JPH0524873B2 - - Google Patents

Info

Publication number
JPH0524873B2
JPH0524873B2 JP9914988A JP9914988A JPH0524873B2 JP H0524873 B2 JPH0524873 B2 JP H0524873B2 JP 9914988 A JP9914988 A JP 9914988A JP 9914988 A JP9914988 A JP 9914988A JP H0524873 B2 JPH0524873 B2 JP H0524873B2
Authority
JP
Japan
Prior art keywords
weight
parts
coal ash
gypsum
kneading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9914988A
Other languages
Japanese (ja)
Other versions
JPH01270553A (en
Inventor
Tsunetaka Hasegawa
Hiromitsu Katsube
Yutaka Yokomichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP63099149A priority Critical patent/JPH01270553A/en
Publication of JPH01270553A publication Critical patent/JPH01270553A/en
Publication of JPH0524873B2 publication Critical patent/JPH0524873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、石炭灰を使用してボード等の建材に
利用出来る硬化体の製造方法に関する。 (従来の技術) 石炭火力発電所のボイラーから排出される石炭
灰の発生量は近々年間1000万tに達するとも言わ
れているが、その一部は有効利用されているもの
の、大部分は埋立用や灰捨場へ投棄処分されてい
る。しかし、廃業物処理法への対応から多くの課
題があり、石炭灰利用の技術開発が望まれる。 石炭灰の有効利用分野はセメント,土木,骨
材,建材などであり、粉体として素材のまま利用
するか、固化して利用するかに大別出来る。 周知の通り、石炭灰はそのままでは硬化しない
ので、今までに多くの固化方法が提案されてい
る。 特開昭57−92560号では石炭灰に石灰と石膏を
加え180℃の水蒸気養生を行う方法、特公昭55−
36615号では、450〜600℃で焼成した石膏を石炭
灰と混練する方法、特開昭53−134023号では石炭
灰に〓半水石膏と発泡剤を加えて多泡質硬化体を
製造する方法、特公昭59−53228号では石炭灰に
石灰と石膏を加える方法、特開昭56−17961号で
は石炭灰に石灰を混合し1350〜1500℃で焼成する
方法、特公昭58−30262号では石炭灰と石灰と強
アルカリを用いる方法が示されている。 いずれも、石炭灰に石灰を添加しゆつくりした
ポゾラン反応を利用して固化するもの、あるいは
石灰と石膏を加えて長時間かけてエトリンガイト
を生成させるもの、あるいは溶解塩類や発泡剤な
どの薬品を添加したり加熱処理したりするもので
あり、硬化物製造時間を短縮すること工程を
簡単にすること、添加薬品種を少なくすること
の要求に応えられるものはなかつた。 (発明が解決しようとする問題点) 石炭灰からボード等の建材に利用出来る硬化体
を製造するに際し 硬化物製造工程を簡単にすること 添加薬品種を少なくすること 硬化速度の遅いエトリンガイド及びポゾラン
を利用せず、硬化時間を短くすること の従来の問題が本発明によつて解決できる 即ち、本発明は石炭火力発電所から排出される
石炭灰と排煙脱硫することによつて得られる排脱
2水石膏から製造出来る〓型半水石膏を利用し
て、石炭灰の硬化体を製製造する方法を提供する
もので、石灰を使用しないのでエトリンガイト及
びポゾランを含まない硬化体を簡単にすばやく製
造出来るが、それは〓型水石膏を石炭灰に混練す
ることによつて達成される。 〓型半水石膏の代わりに周知の如く焼石膏と称
される〓型半水石膏を使用するのと硬化体製造に
時間がかかり、硬化体強度も低いのでボード等の
建材に利用出来る硬化体は〓型半水石膏を利用す
る場合に限定される。 (問題点を解決するための手段) 本発明は石炭灰に〓型半水石膏を混合すること
により混練水量を最小限にして常温常圧下で混
練,成型し、高強度の硬化体を製造するものであ
る。 ここで、〓型半水石膏は火力発電所の排脱石膏
(2水石膏)から加圧水溶液法で製造したものが
利用できる。本発明の石炭灰の硬化体製造方法は
火力発電所内で利用するのが極めて好都合であ
る。 (発明の構成) そこで本発明は、 (1) 石炭灰を原料とした硬化体を製造する方法に
於いて石炭灰20〜80重量部〓型半水石膏80〜20
重量部からなる混合物100重量部に水40〜50重
量部を加え混練と成型を常温常圧下で行うこと
を特徴とする石炭灰の硬化体製造方法と、 (2) 石炭灰を原料とした硬化体を製造する方法に
於いて石炭灰20〜80重量部2水石膏80〜20重量
部からなる混合物100重量部に水45〜80重量部
を加えて、加圧・加熱下で混練し乍ら2水石膏
を〓型半水石膏に転化し、次いで、成型を常圧
常温下で行うことを特徴とする石炭灰の硬化体
製造方法とを提供するものある。 〔実施例〕 本発明(1)の具体的実施例を以下に説明する。第
1図は比較例として、石炭灰に〓型半水石膏を加
えた混合粉体を混練する際の石炭灰配合割合と、
混練水量の関係を調べたものである。第2図は本
発明による具体例として、石炭灰に〓型半水石膏
を加えた場合を調べたものである。ここに混練水
量は混合粉体100重量部に加えた混練水の重量部
を示したものである。混合粉体を水で混練したス
ラリーを型枠に流展し、成型して硬化体を得る方
法において、スラリーが充分な流動性を有するこ
とが、成型の容易さ等の面で重要である。第1図
および、第2図に示すとおり、流動性のあるスラ
リーを得るための最少限の混練水量は、〓型半水
石膏を用いた場合は、混合粉体100重量部に対し
て25〜45重量部であり、〓型半水石膏では60〜63
重量部であつた。混練水量が多くなると、成型時
の凝結時間を遅延し、乾燥熱量も多く必要とする
ことから、〓型半水石膏を用いれば、より短い時
間で成型でき、さらにより少ない熱量で乾燥して
硬化体を得ることが可能である。 第1表に、本発明によつて得られた硬化体と、
〓型半水石膏を用いた硬化体の物性測定結果を示
す。 比較例 1 石炭灰を配合しない〓型半水石膏100重量部に
水61重量部を加えて混練し、これを4cm×4cm×
16cmの型枠に流展・成型し硬化体を得た。この硬
