JPH01268848A - Equipment member excellent in nitric acid resistance - Google Patents

Equipment member excellent in nitric acid resistance

Info

Publication number
JPH01268848A
JPH01268848A JP9557788A JP9557788A JPH01268848A JP H01268848 A JPH01268848 A JP H01268848A JP 9557788 A JP9557788 A JP 9557788A JP 9557788 A JP9557788 A JP 9557788A JP H01268848 A JPH01268848 A JP H01268848A
Authority
JP
Japan
Prior art keywords
nitric acid
less
acid resistance
equipment
austenitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9557788A
Other languages
Japanese (ja)
Inventor
Sumi Yoshida
吉田 寿美
Tsunenobu Yokosuka
常信 横須賀
Isao Masaoka
正岡 功
Hiroshi Tsujimura
辻村 浩
Yasukata Tamai
玉井 康方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9557788A priority Critical patent/JPH01268848A/en
Publication of JPH01268848A publication Critical patent/JPH01268848A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of a welded joint, etc., to a highly oxidiz ing nitric acid solution by forming a welded joint or surface treatment layer made of austenitic alloy in equipment made of austenitic stainless steel for use under a nitric-acid environment containing highly oxidizing ions into a specific structure. CONSTITUTION:E.g., for equipment members used for recovering U, Pu, and nitric acid from a nitric acid solution containing highly oxidizing ions in a nuclear fuel reprocessing plant, etc., an austenitic stainless steel having a composition containing, by weight, <0.05% C, <0.05% Si, 0.2-2.5% Mn, <0.01% P, <0.035% S, 8-12% Ni, 17-21% Cr, and 0.13% Mo is used as a base metal, and, as to a weld zone and a surface treatment layer, an austenitic stainless steel which has a composition almost identical with that of the above base metal and in which the relationship between Ni equivalent and Cr equivalent represented by equations I lies in the first crosshatched region is formed by means of arc welding, etc., and further formed into a structure in which a delta-ferrite phase is first crystallized out and then an austenitic phase is crystallized out at the time of the solidification of weld metal, by which corrosion resistance in the weld zone and the surface-treated zone to a highly oxidizing nitric acid solution can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高酸化性イオンを含む硝酸溶液環境中に使用さ
れる新規な部材に係り、特に原子燃料再処理プラントに
おけるオーステナイト合金接合継手又は表面処理層に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a new component used in a nitric acid solution environment containing highly oxidizing ions, particularly for austenitic alloy joining joints or surfaces in nuclear fuel reprocessing plants. Regarding the processing layer.

〔従来の技術〕[Conventional technology]

硝酸中ではオーステナイト合金は良好な耐食性を有して
いる。しかしながら、腐食性の高い高酸化性イオン、例
えばCr’+、 Ce’+、 F ea十等を含有する
硝酸中では著しく腐食が酸化されることが知られている
。このような過酷な環境を取扱うプラントの一つに原子
燃料再処理プラントがある。
Austenitic alloys have good corrosion resistance in nitric acid. However, it is known that corrosion is significantly oxidized in nitric acid containing highly corrosive highly oxidizing ions such as Cr'+, Ce'+, Fea, etc. A nuclear fuel reprocessing plant is one of the plants that handle such harsh environments.

使用済原子燃料から有益なウラン、プルトニウムを取出
す原子燃料再処理プラントにおける主要な工程を第2図
に示す。この中の重要な機器として、例えば溶解1.廃
液濃縮蒸発缶2.酸回収蒸発缶3、酸回収精留塔4.廃
液貯蔵タンク5であり、第3図に濃縮蒸発缶2及び第4
図に貯蔵タンク5の構成図を示す。これらの機器は、前
者は廃液を蒸発させて濃縮するための設備、また後者は
放射性廃液を長期間に亘り貯蔵するための設備である。
Figure 2 shows the main steps in a nuclear fuel reprocessing plant that extracts useful uranium and plutonium from spent nuclear fuel. Among the important equipment, for example, dissolution 1. Waste liquid concentration evaporator 2. Acid recovery evaporator 3, acid recovery rectification column 4. This is the waste liquid storage tank 5, and the concentration evaporator 2 and the fourth tank are shown in FIG.
A configuration diagram of the storage tank 5 is shown in the figure. The former is equipment for evaporating and concentrating waste liquid, and the latter is equipment for storing radioactive waste liquid for a long period of time.

各装置には配線6,8が設けられ、この配管6゜8への
加熱媒体の供給によって各蒸発缶及びタンク内の硝酸溶
液が加熱される。特に、装置内を減圧下で沸騰させるの
が腐食の点で好ましい。
Each device is provided with wiring 6, 8, and the nitric acid solution in each evaporator and tank is heated by supplying a heating medium to the piping 6.8. In particular, it is preferable to boil the inside of the device under reduced pressure from the viewpoint of corrosion.

この中で溶解工程以降は燃料の溶解のために硝酸溶液を
用いる。酸化性の強い硝酸溶液には種々の腐食生成物の
他に更に多量の核分裂生成物が含まれる。そのうち、特
にルテニウム(Ru)は腐食性の強い元素であり、第3
2回腐食防食討論会予稿集、p31.7 (19858
)にはRuは硝酸中で腐食促進作用が強いことが示され
ている。
In this process, a nitric acid solution is used to dissolve the fuel after the dissolution step. In addition to various corrosion products, the highly oxidizing nitric acid solution also contains large amounts of fission products. Among these, ruthenium (Ru) is a highly corrosive element, and is the third most corrosive element.
Proceedings of the 2nd Corrosion Prevention Conference, p31.7 (19858
) shows that Ru has a strong corrosion promoting effect in nitric acid.

また、第25回日本原子力学会年会要旨集(第■分冊)
、p160 (1987−4)には硝酸中でRu3+が
Ruδ+に酸化されRu14として揮発することが記載
されている。
In addition, the collection of abstracts of the 25th Annual Meeting of the Atomic Energy Society of Japan (Volume ■)
, p160 (1987-4) describes that Ru3+ is oxidized to Ruδ+ in nitric acid and volatilized as Ru14.

