32〜47重量部であることが判った。
From FIG. 3, it was found that the minimum ratio of mixed pure water required for the mixed powder to become a fluid slurry was 32 to 47 parts by weight per 100 parts by weight of the mixed powder.

第2表に本発明(2)によって得られた硬化体の物性測
定結果の一例を示した。
Table 2 shows an example of the physical property measurement results of the cured product obtained according to the present invention (2).

実施例6 オートクレープ内に石炭灰50重量部と排脱2水石員5
0重量部からなる混合粉体を仕込み、この混合粉体10
0重量部に対し、媒晶剤としてクエン酸ソーダ0.04
重量部を加え、さらに水88重量部を加え密閉し、混練
しなからオートクレーブ外壁からの加熱により中の原料
を加温した。
Example 6 50 parts by weight of coal ash and 5 parts by weight of removed dihydrite in an autoclave
A mixed powder consisting of 0 parts by weight is charged, and this mixed powder 10
0 parts by weight, 0.04 parts by weight of sodium citrate as a crystal modifier
After adding 88 parts by weight of water, the autoclave was sealed, and the raw materials inside the autoclave were heated by heating from the outer wall of the autoclave without kneading.

圧力= 3 、1 kg / cm 2+ /l!!度
・132°Cで約1.5hr混練後、石炭灰と生成した
α型半水石膏の混練物を常圧常温下で4 cmX 4 
cmX16cmの型枠に流展、成型し、硬化体を得た。
Pressure = 3, 1 kg/cm 2+ /l! ! After kneading for about 1.5 hours at 132°C, the mixture of coal ash and α-type hemihydrate gypsum was mixed into 4 cm x 4 at normal pressure and room temperature.
The mixture was spread and molded into a mold of cm x 16 cm to obtain a cured product.

この硬化体の物性値は第2表のとおりであった。The physical properties of this cured product were as shown in Table 2.

実施例7 オートクレーブ内に石炭灰80重量部と、JJI脱2水
石膏20重量部からなる混合粉体を仕込み、この混合粉
体100重量部に対してクエン酸ソーダ0.04重量部
と水80重量部を加えて実施例6と同じ方法により加熱
混純した。圧力・3.2kg/cm2.温度/132°
Cで約1.Ohr混練後、実施例6と同じ方法により常
温常圧下で流展、成型し、硬化体を得た。
Example 7 A mixed powder consisting of 80 parts by weight of coal ash and 20 parts by weight of JJI dehydrated gypsum was placed in an autoclave, and 0.04 parts by weight of sodium citrate and 80 parts by weight of water were added to 100 parts by weight of this mixed powder. Parts by weight were added and mixed by heating in the same manner as in Example 6. Pressure・3.2kg/cm2. Temperature/132°
About 1. After Ohr kneading, the mixture was spread and molded at room temperature and pressure in the same manner as in Example 6 to obtain a cured product.

この硬化体の物性値LJ第2表のとおりであった。The physical properties of this cured product were as shown in Table 2 LJ.

第2表に示すとおり、本発明(2)の硬化体は、建築用
材料等に利用出来る強度を持つことが判った。
As shown in Table 2, the cured product of the present invention (2) was found to have a strength that can be used as a building material, etc.

なお、本発明(2)において媒晶剤としてはクエン酸ソ
ーダが良く、その量は混合粉体100重量部に対して0
,02〜0.3g重量部が適当である。また混純水量の
少ないスラリーを撹拌するので、トルクの強い撹拌機と
、適当な形状の撹拌翼を用いる。さ第2表 らに排11iA 2水石膏をα型?ド水石膏に転化する
際の反応条件は圧力=3.0〜4.5 kg/cm2.
 ?mr度、130〜145°Cが適当である。
In the present invention (2), sodium citrate is preferred as the modifier, and the amount thereof is 0 to 100 parts by weight of the mixed powder.
, 02 to 0.3 g parts by weight are suitable. Furthermore, since a slurry with a small amount of mixed pure water is stirred, a stirrer with strong torque and stirring blades of an appropriate shape are used. Is the 11iA dihydrate gypsum α type in the second table? The reaction conditions for conversion to hydrated gypsum are pressure = 3.0 to 4.5 kg/cm2.
? mr degree, 130-145°C is suitable.

なおり11熱方法としては、スチームによる原料の直接
力II熱および、スチームジャケントによる間接加熱が
使用できる。
Note 11 As the heating method, direct heating of the raw material using steam and indirect heating using a steam jacket can be used.

(発明の効果) 以」二のように本発明のよれば石炭灰に排脱2水石膏と
、最少量の混純水を加え力[1圧・加熱下で混練しなが
ら、2水石Kをα担手水石珂に転化し、次いで成型を當
圧常?7a下て行うことによって、■簡単に、■少ない
添加薬晶種で、■短い硬化時間で製造することができる
(Effects of the Invention) As described in 2 below, according to the present invention, removed dihydrate gypsum and a minimum amount of mixed pure water are added to coal ash, and dihydrate K is added to the coal ash while kneading under pressure and heat. Convert to α carrier water stone, then mold under normal pressure? 7a, it can be produced easily, with fewer medicinal crystal species added, and in a shorter curing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の比較例を示す石炭灰にβ担手水石
こうを月11えた混合粉体を混練する際の石炭灰配合割
合と、混練水星の関係を示す比較例のグラフ図、第2図
は、この発明の一実施例を示ず石炭灰にα型半水石膏を
加えた場合のゲラフロ、第3区1は、この発明の他の実
施例を示す石炭灰に排+11A 2水石膏を加えた混合
粉体を混練する隙の石炭灰配合割合と混練水■との関係
を示すグラフ図である。
FIG. 1 is a graph of a comparative example showing the relationship between the coal ash blending ratio and the kneading mercury when kneading a mixed powder of coal ash and β-carrying water gypsum, which is a comparative example of the present invention; Fig. 2 shows one embodiment of the present invention in which α-type hemihydrate gypsum is added to coal ash. FIG. 2 is a graph showing the relationship between the mixing ratio of coal ash and the mixing water (2) in the gap in which the mixed powder to which water gypsum is added is kneaded.