化体の物性値は第1表のとおりであつた。 比較例 2 石炭灰50重量部に〓型半水石膏50重量部を加え
た混合粉体100重量部に、水60重量部を加えた以
外は、全て比較例1と同じ方法で硬化体を得た。
硬化体の物性値は、第1表のとおりであつた。 比較例 3 石炭灰80重量部に〓型半水石膏20重量部を加え
た混合粉体100重量部に、水60重量部を加えた以
外は、全て比較例1と同じ方法で硬化体を得た。
硬化体の物性値は、第1表のとおりであつた。 実施例 4 石炭灰50重量部に〓型水石膏50重量部を加えた
混合粉体100重量部に、水45重量部を加えた以外
は全て比較例1と同じ方法で硬化体を得た。硬化
体の物性値は第1表のとおりであつた。 実施例 5 石炭灰80重量部に〓型半水石膏20重量部を加え
た混合粉体100重量部に、水55重量部を加えた以
外はすべて比較例1と同じ方法で硬化体を得た。
硬化体の物性値は第1表のとおりであつた。 第1表に示すとおり、石炭灰80重量部と〓型半
水石膏20重量部から成る硬化体は、石炭灰80重量
部と〓型半水石膏20重量部から成る同一配合割合
の硬化体に比べて高い強度を有する。又石炭灰50
重量部に〓型半水石膏50重量部から成る硬化体は
〓型半水石膏のみから成る硬化体と比べてもほぼ
同等の強度を有することがわかる。
(Industrial Application Field) The present invention relates to a method for producing a hardened product that can be used for building materials such as boards using coal ash. (Conventional technology) It is said that the amount of coal ash emitted from the boilers of coal-fired power plants will reach 10 million tons per year in the near future, and although some of it is effectively used, the majority is landfilled. The waste is being disposed of as waste or being dumped in ash dumps. However, there are many issues related to compliance with the Waste Disposal Law, and it is desirable to develop technologies for utilizing coal ash. Fields in which coal ash is effectively used include cement, civil engineering, aggregates, and building materials, and can be roughly divided into whether it is used as a raw material in the form of powder or it is used after solidification. As is well known, coal ash does not harden as it is, and many solidification methods have been proposed so far. JP-A-57-92560 describes a method of adding lime and gypsum to coal ash and subjecting it to steam curing at 180°C.
No. 36615 describes a method of kneading gypsum calcined at 450 to 600°C with coal ash, and JP-A-53-134023 describes a method of producing a porous hardened material by adding gypsum hemihydrate and a foaming agent to coal ash. , Japanese Patent Publication No. 59-53228 discloses a method of adding lime and gypsum to coal ash, Japanese Patent Publication No. 56-17961 discloses a method of mixing lime with coal ash and calcining it at 1350 to 1500℃, and Special Publication No. 58-30262 discloses a method of adding lime and gypsum to coal ash. A method using ash, lime, and a strong alkali is shown. Either method involves adding lime to coal ash and solidifying it using a slow pozzolanic reaction, adding lime and gypsum to form ettringite over a long period of time, or using chemicals such as dissolved salts and blowing agents. Additives or heat treatment are required, and there has been no one that can meet the demands of shortening the production time of cured products, simplifying the process, and reducing the number of types of additives. (Problems to be solved by the invention) When producing a cured product that can be used for building materials such as boards from coal ash, simplify the process for producing the cured product, reduce the number of types of additives, use Etrin guide with slow curing speed, and