JPH01268858A - Formation of thin carbon film - Google Patents

Formation of thin carbon film

Info

Publication number
JPH01268858A
JPH01268858A JP9853388A JP9853388A JPH01268858A JP H01268858 A JPH01268858 A JP H01268858A JP 9853388 A JP9853388 A JP 9853388A JP 9853388 A JP9853388 A JP 9853388A JP H01268858 A JPH01268858 A JP H01268858A
Authority
JP
Japan
Prior art keywords
substrate
thin film
carbon
film
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9853388A
Other languages
Japanese (ja)
Inventor
Masahiko Naoe
直江 正彦
Toyoaki Hirata
豊明 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SHINKU KIKI SEISAKUSHO KK
Original Assignee
OSAKA SHINKU KIKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SHINKU KIKI SEISAKUSHO KK filed Critical OSAKA SHINKU KIKI SEISAKUSHO KK
Priority to JP9853388A priority Critical patent/JPH01268858A/en
Publication of JPH01268858A publication Critical patent/JPH01268858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To use a low-melting-point material for a substrate and to improve the adhesive property of a thin carbon film by impressing a positive bias voltage on a substrate on which a carbon film is to be formed in the sputtering method wherein a voltage is impressed on a target. CONSTITUTION:A negative voltage is impressed on targets 3 and 3 to sputter the targets 3 and 3, and a thin carbon film is formed on a substrate 6 at the side position facing a plasma space formed by the sputtering. In this case, a positive bias voltage is impressed on the substrate 6 by a power source 10. By this method the carbon particles in the plasma space are deposited on the surface of the substrate 6 to form a film. However, the sputtering gas ion is not allowed to collide with the positively charged surface of the thin carbon film, and the negatively charged gamma electron collides with the surface. Accordingly, the film quality is not deteriorated, and the thin film of high- hardness carbon having a high adhesive strength can be formed on a low- melting-point substrate since the thin carbon film is not heated to a high temp.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気記録層の保護膜等として利用されるカーボ
ン薄膜をスパッタ形成させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for forming a carbon thin film by sputtering, which is used as a protective film for a magnetic recording layer.

(従来の技術) 従来、カーボン薄膜の形成手段としては、例えば特開昭
61−42122号公報所載の如きイオンビームスパッ
タ法、或いは特開昭62−157602号公報所載の如
きプラズマC1V、O法がある。
(Prior Art) Conventionally, as a means for forming a carbon thin film, for example, an ion beam sputtering method as described in JP-A-61-42122, or a plasma C1V, O as in JP-A-62-157602 has been used. There is a law.

しかるに、前者のイオンビームスパッタ法ではイオンビ
ーム源が非常に罵価である他、イオンビーム発生に用い
られているフィラメントの寿命が非常に短くその取扱い
に苦慮し、しかも基板上に形成されるカーボン薄膜の膜
質制御が技術的に困難となる問題点がある。
However, in the former ion beam sputtering method, the ion beam source is extremely difficult to use, and the filament used to generate the ion beam has a very short lifespan, making it difficult to handle. There is a problem that it is technically difficult to control the quality of the thin film.

他方、後者のプラズマC1V、 D法では、基板表面に
カーボン粒子を密着させるには、その成膜作業中に於い
て基板を例えば350℃程度の温度条件に設定する等、
基板をかなりの高温に加熱する必要があるために、低融
点の合成樹脂製基板等は適用不可能で、基板が耐熱性の
ものに限定されるという難点を生じる。更に、当該基板
を加熱する手段では耐熱性基板を用いた場合であっても
、カーボン薄膜と基板とがその後冷却された際に該両者
の線膨張係数の差に原因してカーボン薄膜が基板から剥
離を生じる如き難点をも有していた。
On the other hand, in the latter plasma C1V, D method, in order to bring carbon particles into close contact with the substrate surface, the temperature of the substrate is set to, for example, about 350° C. during the film formation process.
Since it is necessary to heat the substrate to a considerably high temperature, a substrate made of a synthetic resin with a low melting point or the like cannot be used, and there is a problem in that the substrate is limited to one that is heat resistant. Furthermore, even if a heat-resistant substrate is used in the means for heating the substrate, when the carbon thin film and the substrate are subsequently cooled, the carbon thin film may separate from the substrate due to the difference in linear expansion coefficient between the two. It also had the disadvantage of causing peeling.