原子燃料再処理プラント機器の部材は現在オーステナイ
ト合金が用いられているが、この腐食性の強い環境にさ
らされて腐食を生じるため、これら部材の耐食性向上が
強く望まれている。
Austenite alloys are currently used in the parts of nuclear fuel reprocessing plant equipment, but since they corrode when exposed to this highly corrosive environment, there is a strong desire to improve the corrosion resistance of these parts.

オーステナイト合金部材のうち、均一なオーステナイト
(γ)相を有する母材に対して、溶融接合部又は溶融を
伴う表面処理層(肉盛溶接等)では化学成分、金属組織
の不均一性が高い凝固組織を有している。
Among austenitic alloy members, the base material has a uniform austenite (γ) phase, but the chemical composition and metal structure are highly heterogeneous during fusion joints or surface treatment layers that involve melting (overlay welding, etc.). Has an organization.

一般に工業的に広く用いられているアーク溶接法ではあ
る種のオーステナイト鋼接合部の場合溶融凝固部はγ相
の他に5〜10%程度のδ−フェライト相(δ相と略記
する)を含む二相混合組織となっている。例えば、溶接
便覧(溶接学会編。
In arc welding, which is generally widely used industrially, in the case of certain types of austenitic steel joints, the molten solidified part contains about 5 to 10% of δ-ferrite phase (abbreviated as δ phase) in addition to γ phase. It has a two-phase mixed structure. For example, welding handbook (edited by the Welding Society of Japan).

改訂3版、丸首(昭和52−3)によれば5〜10%の
フェライトが溶接金属中に存在すると溶接時の耐割れ性
の改善に有効であるとの記述がある。しかしながら、上
記文献にも記載されているが、一般にはフェライトが存
在すると溶接金属の耐食性が劣化するといわれており、
通常のオーステナイト鋼の溶接部はδフェライト相を含
むことによる耐割れ性の改善というメリットと耐食性の
低下というデメリットの両方の効果を有している。
According to the third revised edition, Marukubi (Showa 52-3), it is stated that the presence of 5 to 10% ferrite in the weld metal is effective in improving the cracking resistance during welding. However, as described in the above literature, it is generally said that the presence of ferrite deteriorates the corrosion resistance of weld metal.
Ordinary austenitic steel welds have the advantage of improved cracking resistance due to the inclusion of the δ-ferrite phase, and the disadvantage of reduced corrosion resistance.

このため、溶接割れと耐食性との兼ね合いから適切なδ
フエライト量を選定するのが常識になっている。
For this reason, appropriate δ
It has become common sense to select the amount of ferrite.

また、一般に隙間が存在すると隙間腐食が生じることが
知られており、この対策としてMOを添加したオーステ
ナイト合金、例えばSUS 316鋼が一般に使用され
ているsMoが添加されていると隙間が存在した場合の
局部腐食や孔食に対して十分な耐食性を示すことが知ら
れており、MOを含んだオーステナイト合金は高耐食材
料としてよく使用されている。
In addition, it is generally known that crevice corrosion occurs when gaps exist, and as a countermeasure to this, austenitic alloys with MO added, such as SUS 316 steel, are commonly used. It is known that austenitic alloys containing MO have sufficient corrosion resistance against localized corrosion and pitting corrosion, and austenitic alloys containing MO are often used as highly corrosion-resistant materials.

高耐食性イオンを含む硝酸環境では前述したように材料
の腐食が促進されるが、特に溶融凝固した溶接部では上
述したような理由により腐食の促進の顕著になることが
懸念される。
In a nitric acid environment containing highly corrosion-resistant ions, corrosion of the material is accelerated as described above, but there is a concern that the acceleration of corrosion will be particularly pronounced in molten and solidified welds for the reasons described above.

これまでに、硝酸環境中の耐食性を改善する方法として
は特開昭54−124820.特開昭55−91960
にSi含有量を高めた高耐食溶接棒が開示されている。
Until now, as a method for improving corrosion resistance in a nitric acid environment, Japanese Patent Application Laid-Open No. 54-124820. Japanese Patent Publication No. 55-91960
discloses a highly corrosion-resistant welding rod with increased Si content.

また、特開昭59−222559号には耐食性を向上さ
せるためにP含有量を0.005%以下に制限すること
が示されている。
Furthermore, Japanese Patent Laid-Open No. 59-222559 discloses that the P content is limited to 0.005% or less in order to improve corrosion resistance.

しかしながら、Si含有量を増加させることは材料の加
工性、製造性に制約が生じることもあり、また、P含有
量をo、o o s%以下の非常に低い値に制限するこ
とは製鋼上の問題もあるが、Pの低下のみでは必ずしも
効果が十分とはいえない。
However, increasing the Si content may impose restrictions on the material's workability and manufacturability, and limiting the P content to a very low value of o, o o s% or less is difficult for steel manufacturing. Although there is also the problem of lowering P, it cannot be said that the effect alone is sufficient.

また、溶接部に対しても一般には母材に比べて耐食性が
低く、特にMoを含み隙間腐食に対してより耐食性が期
待される5US316系のオーステナイト合金において
は、その溶接部の耐食性は母材より低い値を示すのが現
状である。
In addition, the corrosion resistance of welded parts is generally lower than that of the base metal, especially in the case of 5US316 series austenitic alloys that contain Mo and are expected to have better corrosion resistance against crevice corrosion. The current situation is that it shows a lower value.

高酸化性イオンを含有する硝酸環境中で使用される機器
部材、特に原子燃料再処理プラント用機器部材では部材
の長寿命のため高い耐食性が望まれている。
Equipment parts used in a nitric acid environment containing highly oxidizing ions, especially equipment parts for nuclear fuel reprocessing plants, are required to have high corrosion resistance in order to have a long service life.