The conventional problem of shortening the curing time without using pozzolan can be solved by the present invention. That is, the present invention can be obtained by desulfurizing coal ash and flue gas discharged from coal-fired power plants. This method provides a method for producing a hardened product of coal ash using the type hemihydrate gypsum that can be produced from expelled dihydrate gypsum.Since lime is not used, it is possible to easily produce a hardened product that does not contain ettringite and pozzolan. It can be produced quickly and is achieved by mixing water gypsum with coal ash. Using type hemihydrate gypsum, which is known as calcined gypsum instead of type hemihydrate gypsum, takes time to produce a hardened product and the strength of the hardened product is low, so it is a hardened product that can be used for building materials such as boards. is limited to when using 〓-type hemihydrate gypsum. (Means for solving the problem) The present invention mixes coal ash with hemihydrate gypsum, minimizes the amount of kneading water, and kneads and molds at room temperature and normal pressure to produce a high-strength hardened product. It is something. Here, the type hemihydrate gypsum produced by a pressurized aqueous solution method from waste gypsum (dihydrate gypsum) from thermal power plants can be used. It is extremely convenient to use the method for producing a hardened coal ash body of the present invention in a thermal power plant. (Structure of the Invention) Therefore, the present invention provides: (1) In a method for producing a hardened body using coal ash as a raw material, 20 to 80 parts by weight of coal ash and 80 to 20 parts by weight of gypsum hemihydrate are used.
(2) Curing using coal ash as a raw material; (2) Curing using coal ash as a raw material; In the method for producing the ash, 45 to 80 parts by weight of water is added to 100 parts by weight of a mixture consisting of 20 to 80 parts by weight of coal ash and 80 to 20 parts by weight of dihydrate gypsum, and the mixture is kneaded under pressure and heat. There is also provided a method for producing a hardened product of coal ash, which is characterized in that dihydrate gypsum is converted into hemihydrate gypsum, and then molding is performed under normal pressure and normal temperature. [Example] Specific examples of the present invention (1) will be described below. Figure 1 shows, as a comparative example, the coal ash blending ratio when kneading a mixed powder of coal ash and hemihydrate gypsum, and
This study investigated the relationship between the amount of kneading water. FIG. 2 shows, as a specific example of the present invention, a case in which gypsum hemihydrate was added to coal ash. Here, the amount of kneading water indicates the part by weight of kneading water added to 100 parts by weight of the mixed powder. In a method in which a slurry obtained by kneading mixed powder with water is spread in a mold and molded to obtain a cured product, it is important for the slurry to have sufficient fluidity in terms of ease of molding. As shown in Figures 1 and 2, the minimum amount of water for mixing to obtain a fluid slurry is 25 to 25 parts by weight per 100 parts by weight of the mixed powder when using hemihydrate gypsum. 45 parts by weight, and 60 to 63 parts by weight for 〓 type hemihydrate gypsum.