そこで、近年では例えば特開昭62−222053号公
報所載に見られる様にカーボン製のターゲットを高周波
スパッタ又は直流スパッタさせる手段が試みられている
。当該スパッタ手段によれば、イオンビームスパッタ法
よりもその装置が安価で済み、又基板を高温に加熱させ
ることなくカーボン粒子の被着が行え実用上かなり好ま
しいものとなる。
Therefore, in recent years, attempts have been made to use carbon targets for high frequency sputtering or direct current sputtering, as disclosed in, for example, Japanese Patent Application Laid-Open No. 62-222053. According to the sputtering method, the equipment is cheaper than the ion beam sputtering method, and the carbon particles can be deposited without heating the substrate to a high temperature, which is quite preferable in practice.

(発明が解決しようとする問題点) しかるに、上記従来のターゲットを電圧印加するスパッ
タ法は具体的にはマグネトロンスパッタ装置や対向ター
ゲット式スパッタ装置等を用いる手段として実現される
が、当該手段に於いてカーボン薄膜を形成する場合には
、次の様な問題点が生じるのである。
(Problems to be Solved by the Invention) However, although the above-mentioned conventional sputtering method in which a voltage is applied to a target is specifically realized as a means using a magnetron sputtering device or a facing target type sputtering device, there are When a carbon thin film is formed using carbon fibers, the following problems arise.

すなわち、基板をプラズマ空間に対して単に対面させて
設けただけでは、カーボン粒子が基板に到達して付着さ
れた際の該カーボン粒子の基板表面での移動度が小さく
、カーボンの結晶化が促進されない。よって、この場合
に於いてはアモルファスな膜質構造となり、これでは高
硬度のカーボン薄膜が得られない難点を生じる。
In other words, if the substrate is simply placed facing the plasma space, the mobility of the carbon particles on the substrate surface will be small when the carbon particles reach and adhere to the substrate, and the crystallization of carbon will be promoted. Not done. Therefore, in this case, the film has an amorphous structure, which makes it difficult to obtain a carbon thin film with high hardness.

これに対して、従来からこの種スパッタ作業では薄膜の
膜質制御を行う手段として基板に負のバイアス電圧を印
加させる手段が採用されている。
On the other hand, conventionally in this type of sputtering operation, a means of applying a negative bias voltage to the substrate has been adopted as a means of controlling the film quality of the thin film.

当該手段は、基板側を負電位に設定することにより、プ
ラズマ空間中に存在する正電位のスパッタ用ガスイオン
(例えばアルゴンイオン)を薄膜の表面に衝突させて、
基板表面でのカーボン粒子の移動度を増大させることに
よりその結晶化を促進させるものである。ところが、当
該手段ではカーボン薄膜がスパッタ用ガスイオンの衝突
によりその表面に大きなダメージを受け、膜質を悪化さ
せる難点を生じるのである。この様な現象は、特にカー
ボン粒子の結晶度を大きくして高硬度のカーボン膜を形
成させんとして基板への印加電圧値を低下させる程、ス
パッタ用ガスイオンの衝突度合が大となって、カーボン
薄膜のダメージ、膜質劣悪が一層顕著となるのである。
This means sets the substrate side at a negative potential to cause sputtering gas ions (for example, argon ions) with a positive potential existing in the plasma space to collide with the surface of the thin film.
By increasing the mobility of carbon particles on the substrate surface, their crystallization is promoted. However, with this method, the surface of the carbon thin film is seriously damaged by collisions with sputtering gas ions, resulting in a problem of deterioration of film quality. This phenomenon occurs because the degree of collision of sputtering gas ions increases as the voltage applied to the substrate is lowered in an attempt to increase the crystallinity of carbon particles and form a highly hard carbon film. Damage to the carbon thin film and deterioration in film quality become even more noticeable.

よって、従来ではダメージの少ない硬質のカーボン薄膜
を得ることが非常に困難となっていた。
Therefore, conventionally, it has been extremely difficult to obtain a hard carbon thin film with little damage.

