JPH0299294A - Equipment member having excellent nitric acid resistance - Google Patents

Equipment member having excellent nitric acid resistance

Info

Publication number
JPH0299294A
JPH0299294A JP25183388A JP25183388A JPH0299294A JP H0299294 A JPH0299294 A JP H0299294A JP 25183388 A JP25183388 A JP 25183388A JP 25183388 A JP25183388 A JP 25183388A JP H0299294 A JPH0299294 A JP H0299294A
Authority
JP
Japan
Prior art keywords
nitric acid
equivalent
welding
stainless steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25183388A
Other languages
Japanese (ja)
Inventor
Sumi Yoshida
吉田 寿美
Tsunenobu Yokosuka
常信 横須賀
Hiroshi Tsujimura
辻村 浩
Yasukata Tamai
玉井 康方
Yasuhiro Sasada
佐々田 泰宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25183388A priority Critical patent/JPH0299294A/en
Publication of JPH0299294A publication Critical patent/JPH0299294A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the corrosion resistance in nitric acid and to extend the service life of the above member by composing the base metal consisting of an austenitic stainless steel in such a manner that the weld metal formed by melting and solidifying of the base metal has the solidification form to first crystallize a delta ferrite phase at the time of solidification. CONSTITUTION:The compsn. of the base metal of the austenitic stainless steel consists, by weight, of <=0.05% C, <=1.0% Si, 0.2 to 2.5% Mn, <=0.035% P, <=0.035% S, 8 to 12% Ni, 17 to 21% Cr, 0.1 to 3.0% Mo, and the balance Fe and unavoidable impurities. Further, the compsn. satisfies Cr equiv./Ni equiv. 1.6 in the Cr equiv. and Ni equiv. calculated by the formula. The welding material for welding at least from the root layer to the 3rd layer at the time of welding has the Cr equiv. and Ni equiv. within the region A and the welding is executed by the welding material having the above mentioned equiv. within the region B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高酸化性イオンを含有する硝酸溶液環境中で
使用される新規な機器部材に係り、特に原子燃料再処理
プラントにおけるオーステナイト系ステンレス鋼の溶接
接合継手に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a new equipment component used in a nitric acid solution environment containing highly oxidizing ions, and in particular to austenitic stainless steel in a nuclear fuel reprocessing plant. Concerning steel welded joints.

〔従来の技術〕[Conventional technology]

硝酸中ではオーステナイト合金は良好な耐食性を有して
いる。しかしながら、腐食性の高い高酸化性イオン、例
えばCr6+、 Ce’+、 F e3+等を含有する
硝酸中では著しく腐食が酸化されることが知られている
。このような過酷な環境を取扱うプラントの一つに原子
燃料再処理プラントがある。
Austenitic alloys have good corrosion resistance in nitric acid. However, it is known that corrosion is significantly oxidized in nitric acid containing highly corrosive highly oxidizing ions such as Cr6+, Ce'+, Fe3+, etc. A nuclear fuel reprocessing plant is one of the plants that handle such harsh environments.

使用済原子燃料から有益なウラン、プルトニウ11を取
出す原子燃料再処理プラントにおける主要な工程を第2
図に示す。この中の重要な機器として、例えば溶解1、
廃液濃縮蒸発缶2、酸回収蒸発缶3、酸回収精留塔4、
廃液貯蔵タンク5であり、第3図に濃縮蒸発缶2及び第
4図に貯蔵タンク5の構成図を示す。これらの機器は、
前者は廃液を蒸発させて濃縮するための設備、また後者
は放射性廃液を長期間に亘り貯蔵するための設備である
A second major process in a nuclear fuel reprocessing plant that extracts useful uranium, plutonium-11, from spent nuclear fuel.
As shown in the figure. Among the important equipment, for example, the dissolution 1,
Waste liquid concentration evaporator 2, acid recovery evaporator 3, acid recovery rectification column 4,
This is a waste liquid storage tank 5, and FIG. 3 shows the concentrating evaporator 2, and FIG. 4 shows a configuration diagram of the storage tank 5. These devices are
The former is equipment for evaporating and concentrating waste liquid, and the latter is equipment for storing radioactive waste liquid for a long period of time.

各装置には配線6,8が設けられ、この配管6゜8への
加熱媒体の供給によって各蒸発缶及びタンク内の硝酸溶
液が加熱される。特に、装置内を減圧下で沸騰させるの
が腐食の点で好ましい。
Each device is provided with wiring 6, 8, and the nitric acid solution in each evaporator and tank is heated by supplying a heating medium to the piping 6.8. In particular, it is preferable to boil the inside of the device under reduced pressure from the viewpoint of corrosion.