It was by weight. If the amount of kneading water is large, the setting time during molding will be delayed and a large amount of drying heat will be required. Therefore, if 〓 type hemihydrate gypsum is used, it can be molded in a shorter time and further dries and hardens with less heat. It is possible to obtain a body. Table 1 shows the cured product obtained by the present invention,
The results of measuring the physical properties of a cured product using 〓 type hemihydrate gypsum are shown. Comparative Example 1 No coal ash added: 61 parts by weight of water was added to 100 parts by weight of type hemihydrate gypsum and kneaded.
A cured product was obtained by spreading and molding in a 16 cm mold. The physical properties of this cured product were as shown in Table 1. Comparative Example 2 A hardened product was obtained in the same manner as in Comparative Example 1, except that 60 parts by weight of water was added to 100 parts by weight of a mixed powder made by adding 50 parts by weight of gypsum hemihydrate to 50 parts by weight of coal ash. Ta.
The physical properties of the cured product were as shown in Table 1. Comparative Example 3 A hardened product was obtained in the same manner as in Comparative Example 1, except that 60 parts by weight of water was added to 100 parts by weight of a mixed powder of 80 parts by weight of coal ash and 20 parts by weight of gypsum hemihydrate. Ta.
The physical properties of the cured product were as shown in Table 1. Example 4 A cured product was obtained in the same manner as in Comparative Example 1 except that 45 parts by weight of water was added to 100 parts by weight of a mixed powder obtained by adding 50 parts by weight of gypsum to 50 parts by weight of coal ash. The physical properties of the cured product were as shown in Table 1. Example 5 A hardened product was obtained in the same manner as in Comparative Example 1 except that 55 parts by weight of water was added to 100 parts by weight of a mixed powder of 80 parts by weight of coal ash and 20 parts by weight of gypsum hemihydrate. .
The physical properties of the cured product were as shown in Table 1. As shown in Table 1, a hardened body consisting of 80 parts by weight of coal ash and 20 parts by weight of gypsum hemihydrate is mixed with a hardened body consisting of 80 parts by weight of coal ash and 20 parts by weight of gypsum hemihydrate in the same proportion. It has higher strength compared to other materials. Also coal ash 50
It can be seen that the hardened body made of 50 parts by weight of type hemihydrate gypsum has almost the same strength as the hardened body made only of type hemihydrate gypsum.