更に、従来ではスパッタ用ガスイオンが基板表面或いは
カーボン薄膜に衝突した際には該スパッタ用ガスイオン
の運動エネルギーが熱エネルギーに変換されるために、
カーボン薄膜はかなりの高温に加熱される現象を生じて
いた。よって、従来では基板を加熱しない場合であって
も該基板とカーボンとの線膨張係数の差に基づき該両者
の密着力が低下し、剥離を生じ易くなるという問題点を
も生じていたのである。
Furthermore, conventionally, when sputtering gas ions collide with the substrate surface or carbon thin film, the kinetic energy of the sputtering gas ions is converted into thermal energy.
A phenomenon occurred in which the carbon thin film was heated to a considerably high temperature. Therefore, in the past, even when the substrate was not heated, the adhesion between the substrate and carbon decreased due to the difference in coefficient of linear expansion, resulting in the problem of easy peeling. .

それ故、本発明は基板に従来よりも低融点の材質を使用
可能ならしめて、膜質にダメージが少なく且つ基板に対
する密着力の強いカーボン薄膜を適切に形成させること
を、その目的とするものである。
Therefore, an object of the present invention is to enable the use of a material with a lower melting point than conventional materials for the substrate, and to appropriately form a carbon thin film that causes less damage to the film quality and has strong adhesion to the substrate. .

(問題点を解決するための手段) 本発明は従来の如く基板表面のカーボン薄膜にプラズマ
空間中のスパッタ用ガスイオンを衝突させるのではなく
、プラズマ空間中に存在する電子をカーボン薄膜の膜質
制御に利用し、もって上記従来の問題点を解決せんとし
て構成されたものである。
(Means for Solving the Problems) The present invention does not collide sputtering gas ions in the plasma space with the carbon thin film on the surface of the substrate as in the past, but instead uses electrons existing in the plasma space to control the film quality of the carbon thin film. This system was designed to solve the above-mentioned problems of the conventional technology.

すなわち、本発明は、カーボン製のターゲット3を陰極
とすべく電圧を印加して該ターゲット3をスパッタせし
めて、該スパッタにより形成されるプラズマ空間に対面
すべく配置された基板6上にカーボン薄膜を形成する際
に、基板6に正のバイアス電圧を印加する、カーボン薄
膜の形成方法である。
That is, in the present invention, a voltage is applied to make the target 3 made of carbon serve as a cathode, the target 3 is sputtered, and a thin carbon film is formed on the substrate 6 placed to face the plasma space formed by the sputtering. This is a method of forming a carbon thin film in which a positive bias voltage is applied to the substrate 6 when forming the carbon thin film.

(作用) 上記構成を特徴とするカーボン薄膜の形成方法では、基
板6が正の電位となるために、該基板表面に堆積付着さ
れるカーボン薄膜にはプラズマ空間中のスパッタ用ガス
イオンに代わって電子が衝突を行い、これによって基板
表面でのカーボン粒子の結晶化を促す。
(Function) In the method for forming a carbon thin film characterized by the above configuration, since the substrate 6 has a positive potential, the carbon thin film deposited on the surface of the substrate is filled with sputtering gas ions in the plasma space. The electrons collide, which promotes crystallization of carbon particles on the substrate surface.

而して、電子はスパッタ用ガスイオンに比して格段微細
であるために、カーボン薄膜表面に大きなダメージを与
えない。又、カーボン薄膜の表面に電子が衝突して発生
される熱はカーボン薄膜の表面側部分のみを加熱させ、
スパック用ガスイオンを衝突させていた場合程基板6が
高温に加熱しないこととなる。
Since the electrons are much finer than sputtering gas ions, they do not cause much damage to the surface of the carbon thin film. In addition, the heat generated when electrons collide with the surface of the carbon thin film heats only the surface side of the carbon thin film,
The substrate 6 is not heated to a high temperature as much as it would be if the spuck gas ions were collided with each other.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

第1図の如き対向ターゲット式スパッタ装置を用いたス
パッタ法について説明すれば、先ずチャンバー1内の一
対のターゲットホルダー2.2にカーボン製のターゲッ
ト3,3を装着し、その後チャンバー1内を例えば3m
mTorr以下程度のアルゴンガス圧雰囲気の条件下で
、両ターゲット3゜3に負の電圧を印加してスパッタリ
ングを行う。
To explain the sputtering method using a facing target type sputtering apparatus as shown in FIG. 3m
Sputtering is performed by applying a negative voltage to both targets 3°3 under an argon gas pressure atmosphere of about mTorr or less.