また上記に示した傾向は原子燃料再処理プラント用機器
部材のみならず、高酸化性イオンを含む硝酸環境下で使
用する化学プラントや産業プラントさらには原子カプラ
ントに共通な問題である。
Furthermore, the above-mentioned tendency is a common problem not only for equipment members for nuclear fuel reprocessing plants, but also for chemical plants, industrial plants, and even atomic couplants that are used in a nitric acid environment containing highly oxidizing ions.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述したように、オーステナイト合金の接合継手あるい
は溶融凝固を伴う表面処理層は高酸化性イオンを含む硝
酸環境中で腐食され易い傾向にある。
As mentioned above, austenitic alloy joints or surface treatment layers that involve melting and solidification tend to be corroded in a nitric acid environment containing highly oxidizing ions.

本発明の目的は高酸化性イオンを含む硝酸環境中におい
て耐食性の優れたオーステナイト合金の接合継手あるい
は表面処理層を有する溶接部を有する耐硝酸性の優れた
機器部材を提供することにある。
An object of the present invention is to provide an equipment member having excellent corrosion resistance in a nitric acid environment containing highly oxidizing ions and having an austenitic alloy joint or a welded part with a surface treatment layer.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、オーステナイト系ステンレス鋼からなる母材
に溶接部を有する機器部材において、溶接部は凝固に際
し、δフェライト相を最初に晶出し、その後にオーステ
ナイト相を晶出する凝固組織を有することを特徴とする
耐硝酸性機器部材にある。
The present invention provides an equipment member having a welded portion on a base material made of austenitic stainless steel, in which the welded portion has a solidification structure in which a δ-ferrite phase is first crystallized and then an austenite phase is crystallized during solidification. Features include nitric acid-resistant equipment parts.

前記溶接部は重量でC: 0.05%以下、Si:1.
0%以下2Mn : 0.2〜2.!3%、P:0.0
35%以下、S:0.035%以下、Ni:8〜12%
、Cr:17〜21%、Mo:0.1〜3.0%、残部
Feおよび不可避的な不純物から成るオーステナイト合
金からなる。
The welded portion contains C: 0.05% or less and Si: 1.
0% or less 2Mn: 0.2-2. ! 3%, P: 0.0
35% or less, S: 0.035% or less, Ni: 8 to 12%
, Cr: 17-21%, Mo: 0.1-3.0%, the balance being Fe and unavoidable impurities.

硝酸環境は、硝酸溶液により使用済み原子燃料を溶解し
、化学的分離工程によりUおよびPuを抽出する系統と
共に、溶解に用いた硝酸溶液を回収、浄化して再使用す
るための系統および各工程より生じた放射性廃液を濃縮
、貯蔵する系統を有する原子燃料再処理プラント環境で
ある。
The nitric acid environment includes a system for dissolving spent nuclear fuel with a nitric acid solution and extracting U and Pu through a chemical separation process, as well as a system and each process for recovering, purifying and reusing the nitric acid solution used for dissolution. This is a nuclear fuel reprocessing plant environment with a system for concentrating and storing radioactive waste liquid produced by nuclear fuel.

前記母材が重量でC: 0.05%以下、Si:0.0
5%以下、Mn : 0.2〜2.5%、P:0.01
%以下、S:0.035%以下、Ni:8〜12%、C
r:17〜21%、Mo : 0.1〜3.0%、残部
Feおよび不可避的な不純物からなるオーステナイト合
金によって構成される。
The base material has C: 0.05% or less, Si: 0.0 by weight
5% or less, Mn: 0.2-2.5%, P: 0.01
% or less, S: 0.035% or less, Ni: 8 to 12%, C
It is composed of an austenitic alloy consisting of r: 17 to 21%, Mo: 0.1 to 3.0%, the balance being Fe and inevitable impurities.

〔作用〕[Effect]

このような高酸化性イオンを含む硝酸中におけるオース
テナイト合金接合部又は表面処IIJA層の耐食性は、
融点以上に加熱され溶融した接合部又は表面処理層の合
金の凝固時の凝固形態が著しく影響することを見出し、
高耐食性を得るためには疑同時にδフェライト相を最初
に晶出させ、その後にオーステナイト相を晶出させるこ
とによって基本的に達成されることを明確にした。
The corrosion resistance of the austenitic alloy joint or surface treated IIJA layer in nitric acid containing such highly oxidizing ions is as follows:
It has been discovered that the solidification form of the alloy in the joint or surface treatment layer that has been heated above the melting point and melted has a significant effect on solidification,
It was clarified that high corrosion resistance can basically be achieved by first crystallizing the δ-ferrite phase and then crystallizing the austenite phase at the same time.

高酸化性イオンを含む硝酸中での各種オーステナイト合
金溶接部の腐食挙動及び腐食形態を詳細に検討した結果
、溶接部において融点以上に加熱されて液体状態にある
合金が凝固する際には第3表に示す二種類の過程があり
、このType IとType■の両者の凝固部につい
て高酸化性イオンを含む硝酸中での耐食性を検討した結
果、Type Iの凝固部の耐食性はType IIの
それより顕著に優れていることが新しくわかった。
As a result of a detailed study of the corrosion behavior and corrosion morphology of various austenitic alloy welds in nitric acid containing highly oxidizing ions, it was found that when the alloy in the liquid state is heated above the melting point in the weld and solidifies, the third There are two types of processes shown in the table, and as a result of examining the corrosion resistance of the solidified parts of both Type I and Type ■ in nitric acid containing highly oxidizing ions, it was found that the corrosion resistance of the solidified part of Type I is similar to that of Type II. It has been newly discovered that it is significantly better.