この中で溶解工程以降は燃料の溶解のために硝酸溶液を
用いる。酸化性の強い硝酸溶液には種々の腐食生成物の
他に更に多量の核分裂生成物が含まれる。そのうち、特
にルテニウム(Ru)は腐食性の強い元素であり、第3
2同席食防食討論会予稿集、 p317 (1985−
8)にはRuは硝酸中で腐食促進作用が強いことが示さ
れている。
In this process, a nitric acid solution is used to dissolve the fuel after the dissolution step. In addition to various corrosion products, the highly oxidizing nitric acid solution also contains large amounts of fission products. Among these, ruthenium (Ru) is a highly corrosive element, and is the third most corrosive element.
2 Proceedings of the Co-located Food and Prevention Discussion Group, p317 (1985-
8) shows that Ru has a strong corrosion promoting effect in nitric acid.

また、第25回日本原子力学会年会要旨集(第■分冊)
、p160 (1987−4)には硝酸中でRu ’十
がRu♂+に酸化されRu0iとして揮発することが記
載されている。
In addition, the collection of abstracts of the 25th Annual Meeting of the Atomic Energy Society of Japan (Volume ■)
, p160 (1987-4) describes that Ru'0 is oxidized to Ru♂+ in nitric acid and volatilized as Ru0i.

原子燃料再処理プラント機器の部材は現在オーステナイ
ト合金が用いられているが、この腐食性の強い環境にさ
らされて腐食を生じるため、これら部材の耐食性向上が
強く望まれている。
Austenite alloys are currently used in the parts of nuclear fuel reprocessing plant equipment, but since they corrode when exposed to this highly corrosive environment, there is a strong desire to improve the corrosion resistance of these parts.

オーステナイト系ステンレス鋼部材のうち、均一なオー
ステナイ1−(γ)相を有する母材に対して、溶融接合
部では化学成分及び金属組織の不均一性が高い凝固組織
を有している。
Among austenitic stainless steel members, the base material has a uniform austenite 1-(γ) phase, whereas the fused joint has a solidified structure with high heterogeneity in chemical composition and metal structure.

一般に工業的に広く用いられているアーク溶接法ではあ
る種のオーステナイト鋼接合部の場合溶融凝固部はγ相
の他に5〜10%程度のδ−フェライト相(δ相と略記
する)を含む二相混合組織となっている。例えば、溶接
便覧(溶接学会編。
In arc welding, which is generally widely used industrially, in the case of certain types of austenitic steel joints, the molten solidified part contains about 5 to 10% of δ-ferrite phase (abbreviated as δ phase) in addition to γ phase. It has a two-phase mixed structure. For example, welding handbook (edited by the Welding Society of Japan).

改訂3版、丸善(昭和52−3)によれば5〜10%の
フェライトが溶接金属中に存在すると溶接時の耐割れ性
の改善に有効であるとの記述がある。しかしながら、上
記文献にも記載されているが、一般にはフエライ1〜が
存在すると溶接金属の耐食性が劣化するといわれており
、通常のオーステナイト鋼の溶接部はδフェライト相を
含むことによる耐割れ性の改善というメリットと耐食性
の低下というデメリットの両方の効果を有している。
According to the third revised edition, Maruzen (Showa 52-3), it is stated that the presence of 5 to 10% ferrite in the weld metal is effective in improving the cracking resistance during welding. However, as described in the above literature, it is generally said that the presence of ferrite 1 deteriorates the corrosion resistance of the weld metal, and the welded parts of ordinary austenitic steel have poor cracking resistance due to the inclusion of the δ ferrite phase. This has both the advantage of improving corrosion resistance and the disadvantage of reducing corrosion resistance.

このため、溶接割れと耐食性との兼ね合いから適切なδ
フェライト重量を選定するのが常識になっている。
For this reason, appropriate δ
It has become common sense to select the ferrite weight.

また、一般に隙間が存在すると隙間腐食が生じることが
知られており、この対策としてMOを添加したオーステ
ティ1−合金1例えば5US316鋼が一般に使用され
ている。Moが添加されていると隙間が存在した場合の
局部腐食や孔食に対して十分な耐食性を示すことが知ら
れており、M。
Furthermore, it is generally known that crevice corrosion occurs when gaps exist, and as a countermeasure to this, Austety 1-Alloy 1, for example 5US316 steel, to which MO is added is generally used. It is known that when Mo is added, it exhibits sufficient corrosion resistance against local corrosion and pitting corrosion when gaps exist.