【表】 以上のように本発明(1)によれば、石炭灰に〓型
半水石膏と最小量の混練水を加え、混練と成型を
常温・常圧下で行うことによつて強度の大きい石
炭灰硬化体を簡単に、ポゾラン硬化体やエト
リンガイドを得るための添加薬品種を用いず、
短い硬化時間で製造することがきる。 つぎに本発明(2)に関する実施例について以下に
説明する。 排脱2水石膏から加圧水溶液法によつて〓型半
水石膏を製造する方法では、排脱2水石膏100重
量部に対して混練水約500重量部が使用されるが、
この〓型は半水石膏の希薄なスラリーをそのまま
石炭灰に加えただけでは、充分な強度の硬化体を
得ることが困難である。本発明(2)は、石炭灰に排
脱2水石膏を加えた混合粉体を出来る限り最少限
の混練水量で加圧・加熱混練しながら、2水石膏
を〓型半水石膏に転化し、常温常圧下で、成型し
て石炭灰の硬化体を製造する方法である。そこで
第3図に示すとおり石炭灰に排脱2水石膏を加え
た混合粉体を混練する際の石炭灰配合割合と混練
水量の関係を調べた。 第3図より、上記混合粉体が流動性のあるスラ
リーとなるに要する最少限の混練水量は、混合粉
体100重量部に対して32〜47重量部であることが
判つた。 第2表に本発明(2)によつて得られた硬化体の物
性測定結果の一例を示した。 実施例 6 オートクレーブ内に石炭灰50重量部と排脱2水
石膏50重量部からなる混合粉体を仕込み、この混
合粉体100重量部に対し、媒晶剤としてクエン酸
ソーダ0.04重量部を加え、さらに水88重量部を加
え密閉し、混練しながらオートクレーブ外壁から
の加熱により中の原料を加温した。 圧力=3.1Kg/cm2,温度=132℃で約1.5hr混練
後、石炭灰と生成した〓型半水石膏の混練物を常
圧常温下で4cm×4cm×16cmの型枠に流展、成型
し、硬化体を得た。この硬化体の物性値は第2表
のとおりであつた。 実施例 7 オートクレーブ内に石炭灰80重量部と、排脱2
水石膏20重量部からなる混合粉体を仕込み、この
混合粉体100重量部に対してクエン酸ソーダ0.04
重量部と水80重量部を加えて実施例6と同じ方法
により加熱混練した。圧力=3.2Kg/cm2,温度/
132℃で約1.0hr混練後、実施例6と同じ方法によ
り常温常圧下で流展、成型し、硬化体を得た。こ
の硬化体の物性値は第2表のとおりであつた。第
2表に示すとおり、本発明(2)の硬化体は、建築用
材料等に利用出来る強度を持つことが判つた。 なお、本発明(2)において媒晶剤としてはクエン
酸ソーダが良く、その量は混合粉体100重量部に
対して0.02〜0.3g重量部が適当である。また混練
水量の少ないスラリーを撹拌するので、トルクの
強い撹拌機と、適当な形状の撹拌翼を用いる。さ
[Table] As described above, according to the present invention (1), coal ash is added with hemihydrate gypsum and a minimum amount of kneading water, and the kneading and molding are performed at room temperature and pressure. Coal ash hardened material can be easily obtained without using additives to obtain pozzolanic hardened material or Etrin guide.
Can be manufactured in a short curing time. Next, examples related to the present invention (2) will be described below. In the method of producing 〓-type hemihydrate gypsum from eliminated dihydrate gypsum by a pressurized aqueous solution method, approximately 500 parts by weight of mixing water is used for 100 parts by weight of eliminated dihydrate gypsum.
In this case, it is difficult to obtain a hardened product with sufficient strength by simply adding a dilute slurry of gypsum hemihydrate to coal ash. The present invention (2) is to convert dihydrate gypsum to hemihydrate gypsum while pressurizing and heating and kneading a mixed powder of coal ash and expelled dihydrate gypsum with the minimum amount of kneading water possible. This is a method of producing a hardened body of coal ash by molding it at room temperature and pressure. Therefore, as shown in Fig. 3, the relationship between the coal ash blending ratio and the amount of mixing water when kneading a mixed powder of coal ash and removed dihydrate gypsum was investigated. From FIG. 3, it was found that the minimum amount of kneading water required for the mixed powder to become a fluid slurry was 32 to 47 parts by weight per 100 parts by weight of the mixed powder. Table 2 shows an example of the physical property measurement results of the cured product obtained according to the present invention (2). Example 6 A mixed powder consisting of 50 parts by weight of coal ash and 50 parts by weight of removed gypsum was placed in an autoclave, and 0.04 parts by weight of sodium citrate was added as a modifier to 100 parts by weight of this mixed powder. Further, 88 parts by weight of water was added, the autoclave was sealed, and the raw materials inside were heated by heating from the outer wall of the autoclave while kneading. After kneading for about 1.5 hours at a pressure of 3.1 Kg/cm 2 and a temperature of 132°C, the mixture of coal ash and gypsum hemihydrate was poured into a 4 cm x 4 cm x 16 cm mold under normal pressure and room temperature. It was molded to obtain a cured product. The physical properties of this cured product were as shown in Table 2. Example 7 80 parts by weight of coal ash in an autoclave and discharge 2
A mixed powder consisting of 20 parts by weight of water gypsum is charged, and 0.04 parts by weight of sodium citrate per 100 parts by weight of this mixed powder.
Parts by weight and 80 parts by weight of water were added and heated and kneaded in the same manner as in Example 6. Pressure=3.2Kg/cm 2 , Temperature/
After kneading at 132° C. for about 1.0 hours, the mixture was spread and molded at room temperature and pressure in the same manner as in Example 6 to obtain a cured product. The physical properties of this cured product were as shown in Table 2. As shown in Table 2, the cured product of the present invention (2) was found to have a strength that can be used as a building material, etc. In the present invention (2), sodium citrate is preferred as the modifier, and the appropriate amount thereof is 0.02 to 0.3 g parts by weight per 100 parts by weight of the mixed powder. Furthermore, since a slurry with a small amount of kneading water is stirred, a strong torque stirrer and appropriately shaped stirring blades are used. difference