高酸化性イオンを含む硝酸中におけるオーステナイト合
金接合部又は表面処理層の腐食試験を行うと、凝固時に
生成した樹枝状デンドライト層に沿って不均一に腐食が
生じδフェライト相が腐食されたように見えるため、従
来はδフェライト相が腐食されると考えてその量を減少
させる方法がとられていたが1本発明はこの考えと全く
異っている。腐食はδフェライトの量ではなく、δフェ
ライトが凝固時にどのような形で晶出したかが重要であ
り、オーステナイト合金凝固部の耐食性は凝固モードを
Type Iに制御することによって耐食性の優れた接
合部又は表面処理層が得られる。
When a corrosion test of an austenitic alloy joint or a surface treatment layer is performed in nitric acid containing highly oxidizing ions, corrosion occurs unevenly along the dendritic dendrite layer formed during solidification, as if the δ-ferrite phase was corroded. Conventionally, the method of reducing the amount of the δ ferrite phase was considered to be corroded because it is visible, but the present invention is completely different from this idea. Corrosion is not the amount of δ ferrite, but the form in which δ ferrite crystallizes during solidification is important. Corrosion resistance of solidified austenite alloy parts can be improved by controlling the solidification mode to Type I to create joints or joints with excellent corrosion resistance. A surface treatment layer is obtained.

このような接合継手又は表面処理層において特に高耐食
性を得るに有効なオーステナイト合金の組成の範囲は、
重量でC: 0.05%以下、Si:1.0%以下、M
n : 0.2〜2.5%、P:0.035%以下、S
:0.035%以下* N x :8〜12%、Cr:
17〜21%、Mo:0.1〜3.0%、で残部Feお
よび不可避的な不純物から成ることを特徴とするオース
テナイト合金接合継手又は表面処理層である。
The composition range of the austenitic alloy that is effective for obtaining particularly high corrosion resistance in such joints or surface treatment layers is as follows:
By weight: C: 0.05% or less, Si: 1.0% or less, M
n: 0.2-2.5%, P: 0.035% or less, S
: 0.035% or less* N x : 8 to 12%, Cr:
This is an austenitic alloy joint or surface treatment layer characterized by comprising 17 to 21% Mo, 0.1 to 3.0% Mo, and the balance Fe and unavoidable impurities.

次に本発明のオーステナイト合金接合継手又は表面処理
層の化学組成の範囲を限定した理由を示す。
Next, the reason for limiting the range of chemical composition of the austenitic alloy joint or surface treatment layer of the present invention will be explained.

C:Cは0.05% を越えるとオーステナイト合金の
接合継手においてCr炭化物の析出量が多くなりこの析
出物の近傍のCrが欠乏する結果、耐食性が減少するこ
とから、上限として0.05%と定めた。
C: If C exceeds 0.05%, the amount of Cr carbide precipitated in the austenitic alloy joint will increase, resulting in a lack of Cr near these precipitates, resulting in a decrease in corrosion resistance, so the upper limit is 0.05%. It was determined that

SiおよびMn:SiおよびMnは製鋼上脱酸剤として
使用する元素である。このため、工業的にはSiは1.
0%以下の添加が必要であり、またMnはオーステナイ
ト相の安定性からも0.2〜2.5%の範囲がよい。
Si and Mn: Si and Mn are elements used as deoxidizing agents in steel manufacturing. Therefore, industrially, Si is 1.
It is necessary to add Mn in an amount of 0% or less, and the range of Mn is preferably 0.2 to 2.5% from the viewpoint of stability of the austenite phase.

Ni :Niは主要なオーステナイト形成元素であり、
Crとともにオーステナイト合金においては重要な元素
でる。Niは硝酸中の耐食性維持のため、また凝固部の
組織状態(δフェライト相とオーステナイト相との比)
を規制するための主要なフェライト形成元素であるCr
の量とバランスさせて8〜12%の範囲がよい。
Ni: Ni is the main austenite-forming element,
Along with Cr, it is an important element in austenitic alloys. Ni is used to maintain corrosion resistance in nitric acid, and also to improve the structure of the solidified part (ratio of δ ferrite phase to austenite phase).
Cr is the main ferrite-forming element to regulate
A range of 8 to 12% is preferable in balance with the amount of .

Cr:Crはフェライト形成元素であり、硝酸中の耐食
性を得るために必要不可欠な重要元素である。硝酸中の
耐食性を確保すると同時に凝固部の組織制御のためにN
i量と対応して17〜21%がよい、すなわち、17%
は硝酸中の耐食性の点から必要であり、一方21%を超
えると凝固部の脆化が懸念される。
Cr: Cr is a ferrite-forming element and is an essential element in order to obtain corrosion resistance in nitric acid. N is added to ensure corrosion resistance in nitric acid and to control the structure of the solidified part.
Corresponding to the i amount, 17 to 21% is good, i.e. 17%
is necessary from the viewpoint of corrosion resistance in nitric acid, and on the other hand, if it exceeds 21%, there is a concern that the solidified portion will become brittle.

M o : M oはフェライト形成元素であるが1表
面に形成される不働態皮膜を強固にする効果があるとい
われ、隙間腐食に対する抵抗を高めることが示されてお
り、本発明では0.1〜3.0%の範囲がよい。
Mo: Mo is a ferrite-forming element, and is said to have the effect of strengthening the passive film formed on the surface, and has been shown to increase resistance to crevice corrosion. A range of 3.0% is preferable.

この他、必要に応じて各々1%以下のTi。In addition, Ti of 1% or less each as necessary.

Nb、V、Zr等の炭化物形成元素や各々0.5%以下
のA Q p Ca等の脱酸効果のある元素を適量添加
しても良く、その場合でも本発明の効果は得られる。
Appropriate amounts of carbide-forming elements such as Nb, V, and Zr, and elements having a deoxidizing effect such as A Q p Ca of 0.5% or less each may be added, and the effects of the present invention can also be obtained in this case.

上記のオーステナイト合金接合継手又は表面処理層の組
織に加え、更に第1図に示すNi当量とCr当量の範囲
内の組成を選定すれば最も効果のある高耐食の接合継手
又は表面処理層が得られる。
In addition to the structure of the austenitic alloy joint or surface treatment layer described above, if the composition is selected within the Ni equivalent and Cr equivalent range shown in Figure 1, the most effective highly corrosion-resistant joint or surface treatment layer can be obtained. It will be done.