を含んだオーステナイト合金は高耐食材料としてよく使
用されている。
Austenitic alloys containing C are often used as highly corrosion-resistant materials.

高耐食性イオンを含む硝酸環境では前述したように材料
の腐食が促進されるが、特に溶融凝固した溶接部では上
述したような理由により腐食の促進の顕著になることが
懸念される。
In a nitric acid environment containing highly corrosion-resistant ions, corrosion of the material is accelerated as described above, but there is a concern that the acceleration of corrosion will be particularly pronounced in molten and solidified welds for the reasons described above.

これまでに、硝酸環境中の耐食性を改善する方法として
は特開昭54−124820.特開昭55−91960
にSi含有量を高めた高耐食溶接棒が開示されている。
Until now, as a method for improving corrosion resistance in a nitric acid environment, Japanese Patent Application Laid-Open No. 54-124820. Japanese Patent Publication No. 55-91960
discloses a highly corrosion-resistant welding rod with increased Si content.

また、特開昭59−222559号には耐食性を向上さ
せるためにP含有量を0.005  %以下に制限する
ことが示されている。
Furthermore, Japanese Patent Application Laid-Open No. 59-222559 discloses that the P content should be limited to 0.005% or less in order to improve corrosion resistance.

しかしながら、Si含有量を増加させることは材料の加
工性、製造性に制約が生じることもあり。
However, increasing the Si content may impose restrictions on the processability and manufacturability of the material.

また、P含有量を0.005%以下の非常に低い値に制
限することは製鋼上の問題もあるが、Pの低下のみでは
必ずしも効果が十分とはいえない。
Furthermore, limiting the P content to a very low value of 0.005% or less poses a problem in terms of steel manufacturing, but it cannot be said that reducing P alone is necessarily sufficient.

また、溶接部に対しても一般には母材に比べて耐食性が
低く、特にMOを含み隙間腐食に対してより耐食性が期
待されるSUS 316系のオーステナイト合金におい
ては、その溶接部の耐食性は母材より低い値を示すのが
現状である。
In addition, the corrosion resistance of welded parts is generally lower than that of the base metal, especially in the case of SUS 316 series austenitic alloys, which contain MO and are expected to have better corrosion resistance against crevice corrosion. Currently, the value is lower than that of wood.

高酸化性イオンを含有する硝酸環境中で使用される機器
部材、特に原子燃料再処理プラント用機器部材では部材
の長寿命のため高い耐食性が望まれている。
Equipment parts used in a nitric acid environment containing highly oxidizing ions, especially equipment parts for nuclear fuel reprocessing plants, are required to have high corrosion resistance in order to have a long service life.

また上記に示した傾向は原子燃料再処理プラント用機器
部材のみならず、高酸化性イオンを含む硝酸環境下で使
用する化学プラントや産業プラントさらには原子力プラ
ントに共通な問題である。
Furthermore, the above-mentioned tendency is a common problem not only for equipment components for nuclear fuel reprocessing plants, but also for chemical plants, industrial plants, and nuclear power plants that are used in nitric acid environments containing highly oxidizing ions.

[発明が解決しよう−とする?a題〕 前述したように、オーステナイト合金の接合継手あるい
は溶F!A凝固を伴う表面処理層は高酸化性イオンを含
む硝酸環境中で腐食され易い傾向にある。
[Does the invention try to solve the problem? Title a] As mentioned above, welding joints of austenitic alloys or melt F! A surface treatment layer accompanied by solidification tends to be corroded in a nitric acid environment containing highly oxidizing ions.

本発明の目的は高酸化性イオンを含む硝酸環境中におい
て耐食性の優れたオーステティ1−系ステンレス鋼の接
合継手を有する溶接部を有する耐硝酸性の優れた機器部
材を提供することにある。
An object of the present invention is to provide an equipment member having excellent corrosion resistance in a nitric acid environment containing highly oxidizing ions and having a welded joint made of Austety 1-stainless steel which has excellent corrosion resistance in a nitric acid environment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、オーステナイト系ステンレス鋼からなる母材
で溶接部を有する機器部材において、前記母材の溶融凝
固した溶接金属は、凝固時にδフェライト相を最初に晶
出する凝固形態を有することを特徴とする耐硝酸性の優
れた溶接部から成る機器部材にある。
The present invention provides an equipment member having a welded part with a base metal made of austenitic stainless steel, characterized in that the molten and solidified weld metal of the base metal has a solidification form in which a δ-ferrite phase is first crystallized during solidification. Equipment components made of welded parts with excellent nitric acid resistance.