このスパッタ作業により、磁石7,7・・・にて磁界が
形成されたターゲット3.3相互間の空間部4に、前記
スパッタによりカーボン粒子、ガンマ−電子、及びアル
ゴンイオンが飛散したプラズマ空間が形成される。
As a result of this sputtering operation, a plasma space in which carbon particles, gamma electrons, and argon ions are scattered by the sputtering is created in the space 4 between the targets 3 and 3 where a magnetic field is formed by the magnets 7, 7, and so on. It is formed.

一方、該プラズマ空間に対面する側方位置に設けられた
基板ホルダー5には基板6をセットし、該基板6には正
、負何れにの電圧にも切換自在とする電源供給装置10
から正のバイアス電圧を印加させておく。
On the other hand, a substrate 6 is set on a substrate holder 5 provided at a side position facing the plasma space, and a power supply device 10 is attached to the substrate 6, which can be switched to either a positive or negative voltage.
A positive bias voltage is applied from .

よって、上記作業条件下では、ターゲット間空間部4の
プラズマ空間内のカーボン粒子が基板6の表面に順次堆
積付着して成膜されるが、バイアス電圧により正電位に
チャージされたカーボン薄膜の表面にはアルゴンイオン
は衝突せず、プラズマ空間中の負電位のガンマ−電子等
の電子が衝突を行う。
Therefore, under the above working conditions, carbon particles in the plasma space of the inter-target space 4 are sequentially deposited and adhered to the surface of the substrate 6 to form a film, but the surface of the carbon thin film charged to a positive potential by the bias voltage is Argon ions do not collide with the plasma, but electrons such as gamma electrons with a negative potential in the plasma space collide.

カーボン粒子が基板表面に衝突した後の基板表面での移
動度が小さい場合にはカーボン薄膜の結晶化が促進され
ずアモルファスな組織構造となるが、当該カーボン薄膜
に電子が衝突することによりカーボン粒子の移動度が大
きくなって結晶化が促進されるのである。このカーボン
薄膜への電子の衝突はバイアス電圧を高圧にする程顕著
となり、これによりカーボン粒子の結晶化を一層促進さ
せてダイヤモンドライクカーボンの如き高硬度のカーボ
ン薄膜を形成できるのである。
If the mobility on the substrate surface after carbon particles collide with the substrate surface is small, crystallization of the carbon thin film will not be promoted and an amorphous structure will result. However, as electrons collide with the carbon thin film, the carbon particles This increases the mobility of , promoting crystallization. The collision of electrons against the carbon thin film becomes more pronounced as the bias voltage becomes higher, thereby further promoting the crystallization of carbon particles and forming a highly hard carbon thin film such as diamond-like carbon.

而して、カーボン薄膜に衝突する電子はアルゴンイオン
に比較して棲めて微細であるために、カーボン薄膜の表
面に大きなダメージを与えず、薄膜の表面を粗雑にさせ
ない。また、電子がカーボン薄膜に衝突する際にはその
運動エネルギーが熱エネルギーに変換されるが、この微
細な電子の衝突ではカーボン薄膜の表面部分のみを加熱
させるに過ぎない。よって、基板6自体は高温に加熱さ
れることがなく、低融点の合成謝脂基板等が使用可能と
なり、又成膜作業後の常温下でのカーボン薄膜と基板と
の収縮量の差は非常に少なく、基板に対するカーボン薄
膜の密着力の低下を殆ど生じないのである。
Since the electrons colliding with the carbon thin film are more fine than argon ions, they do not cause major damage to the surface of the carbon thin film and do not cause the surface of the thin film to become rough. Furthermore, when electrons collide with a carbon thin film, their kinetic energy is converted into thermal energy, but this minute electron collision only heats the surface portion of the carbon thin film. Therefore, the substrate 6 itself is not heated to a high temperature, making it possible to use a synthetic resin substrate with a low melting point, and the difference in shrinkage between the carbon thin film and the substrate at room temperature after film formation is very small. The adhesion of the carbon thin film to the substrate hardly deteriorates.