ここで、 Ni当量=%Ni+30X%C+0.5%%MnCr当
量=%Cr+%M o + 1 、5 X%Siこれは
Ni当量とCr当量を定めることによって、目的とする
オーステナイト相に先立ってδフェライト相を晶出させ
ることが可能であることを見出した結果である。
Here, Ni equivalent = %Ni + 30X%C + 0.5%%MnCr equivalent = %Cr + %Mo + 1, 5 This is the result of the discovery that it is possible to crystallize the ferrite phase.

第1図に示す領域ABCDの限定理由は以下の通りであ
る。
The reasons for limiting the area ABCD shown in FIG. 1 are as follows.

■線AB:この線より下側、すなわち低Ni当量側でT
ype Iの初晶δ相型の凝固モードとなり高耐食性が
得られる。
■Line AB: T below this line, that is, on the low Ni equivalent side
The solidification mode is the primary δ phase type of ype I, and high corrosion resistance is obtained.

■線CD:この線を超えて低Ni当量側になると脆化の
問題等が生じるため線CDまで とするのがよい。
(2) Line CD: If the Ni equivalent value exceeds this line, problems such as embrittlement may occur, so it is preferable to keep the line up to line CD.

■線DA:硝酸中の全面腐食に対する耐食性を得るため
に、Cr当量は19%以上とす る。これ以下になるとオーステナイト 合金としての耐食性が得られない。ま た、化学成分の不均一性によりマルテ ンサイト組織が生じるのを防ぐために も上記のCr当量は必要である。
(2) Line DA: In order to obtain corrosion resistance against general corrosion in nitric acid, the Cr equivalent is set to 19% or more. If it is less than this, the corrosion resistance as an austenitic alloy cannot be obtained. Further, the above Cr equivalent is necessary to prevent the formation of martensitic structure due to non-uniformity of chemical components.

■線BD:Cr当量が大きくなるにつれて材料の溶接性
、加工性が低下し、また脆化等 の問題が生じてくる。このようなこと より実用的な範囲としてCr当量は 24%がよい。
■ Line BD: As the Cr equivalent increases, the weldability and workability of the material decrease, and problems such as embrittlement occur. From this point of view, the Cr equivalent is preferably 24% as a practical range.

以上のような理由により、第1図の領域ABCD内では
凝固モードをType Iの「初品δ相型」に制御する
ことにより従来材よりも高耐食性が得られる。
For the above reasons, higher corrosion resistance than conventional materials can be obtained by controlling the solidification mode to Type I "initial δ phase type" in the region ABCD of FIG.

また、本発明による凝固モードをType Iに制御し
たオーステナイト合金の接合継手又は表面処理層は、例
えばRu2+を1100pp含有する100℃の9N硝
酸溶液中では腐食速度が2 、 Orrn / y以下
の優れた耐食性を有している。
Furthermore, the austenitic alloy joint or surface treatment layer in which the solidification mode is controlled to Type I according to the present invention has an excellent corrosion rate of 2 Orrn/y or less in a 9N nitric acid solution at 100°C containing 1100 pp of Ru2+, for example. It has corrosion resistance.

以上述べてきた本発明によるオーステナイト合金の接合
継手あるいは表面処理層の優れた耐食性はその接合法2
表面処理法には依らない、すなわち、通常行なわれてい
るアーク溶接、電子ビーム溶接およびレーザ溶接等で十
分な高耐食性が達成可能である。基本的には本発明によ
る凝固モード制御を行なえる溶融・凝固部分にはその手
法を問わず本発明を適用できる6 前述したように凝固モードの違いは不純物元素P、Si
等の偏析の度合いに影響を及ぼすと推察される。従って
、耐食性を低下させる不純物元素それ自体を減少させる
ことはいずれの凝固モードにおいても耐食性向上に効果
がある。すなわち、本発明者らは不純物元素P、Si含
有量をP≦0.01%、SiS2.05%に同時に規制
することにより良好な耐食性が得られることを見出した
The excellent corrosion resistance of the austenitic alloy joint or surface treatment layer according to the present invention as described above is due to the joining method 2.
Sufficiently high corrosion resistance can be achieved regardless of the surface treatment method, that is, by commonly used arc welding, electron beam welding, laser welding, etc. Basically, the present invention can be applied to any melting/solidification part where solidification mode control according to the present invention can be performed, regardless of the method6.As mentioned above, the difference in solidification mode is due to impurity elements P, Si
It is inferred that this will affect the degree of segregation. Therefore, reducing the impurity elements themselves that reduce corrosion resistance is effective in improving corrosion resistance in any solidification mode. That is, the present inventors have found that good corrosion resistance can be obtained by simultaneously regulating the impurity element P and Si contents to P≦0.01% and SiS 2.05%.

P、Siを両者とも同時に減少させないと効果が/j%
さい。
The effect is /j% unless both P and Si are reduced at the same time.
Sai.

以上、本発明のオーステナイト合金の接合継手又は表面
処理層を対象に述べたが1本発明はそれらを製作すると
きに使用する溶接棒それ自体に適用しても同様な効果が
得られる。すなわち、例えばアーク溶接を行うときの溶
接棒として上述したような化学成分を有する溶接棒又は
化学成分、の他に更にNi当量とCr当量とを第1図に
示す領域ABCDを有する溶接棒であり、これらの溶接
棒を用いることにより優れた耐食性を得ることができる
The above description has focused on the austenitic alloy joining joint or surface treatment layer of the present invention, but the present invention can also be applied to the welding rod itself used in manufacturing them to obtain similar effects. That is, for example, as a welding rod when performing arc welding, it is a welding rod having a chemical composition as described above, or a welding rod having a chemical composition as well as Ni equivalent and Cr equivalent in the range ABCD shown in FIG. , excellent corrosion resistance can be obtained by using these welding rods.

〔実施例1〕 第1表は本実施例に用いた試験材の化学成分を示す。従
来材3種類2本発明材11種類、更に比較材2種類の合
計16種類についての溶接部の腐食試験結果を示す。
[Example 1] Table 1 shows the chemical components of the test materials used in this example. The results of corrosion tests of welded parts are shown for a total of 16 types, including 3 conventional materials, 2 inventive materials, 11 inventive materials, and 2 comparative materials.