【表】 らに排脱2水石膏を〓型半水石膏に転化する際の
反応条件は圧力=3.0〜4.5Kg/cm2,温度=130〜
145℃が適当である。 なお加熱方法としては、スチームによる原料の
直接加熱および、スチームジヤケツトによる間接
加熱が使用できる。 (発明の効果) 以上のように本発明のよれば石炭灰に排脱2水
石膏と、最少量の混練水を加え加圧・加熱下で混
練しながら、2水石膏を〓型半水石膏に転化し、
次いで成型を常圧常温下で行うことによつて、
簡単に、少ない添加薬品種で、短い硬化時間
で製造することができる。
[Table] The reaction conditions for converting eliminated dihydrate gypsum into 〓-type hemihydrate gypsum are pressure = 3.0~4.5Kg/ cm2 , temperature = 130~
145℃ is suitable. As the heating method, direct heating of the raw material with steam or indirect heating with a steam jacket can be used. (Effects of the Invention) As described above, according to the present invention, by adding expelled dihydrate gypsum and a minimum amount of kneading water to coal ash and kneading it under pressure and heat, dihydrate gypsum is converted into 〓-type hemihydrate gypsum. transformed into
Next, by performing molding under normal pressure and normal temperature,
It can be easily produced with a small number of additives and a short curing time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の比較例を示す石炭灰に〓
型半水石こうを加えた混合粉体を混練する際の石
炭灰配合割合と、混練水量の関係を示す比較例の
グラフ図、第2図は、この発明の一実施例を示す
石炭灰に〓型半水石膏を加えた場合のグラフ図、
第3図は、この発明の他の実施例を示す石炭灰に
排脱2水石膏を加えた混合粉体を混練する際の石
炭灰配合割合と混練水量との関係を示すグラフ図
である。
Figure 1 shows a comparative example of this invention.
Figure 2 is a graph of a comparative example showing the relationship between the coal ash blending ratio and the amount of kneading water when kneading a mixed powder to which type hemihydrate gypsum is added. Graph diagram when adding type hemihydrate gypsum,
FIG. 3 is a graph showing the relationship between the blending ratio of coal ash and the amount of kneading water when kneading a mixed powder of coal ash and expelled dihydrate gypsum according to another embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 石炭灰を原料とした硬化体を製造する方法に
おいて、石炭灰20〜80重量部,〓型半水石膏80〜
20重量部からなる混合物100重量部に水40〜50重
量部を加え混練と成型を常温常圧下で行うことを
特徴とする石炭灰の硬化体製造方法。 2 石炭灰を原料とした硬化体を製造する方法に
おいて、石炭灰20〜80重量部,2水石膏80〜20重
量部からなる混合物100重量部に水45〜80重量部
を加えて加圧・加熱下で混練し乍ら2水石膏を〓
型半水石膏に転化し、次いで成型を常圧常温下で
行うことを特徴とする石炭灰の硬化体製造方法。
[Claims] 1. A method for producing a hardened body using coal ash as a raw material, comprising: 20 to 80 parts by weight of coal ash, 80 to 80 parts by weight of gypsum hemihydrate;
1. A method for producing a hardened coal ash product, which comprises adding 40 to 50 parts by weight of water to 100 parts by weight of a mixture consisting of 20 parts by weight, and performing kneading and molding at room temperature and normal pressure. 2. In a method for producing a hardened body using coal ash as a raw material, 45 to 80 parts by weight of water is added to 100 parts by weight of a mixture consisting of 20 to 80 parts by weight of coal ash and 80 to 20 parts by weight of dihydrate gypsum, and the mixture is pressurized. While kneading under heat, add dihydrate gypsum.
A method for producing a hardened product of coal ash, characterized by converting it into mold hemihydrate gypsum, and then molding it at normal pressure and room temperature.
JP63099149A 1988-04-20 1988-04-20 Production of set material of coal ash Granted JPH01270553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099149A JPH01270553A (en) 1988-04-20 1988-04-20 Production of set material of coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099149A JPH01270553A (en) 1988-04-20 1988-04-20 Production of set material of coal ash