尚、上記実施例では、基板にバイアス電圧を印加させる
装置10として、正、負何れにも切換自在な可変のもの
を用いてなるために、基板に負のバイアス電圧を印加さ
せることは実際上可能である。
In the above embodiment, since a variable device that can be switched between positive and negative is used as the device 10 for applying a bias voltage to the substrate, it is practically impossible to apply a negative bias voltage to the substrate. It is possible.

この負のバイアス電圧を印加させるスパッタ法は本発明
の技術的範囲外であるが、本件発明者の実験によるとバ
イアス電圧を一20V程度に設定した条件では略完全な
アモルファスなカーボン薄膜が得られた。よって、バイ
アス電圧を正、負何れにも切換自在な装置構成とすれば
、膜質のダメージ損傷を考慮しない限りは、カーボン薄
膜の膜質制御を様々な状態に制御できる利点が得られる
Although this sputtering method in which a negative bias voltage is applied is outside the technical scope of the present invention, according to experiments by the inventor of the present invention, an almost completely amorphous carbon thin film can be obtained under conditions where the bias voltage is set to about -20V. Ta. Therefore, if the device is configured so that the bias voltage can be switched between positive and negative, the film quality of the carbon thin film can be controlled in various states unless damage to the film quality is taken into consideration.

但し、本発明はバイアス電圧を印加するための具体的な
手段は問わず、要は基板に正の電圧を印加できるもので
あればよく、又その具体的な電圧値は問わない。
However, the present invention is not concerned with the specific means for applying the bias voltage, as long as it is capable of applying a positive voltage to the substrate, and the specific voltage value is not critical.

また、上記実施例では対向ターゲット式スパッタ装萱を
用いてなるが、本発明は決してこれに限定されず、その
他のマグネトロンスパッタ装置等を用いても何ら構わな
い。本発明は要はカーボン製のターゲットを陰極とすべ
く電圧を印加してスパッタさせるスパッタ手段が適用さ
れればよい。
Further, although the above embodiment uses a facing target type sputtering device, the present invention is by no means limited to this, and any other magnetron sputtering device or the like may be used. The main point of the present invention is to apply a sputtering means that sputters by applying a voltage to a carbon target as a cathode.

更に、本発明はターゲットとなるカーボンの具体的な組
織構造、基板の具体的な材質、及びスパッタガスの種類
や設定圧等も問わず、これらは全て本発明の意図する範
囲内で任意に変更自在である。
Furthermore, the present invention does not care about the specific structure of the target carbon, the specific material of the substrate, the type of sputtering gas, the set pressure, etc., all of which can be arbitrarily changed within the scope of the present invention. It is free.

(発明の効果) 叙上の様に、本発明はカーボン製ターゲットをスパッタ
させてカーボン粒子を基板表面に付着させる際に該基板
に正のバイアス電圧を印加させるために、プラズマ空間
中の電子を基板表面上のカーボン粒子に衝突させて該カ
ーボン粒子の移動度を大きくしてその結晶化を図ること
により高硬度のカーボン薄膜が形成できることは勿論の
こと、カーボン薄膜には従来の如くスパッタ用ガスイオ
ンを衝突させず、これよりも格段微細な電子を衝突させ
るために、カーボン薄膜に大きなダメージを与えること
なく良質な高硬度カーボン薄膜が得られることとなった
(Effects of the Invention) As described above, the present invention uses electrons in the plasma space to apply a positive bias voltage to the substrate when carbon particles are attached to the substrate surface by sputtering a carbon target. It goes without saying that a highly hard carbon thin film can be formed by colliding with carbon particles on the substrate surface to increase the mobility of the carbon particles and crystallize them. By colliding with much finer electrons instead of ions, a high-quality, high-hardness carbon thin film can be obtained without causing major damage to the carbon thin film.

しかも、カーボン薄膜への電子の衝突では当該カーボン
薄膜の表面部分だけが加熱されるだけで、従来のスパッ
タ用ガスイオンの衝突の如く基板側が高温に加熱される
ことも好適に回避できることとなった。
Moreover, when the electrons collide with the carbon thin film, only the surface portion of the carbon thin film is heated, and it is possible to avoid heating the substrate side to a high temperature as in conventional sputtering gas ion collisions. .