これらの試験材はいずれもTIG溶接でV型開先突合せ
溶接継手を製作し、その部分より腐食試験片を採取した
。母材は市販の5US316L材を用いた。腐食試験は
9 N HNOs+ 100ppmRu溶液中(100
℃)で500h浸漬した。浸漬試験後、試験片の侵食深
さを測定し、それから腐食速度(no/y)を算出した
。凝固モードは第2表に示すTypeに分類され、各々
従来材および比較材はType n、本発明材はTyp
e Iであった。
For each of these test materials, a V-shaped groove butt welded joint was fabricated by TIG welding, and a corrosion test piece was taken from that part. A commercially available 5US316L material was used as the base material. Corrosion tests were carried out in 9 N HNOs + 100 ppm Ru solution (100
℃) for 500 hours. After the immersion test, the corrosion depth of the test piece was measured, and the corrosion rate (no/y) was calculated from it. The solidification mode is classified into the types shown in Table 2, and the conventional material and comparative material are Type n, and the inventive material is Type n.
It was eI.

第1表によりわかるように、凝固モードがType■の
従来材C1〜C3は腐食速度が4.0mm/y以上であ
り、また比較材R1,R2の腐食速度は従来材”のそれ
よりも1桁高い値を示した。一方、本発明材の腐食速度
は0 、7 mm / y 以下のものと1.0〜1.
3mm/yの範囲のものとがあるが、いずれも従来材お
よび比較材のそれと比較して著しく良好な耐食性を示し
た。本発明の中でも、試料第  2  表 P1〜P7の化学成分のものは特に優れた耐食性を有す
ることが示された。
As can be seen from Table 1, the corrosion rate of conventional materials C1 to C3 with a solidification mode of Type ■ is 4.0 mm/y or more, and the corrosion rate of comparative materials R1 and R2 is 1% higher than that of the conventional material. On the other hand, the corrosion rate of the material of the present invention was 0.7 mm/y or less, and 1.0 to 1.0 mm/y.
There are some in the range of 3 mm/y, but all of them showed significantly better corrosion resistance than conventional materials and comparative materials. Among the samples of the present invention, the samples with chemical components shown in Table 2 P1 to P7 were shown to have particularly excellent corrosion resistance.

〔実施例2〕 試験材の化学成分を第3表に示す、凝固モードが「初晶
δ相型」でP、Si量をP≦0.01%。
[Example 2] The chemical composition of the test material is shown in Table 3, the solidification mode is "primary δ phase type", and the amount of P and Si is P≦0.01%.

SiS2.05%に減少させたもの(試料NQPP−1
)と通常含有量のもの(N[lPP−2)、また「初晶
γ相型]で同様にP、Si量を減少させたもの(&PP
−3)と通常含有量のもの(hcc−1)との計4種類
である。これらの成分のTIG溶接肉感部を形成し、そ
の部分から腐食試験片を採取した。腐食試験条件は実施
例1と同じである。
SiS reduced to 2.05% (sample NQPP-1
), one with normal content (N [lPP-2), and one with "primary γ phase type" with similarly reduced P and Si content (&PP
There are a total of four types: -3) and one with normal content (hcc-1). A TIG welded fleshy part of these components was formed, and a corrosion test piece was taken from that part. The corrosion test conditions are the same as in Example 1.

試験結果を第3表に示す1本発明材のうち「初晶δ相型
」はP、Siが通常含有量でも1.0m/y以下の小さ
い腐食速度であり、P、Siを減少させると顕著に腐食
速度が小さくなる。一方、「初晶γ相型」ではP、Si
が通常含有量で約10.5mw+/yの高い腐食速度を
示すのに対して、P、Siを減少させたものは2.0a
m/y 以下の著しく腐食速度を示した。
The test results are shown in Table 3. Among the materials of the present invention, the "primary δ phase type" has a low corrosion rate of 1.0 m/y or less even if the P and Si contents are normal, and when P and Si are reduced, Corrosion rate is noticeably reduced. On the other hand, in the "primary γ phase type", P, Si
shows a high corrosion rate of about 10.5mw+/y with normal content, while that with reduced P and Si content is 2.0a
It showed a remarkable corrosion rate of less than m/y.

以上のように、「初晶γ相型」においても、P。As mentioned above, even in the "primary γ phase type", P.

Si含有量を低減させることにより優れた耐食性を有す
ることが知られた。
It has been known that reducing the Si content provides excellent corrosion resistance.

〔実施例3〕 実施例1と同様に5US316L母材を用い、その表面
に第1表P5の溶接材を用いてTIG溶接によって厚さ
約3mの肉盛溶接層を形成させた。
[Example 3] As in Example 1, a 5US316L base material was used, and an overlay weld layer with a thickness of about 3 m was formed on the surface by TIG welding using the welding material shown in Table 1 P5.

前述と同様に肉盛溶接層について腐食試験を行った結果
、実施例1と同様の腐食量であった。
A corrosion test was conducted on the overlay weld layer in the same manner as described above, and as a result, the amount of corrosion was the same as in Example 1.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高酸化性イオンを含有する硝酸中にお
ける耐食性向上が図れるので、信頼性が高くかつ使用寿
命の長い接合継手または表面処理層が得られる。
According to the present invention, since corrosion resistance in nitric acid containing highly oxidizing ions can be improved, a joint or a surface treatment layer with high reliability and a long service life can be obtained.

本発明は高酸化性イオンを含有する硝酸環境下で効果を
発揮し、このような環境下で使用する化学プラント、産
業プラント、原子カプラント機器およびその構成部材に
使用可能である。特に、原子燃料再処理プラント機器及
びその構成部材への適用に著しい効果を示す。
The present invention is effective in a nitric acid environment containing highly oxidizing ions, and can be used in chemical plants, industrial plants, atomic couplant equipment, and their constituent members used in such environments. In particular, it shows remarkable effects when applied to nuclear fuel reprocessing plant equipment and its constituent parts.