Publications (2)

Publication Number Publication Date
JPH01270553A JPH01270553A (en) 1989-10-27
JPH0524873B2 true JPH0524873B2 (en) 1993-04-09

Family

ID=14239636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099149A Granted JPH01270553A (en) 1988-04-20 1988-04-20 Production of set material of coal ash

Country Status (1)

Country Link
JP (1) JPH01270553A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2009007654A (en) * 2007-01-19 2009-12-15 Ceratech Inc High strength cement, mortar and concrete including industrial by-products.
GB2497574B (en) * 2011-12-15 2019-10-02 Saint Gobain Placo Sas A method of forming a gypsum based product
US9394200B2 (en) 2013-11-01 2016-07-19 Ceratech Inc Highly workable, high strength cement compositions

Also Published As

Publication number Publication date
JPH01270553A (en) 1989-10-27

Similar Documents

Publication Publication Date Title
CN101190834A (en) Method for preparing magnesium slag aerated concrete building block added with cinder
JP3547268B2 (en) Cement admixture and cement composition
CN101555120A (en) Non calcination and non-autoclaved curing desulfurization gypsum block
JPS6081051A (en) Manufacture of coal ash solidified body
CN103435302A (en) Preparation method of high-performance composite gypsum cementing slurry
JPH0524873B2 (en)
WO1999007647A1 (en) Cement composition and process for producing concrete and precast concrete with the same
JPS61127656A (en) Gypsum hardened body
JP3657058B2 (en) Cement admixture and cement composition
JPS5951504B2 (en) Heat-curing cement composition
JP7349169B2 (en) Architectural hardening materials and their manufacturing methods and applications
JPH07112944B2 (en) Method for producing hardened body of coal ash
JP2716574B2 (en) Manufacturing method of dry desulfurization agent for exhaust gas treatment
JPH06233976A (en) Solidification of incineration ash and producing device of solidified molding of incineration ash
JPS6360180A (en) Manufacture of lightweight concrete
US2733996A (en) Process of making bricks
JPH0244781B2 (en)
JPS5858305B2 (en) Fluorite gypsum composition
JP2004224698A (en) Cement composition, and method of producing hardened body obtained by using the same
CN112573848A (en) Modified magnesium potassium phosphate cement
JP3678405B2 (en) Antisludge agent for centrifugal force molding and method for producing centrifugally molded product using the same
JP4220781B2 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JP4220781B6 (en) Low density calcium silicate hydrate strength accelerator additive for cementitious products
JP2721539B2 (en) Method for producing hardened mortars
JPS6186459A (en) Manufacture of hardened body from fluidized bed incinerationash as main raw material