従って、本発明によれば従来では適用出来なかった低融
点の合成IM脂製基板上にカーボン薄膜が形成できるば
かりか、カーボン薄膜と基板との線膨張係数の差に原因
する密着力の低下も抑制でき、保護膜等として侵れた特
性を発揮する密着性に優れた極めて有用な高硬度カーボ
ン薄膜が得られる格別な効果を有する。
Therefore, according to the present invention, not only can a carbon thin film be formed on a synthetic IM resin substrate with a low melting point, which could not be applied in the past, but also a decrease in adhesion caused by the difference in linear expansion coefficient between the carbon thin film and the substrate can be avoided. It has a special effect of obtaining a very useful high-hardness carbon thin film with excellent adhesion and exhibiting properties as a protective film.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るカーボン薄膜形成方法の一実施例
を示す説明図。 3・・・ターゲット     6・・・基板出願人 株
式会社大阪真空機器製作所 代理人     弁理士  藤本 昇
FIG. 1 is an explanatory diagram showing an embodiment of the carbon thin film forming method according to the present invention. 3...Target 6...Substrate applicant Noboru Fujimoto, agent of Osaka Vacuum Equipment Manufacturing Co., Ltd., patent attorney

Claims (1)

【特許請求の範囲】[Claims]  カーボン製のターゲット3を陰極とすべく電圧を印加
して該ターゲット3をスパッタせしめて、該スパッタに
より形成されるプラズマ空間に対面すべく配置された基
板6上にカーボン薄膜を形成する方法に於いて、カーボ
ンを基板6上に成膜させる際に該基板6に正のバイアス
電圧を印加することを特徴とするカーボン薄膜の形成方
法。
In this method, a carbon thin film is formed on a substrate 6 arranged to face a plasma space formed by the sputtering by applying a voltage to a carbon target 3 as a cathode to cause the target 3 to sputter. A method for forming a carbon thin film, which comprises applying a positive bias voltage to the substrate 6 when forming carbon onto the substrate 6.
JP9853388A 1988-04-20 1988-04-20 Formation of thin carbon film Pending JPH01268858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9853388A JPH01268858A (en) 1988-04-20 1988-04-20 Formation of thin carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9853388A JPH01268858A (en) 1988-04-20 1988-04-20 Formation of thin carbon film

Publications (1)

Publication Number Publication Date
JPH01268858A true JPH01268858A (en) 1989-10-26

Family

ID=14222315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9853388A Pending JPH01268858A (en) 1988-04-20 1988-04-20 Formation of thin carbon film

Country Status (1)

Country Link
JP (1) JPH01268858A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043843A (en) * 2015-08-28 2017-03-02 株式会社半導体エネルギー研究所 Film forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043843A (en) * 2015-08-28 2017-03-02 株式会社半導体エネルギー研究所 Film forming apparatus

Similar Documents

Publication Publication Date Title
US4290876A (en) Sputtering apparatus
US5284539A (en) Method of making segmented pyrolytic graphite sputtering targets
US4399013A (en) Method of producing a magnetic recording medium
JPH03240944A (en) Method and device for focusing target sputtering for forming thin aluminum film
JP2003213402A (en) Film deposition apparatus, substrate for oxide thin film deposition, and method for manufacturing the same
JPH01268858A (en) Formation of thin carbon film
US4476000A (en) Method of making a magnetic film target for sputtering
TW200406500A (en) Sputter process and apparatus for the production of coatings with optimized internal stresses
JPH05295538A (en) Film forming method and device by both side sputtering
US5061357A (en) Method of producing an electron beam emission cathode
JPH04116160A (en) Film forming device
JPH06158331A (en) Coating film forming device
JP3824443B2 (en) Sputtering equipment
JPS60101721A (en) Formation of barium ferrite layer
JP4396885B2 (en) Magnetron sputtering equipment
KR890001947B1 (en) Magnetic record carrier
JP2605341B2 (en) Sputtering method
JPS60205830A (en) Production of thin film
JPS6230876A (en) Opposed target type sputtering device
JPS6320303B2 (en)
JPH0121537B2 (en)
JP5256466B2 (en) Film forming apparatus and oxide thin film forming substrate manufacturing method
JPH01272766A (en) Magnetron sputtering operation
JPS61227231A (en) Production of magnetic recording body
JPS61270366A (en) Tripolar sputtering source