ここで高酸化性イオンとは、F e ”+、 Cr’+
Here, the highly oxidizing ions are F e "+, Cr'+
.

Ce’+、Ru’十等高等高価数属イオンを示し、これ
ら高酸化性イオンを一種又は複合種含む硝酸溶液環境下
で効果を発揮する。この高酸化性イオンを含む硝酸溶液
を定量的に示すと、ステンレス鋼の腐食電位が参照照合
電極(SHE)に比較して0.95V以上を示す過不働
態領域で効果を発し。
It represents ions of a higher number group such as Ce'+ and Ru' 10, and is effective in a nitric acid solution environment containing one or a combination of these highly oxidizing ions. Quantitatively showing this nitric acid solution containing highly oxidizing ions, it is effective in the overpassive region where the corrosion potential of stainless steel is 0.95V or more compared to the reference comparison electrode (SHE).

この領域で高耐食性を示す機器及びその構成部材を提供
する。
The present invention provides equipment and its constituent members that exhibit high corrosion resistance in this area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るCr当量とNi当量の範囲を示す
線図、第2図は原子燃料再処理プラントのブロック図、
第3図は廃液濃縮蒸発缶の構成図、第4図は廃液貯蔵タ
ンクの構成図である。 1・・・溶解、2・・・廃液濃縮蒸発缶、3・・・酸回
収蒸発缶、4・・・酸回収精留塔、5・・・廃液貯蔵タ
ンク、6゜8・・・配管。 第1区
FIG. 1 is a diagram showing the range of Cr equivalent and Ni equivalent according to the present invention, FIG. 2 is a block diagram of a nuclear fuel reprocessing plant,
FIG. 3 is a block diagram of the waste liquid concentration evaporator, and FIG. 4 is a block diagram of the waste liquid storage tank. 1... Melting, 2... Waste liquid concentration evaporator, 3... Acid recovery evaporator, 4... Acid recovery rectification column, 5... Waste liquid storage tank, 6° 8... Piping. Ward 1

Claims (1)

【特許請求の範囲】 1、オーステナイト系ステンレス鋼からなる母材に溶接
部を有する機器部材において、前記溶接部は凝固に際し
δフェライト相を最初に晶出し、その後にオーステナイ
ト相を晶出する凝固組織を有することを特徴とする耐硝
酸性の優れた機器部材。 2、請求項1において、前記溶接部はオーステナイト系
ステンレス鋼からなる突合せ溶接部又は表面処理層であ
る耐硝酸性の優れた機器部材。 3、請求項2において、該硝酸環境は、硝酸溶液により
使用済み原子燃料を溶解し、化学的分離工程によりUお
よびPuを抽出する系統と共に、溶解に用いた硝酸溶液
を回収、浄化して再使用するための系統および各工程よ
り生じた放射性廃液を濃縮、貯蔵する系統を有する原子
燃料再処理プラント環境である耐硝酸性の優れた機器部
材。 4、請求項2又は3において、前記溶接部は重量でC:
0.05%以下、Si:1.0%以下、Mn:0.2〜
2.5%、P:0.035%以下、S:0.035%以
下、Ni:8〜12%、Cr:17〜21%、Mo:0
.1〜3.0%、残部Feおよび不可避的な不純物から
成るオーステナイト合金からなる耐硝酸性の優れた機器
部材。 5、請求項4において、前記オーステナイト合金が下記
の式で計算されるNi当量およびCr当量が第1図に示
す範囲内にある耐硝酸性の優れた機器部材。 Ni当量=%Ni+30×%C+0.5×%MnCr当
量=%Cr+%Mo+1.5×%Si6、請求項1〜5
のいずれかにおいて、前記溶接部が9NHNO_3+1
00ppmRu、100℃での腐食速度が2.0mm/
y以下である耐硝酸性の優れた機器部材。 7、請求項1〜6のいずれかにおいて、前記母材が重量
でC:0.05%以下、Si:0.05%以下、Mn:
0.2〜2.5%、P:0.01%以下、S:0.03
5%以下、Ni:8〜12%、Cr:17〜21%、M
o:0.1〜3.0%、残部Feおよび不可避的な不純
物からなるオーステナイト合金によつて構成される耐硝
酸性の優れた機器部材。 8、請求項1〜7のいずれかにおいて、前記溶接部はア
ーク溶接、電子ビーム溶接、レーザビーム溶接のいずれ
かの溶接法により形成される耐硝酸性の優れた機器部材
。 9、請求項1〜8のいずれかにおいて、前記機器部材に
よつて構成された化学プラント、産業プラント、原子力
プラント。 10、請求項4又は5において、前記オーステナイト合
金からなる硝酸機器用溶接材料。 11、請求項1〜9のいずれかにおいて、前記表面処理
層が肉盛溶接層である耐硝酸性の優れた機器部材。
[Claims] 1. In an equipment member having a welded portion on a base material made of austenitic stainless steel, the welded portion has a solidification structure in which a δ-ferrite phase is first crystallized during solidification, and an austenite phase is then crystallized. An equipment member having excellent nitric acid resistance. 2. The device member according to claim 1, wherein the welded portion is a butt welded portion or a surface treatment layer made of austenitic stainless steel, and has excellent nitric acid resistance. 3. In claim 2, the nitric acid environment includes a system for dissolving spent nuclear fuel with a nitric acid solution and extracting U and Pu through a chemical separation process, as well as recovering, purifying and reusing the nitric acid solution used for dissolution. Equipment components with excellent nitric acid resistance that are used in the environment of a nuclear fuel reprocessing plant, including a system for use and a system for concentrating and storing radioactive waste liquid generated from each process. 4. In claim 2 or 3, the welded portion has a weight of C:
0.05% or less, Si: 1.0% or less, Mn: 0.2~
2.5%, P: 0.035% or less, S: 0.035% or less, Ni: 8-12%, Cr: 17-21%, Mo: 0
.. An equipment member with excellent nitric acid resistance made of an austenitic alloy consisting of 1 to 3.0%, the balance being Fe and unavoidable impurities. 5. An equipment member having excellent nitric acid resistance according to claim 4, wherein the austenitic alloy has Ni equivalent and Cr equivalent calculated by the following formula within the range shown in FIG. Ni equivalent=%Ni+30×%C+0.5×%MnCr equivalent=%Cr+%Mo+1.5×%Si6, claims 1 to 5
In any of the above, the welded portion is 9NHNO_3+1
00ppmRu, corrosion rate at 100℃ is 2.0mm/
Equipment parts with excellent nitric acid resistance that is less than y. 7. In any one of claims 1 to 6, the base material is C: 0.05% or less, Si: 0.05% or less, Mn:
0.2-2.5%, P: 0.01% or less, S: 0.03
5% or less, Ni: 8-12%, Cr: 17-21%, M
An equipment member with excellent nitric acid resistance, made of an austenitic alloy consisting of o: 0.1 to 3.0%, the balance being Fe and unavoidable impurities. 8. The device member according to claim 1, wherein the welded portion is formed by any one of arc welding, electron beam welding, and laser beam welding, and has excellent nitric acid resistance. 9. A chemical plant, industrial plant, or nuclear power plant constructed of the equipment member according to any one of claims 1 to 8. 10. The welding material for nitric acid equipment made of the austenite alloy according to claim 4 or 5. 11. The device member with excellent nitric acid resistance according to any one of claims 1 to 9, wherein the surface treatment layer is a built-up welding layer.
JP9557788A 1988-04-20 1988-04-20 Equipment member excellent in nitric acid resistance Pending JPH01268848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9557788A JPH01268848A (en) 1988-04-20 1988-04-20 Equipment member excellent in nitric acid resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9557788A JPH01268848A (en) 1988-04-20 1988-04-20 Equipment member excellent in nitric acid resistance