Claims (2)

【特許請求の範囲】[Claims] (1)石炭灰を原料とした硬化体を製造する方法におい
て、石炭灰20〜80重量部、α型半水石膏80〜20
重量部からなる混合物100重量部に水40〜50重量
部を加え混練と成型を常温常圧下で行うことを特徴とす
る石炭灰の硬化体製造方法。
(1) In a method for producing a hardened product using coal ash as a raw material, 20 to 80 parts by weight of coal ash, 80 to 20 parts by weight of α-type hemihydrate gypsum
A method for producing a hardened body of coal ash, which comprises adding 40 to 50 parts by weight of water to 100 parts by weight of a mixture consisting of 100 parts by weight, and performing kneading and molding at room temperature and normal pressure.
(2)石炭灰を原料とした硬化体を製造する方法におい
て、石炭灰20〜80重量部、2水石膏80〜20重量
部からなる混合物100重量部に水45〜80重量部を
加えて加圧・加熱下で混練し乍ら2水石膏をα型半水石
膏に転化し、次いで成型を常圧常温下で行うことを特徴
とする石炭灰の硬化体製造方法。
(2) In a method for producing a hardened body using coal ash as a raw material, 45 to 80 parts by weight of water is added to 100 parts by weight of a mixture consisting of 20 to 80 parts by weight of coal ash and 80 to 20 parts by weight of dihydrate gypsum. A method for producing a hardened coal ash product, which comprises converting dihydrate gypsum into α-type hemihydrate gypsum while kneading under pressure and heat, and then molding at normal pressure and room temperature.
JP63099149A 1988-04-20 1988-04-20 Production of set material of coal ash Granted JPH01270553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099149A JPH01270553A (en) 1988-04-20 1988-04-20 Production of set material of coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099149A JPH01270553A (en) 1988-04-20 1988-04-20 Production of set material of coal ash

Publications (2)

Publication Number Publication Date
JPH01270553A true JPH01270553A (en) 1989-10-27
JPH0524873B2 JPH0524873B2 (en) 1993-04-09

Family

ID=14239636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099149A Granted JPH01270553A (en) 1988-04-20 1988-04-20 Production of set material of coal ash

Country Status (1)

Country Link
JP (1) JPH01270553A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516604A (en) * 2007-01-19 2010-05-20 セラテック インコーポレーティッド High-strength cement, mortar and concrete containing industrial by-products
GB2497574A (en) * 2011-12-15 2013-06-19 Saint Gobain Placo Sas A method of forming a gypsum based product
US9394200B2 (en) 2013-11-01 2016-07-19 Ceratech Inc Highly workable, high strength cement compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516604A (en) * 2007-01-19 2010-05-20 セラテック インコーポレーティッド High-strength cement, mortar and concrete containing industrial by-products
GB2497574A (en) * 2011-12-15 2013-06-19 Saint Gobain Placo Sas A method of forming a gypsum based product
US9242870B2 (en) 2011-12-15 2016-01-26 Saint-Gobain Placo Sas Method of forming a gypsum based product
GB2497574B (en) * 2011-12-15 2019-10-02 Saint Gobain Placo Sas A method of forming a gypsum based product
US9394200B2 (en) 2013-11-01 2016-07-19 Ceratech Inc Highly workable, high strength cement compositions

Also Published As

Publication number Publication date
JPH0524873B2 (en) 1993-04-09

Similar Documents

Publication Publication Date Title
CN101190834A (en) Method for preparing magnesium slag aerated concrete building block added with cinder
CN103482898A (en) Thickening time control agent used for gypsum mortar, and preparation method thereof
JP3547268B2 (en) Cement admixture and cement composition
JPS6081051A (en) Manufacture of coal ash solidified body
CN103435302A (en) Preparation method of high-performance composite gypsum cementing slurry
JPH01270553A (en) Production of set material of coal ash
JPH0597491A (en) Cement admixture and quick setting executing method therefor
JPH11314947A (en) Cement composition
JP2968868B2 (en) Cement admixture and cement composition
JP3657058B2 (en) Cement admixture and cement composition
JPS5951504B2 (en) Heat-curing cement composition
JP2563468B2 (en) Carbonated cured product
JP7349169B2 (en) Architectural hardening materials and their manufacturing methods and applications
JP3378965B2 (en) Method for improving strength of hardened cement
JPS59145100A (en) Caking method for sewage sludge
JP2716574B2 (en) Manufacturing method of dry desulfurization agent for exhaust gas treatment
JP4948724B2 (en) Non-fired cement cured body and method for producing the same
JPH07112944B2 (en) Method for producing hardened body of coal ash
JPH107444A (en) Cement admixture and cement composition
JPS63277542A (en) Immediately setting composition
JPS5858305B2 (en) Fluorite gypsum composition
JPS6360180A (en) Manufacture of lightweight concrete
JPS623057A (en) Manufacture of cement set body
JP2769182B2 (en) Manufacturing method of cement molding
JP2721539B2 (en) Method for producing hardened mortars