Publications (1)

Publication Number Publication Date
JPH01268848A true JPH01268848A (en) 1989-10-26

Family

ID=14141444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9557788A Pending JPH01268848A (en) 1988-04-20 1988-04-20 Equipment member excellent in nitric acid resistance

Country Status (1)

Country Link
JP (1) JPH01268848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658396A1 (en) * 1993-11-19 1995-06-21 The Japan Steel Works, Ltd. Welding austenitic stainless steel materials having improved resistance to hydrogen embrittlement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133499A (en) * 1974-07-12 1976-03-22 Bede James R Eahoirugatauingu
JPS5785956A (en) * 1980-11-14 1982-05-28 Sumitomo Metal Ind Ltd Structural material of nuclear reactor core used in water-cooled environment
JPS62107047A (en) * 1985-10-31 1987-05-18 Toshiba Corp Austenitic iron alloy
JPS62211330A (en) * 1986-03-12 1987-09-17 Sumitomo Metal Ind Ltd Manufacture of austenitic stainless steel
JPS62287051A (en) * 1986-06-03 1987-12-12 Kobe Steel Ltd Austenitic stainless steel excellent in resistance to intergranular stress corrosion cracking and intergranular corrosion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133499A (en) * 1974-07-12 1976-03-22 Bede James R Eahoirugatauingu
JPS5785956A (en) * 1980-11-14 1982-05-28 Sumitomo Metal Ind Ltd Structural material of nuclear reactor core used in water-cooled environment
JPS62107047A (en) * 1985-10-31 1987-05-18 Toshiba Corp Austenitic iron alloy
JPS62211330A (en) * 1986-03-12 1987-09-17 Sumitomo Metal Ind Ltd Manufacture of austenitic stainless steel
JPS62287051A (en) * 1986-06-03 1987-12-12 Kobe Steel Ltd Austenitic stainless steel excellent in resistance to intergranular stress corrosion cracking and intergranular corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0658396A1 (en) * 1993-11-19 1995-06-21 The Japan Steel Works, Ltd. Welding austenitic stainless steel materials having improved resistance to hydrogen embrittlement

Similar Documents

Publication Publication Date Title
US8322592B2 (en) Austenitic welding material, and preventive maintenance method for stress corrosion cracking and preventive maintenance method for intergranular corrosion, using same
EP2552639B1 (en) Nickel-based alloy, welding consumable formed from the said alloy and use of the consumable in a welding process.
JPS6353210A (en) Method for improving stress corrosion cracking resistance of stainless steel
JP2634299B2 (en) Pd-added stainless steel for high temperature, high concentration sulfuric acid
Tonpe et al. Process development for fabrication of Zircaloy–4 dissolver assembly for reprocessing of spent nuclear fuel
JPH02101148A (en) Equipment member excellent in nitric acid resistance
JPH01268848A (en) Equipment member excellent in nitric acid resistance
EP0142015A1 (en) Austenitic steel
JPH0299294A (en) Equipment member having excellent nitric acid resistance
JPS6313692A (en) Wire for welding austenitic stainless steel
JP3141646B2 (en) Austenitic stainless steel for nitric acid containing environment
Votinov et al. Vanadium alloys as structural materials for fusion reactor blanket
JPS62222049A (en) B-containing stainless steel excellent in corrosion resistance
JPS6087992A (en) Build-up weld metal improving resistance to crystal boundary corrosion
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance
JP2003041346A (en) Two-phase stainless steel for radioactive material storage container and method for manufacturing radioactive material storage container
JPS6256557A (en) Stainless steel material excellent in neutron-absorption capacity and its production
JPH0285341A (en) Corrosion-resistant stainless steel having low ion-emitting speed
JPS6188997A (en) Wire for welding 9cr-1mo steel
JPS6016488B2 (en) Heat treatment method for high purity ferritic stainless steel
JPS59159295A (en) Build-up deposited metal of cr-ni austenitic stainless steel
JP3131597B2 (en) Nitrate resistant austenitic stainless steel and weld metal
JPS6210235A (en) Nickel alloy
JPS6039118A (en) Manufacture of austenitic stainless steel containing boron and having superior resistance to intergranular corrosion and intergranular stress corrosion cracking
JPH0387335A (en) Ferritic steel for fusion reactor excellent in corrosion resistance