前記溶接部に用いる母材は重量%で、c : 0.os
%以下、Si:1.0%以下= Mn : 0.2〜2
.5%、 P : 0.035%以下、S:0.035
%以下、Ni:8〜12%、Cr:17〜21%、Mo
:0.1〜3.0%、残部Fe及び不可避的な不純物物
から成るオーステナイト系ステンレス鋼からなる。更に
、好適にはこのオーステナイト系ステンレス鋼は下記の
式で計算されるCr当量及びNi当量において、Cr当
量/ N i当量≧1.6 を満足することを特徴とす
る。
The base material used for the welded portion has a weight percentage of c: 0. os
% or less, Si: 1.0% or less = Mn: 0.2-2
.. 5%, P: 0.035% or less, S: 0.035
% or less, Ni: 8-12%, Cr: 17-21%, Mo
:0.1 to 3.0%, the remainder being Fe and unavoidable impurities. Furthermore, this austenitic stainless steel is preferably characterized in that the Cr equivalent and Ni equivalent calculated by the following formula satisfy Cr equivalent/Ni equivalent≧1.6.

また、溶接施工に際しては、先ず、その溶接材料のCr
当量及びNi当量が第1図に示す領域A内にあるもので
、少なくとも初層から3層までを溶接し、次いで領域B
内にある溶接材料で溶接することを特徴とする。
In addition, when performing welding work, first, the Cr of the welding material is
The equivalent and Ni equivalent are within region A shown in Figure 1, and at least the first to third layers are welded, and then welded to region B.
It is characterized by welding using the welding material contained within.

Cr当量=%Cr+%M o + 1 、5 x%Si
    −(1)Ni当量=%Ni+30x%C+ 0
 、5 x%M n  −(2)硝酸環境は、硝酸溶液
により使用済み原子燃料を溶解し、化学的分離工程によ
りUおよびPuを抽出する系統と共に、溶解に用いた硝
酸溶液を回収、浄化して再使用するための系統および各
工程より生じた放射性廃液を濃縮、貯蔵する系統を有す
る原子燃料再処理プラント環境である。
Cr equivalent = %Cr + %Mo + 1, 5 x %Si
-(1) Ni equivalent = %Ni+30x%C+ 0
, 5 x% M n -(2) The nitric acid environment includes a system for dissolving spent nuclear fuel with a nitric acid solution and extracting U and Pu through a chemical separation process, as well as recovering and purifying the nitric acid solution used for dissolution. This is a nuclear fuel reprocessing plant environment with a system for reusing radioactive waste and a system for concentrating and storing radioactive waste liquid generated from each process.

このような高酸化性イオンを含む硝酸中におけるオース
テナイト系ステンレス鋼接合部の耐食性は、融点以上に
加熱され溶融した接合部の合金の凝固時の凝固形態が著
しく影響することを見出し、高耐食性を得るためには凝
固時にδフェライト相を最初に晶出させ、その後にオー
ステナイト相を晶出させることによって基本的に達成さ
れることを明確にした。
It was discovered that the corrosion resistance of austenitic stainless steel joints in nitric acid containing highly oxidizing ions is significantly affected by the solidification form of the molten joint alloy when heated above the melting point. It was clarified that this is basically achieved by first crystallizing the δ-ferrite phase and then crystallizing the austenite phase during solidification.

高酸化性イオンを含む硝酸中での各種オーステナイト合
金溶接部の腐食挙動及び腐食形態を詳細に検討した結果
、溶接部において融点以上に加熱されて液体状態にある
合金が凝固する際には第1表に示す二種類の過程があり
、このType IとTypeHの両者の凝固部につい
て高酸化性イオンを含む硝酸中での耐食性を検討した結
果、Type Iの凝固部の耐食性はType Uのそ
れより顕著に優れていることが新しくわかった。
As a result of a detailed study of the corrosion behavior and corrosion morphology of various austenitic alloy welds in nitric acid containing highly oxidizing ions, we found that when an alloy in a liquid state is solidified by being heated above its melting point in a weld, There are two types of processes shown in the table, and as a result of examining the corrosion resistance of the solidified parts of both Type I and Type H in nitric acid containing highly oxidizing ions, it was found that the corrosion resistance of the solidified part of Type I was higher than that of Type U. I just found out that it's significantly better.

第  1 表 高酸化性イオンを含む硝酸中におけるオーステナイト系
ステンレス鋼接合部の腐食試験を行うと。
Table 1 Corrosion test of austenitic stainless steel joints in nitric acid containing highly oxidizing ions.

凝固時に生成した樹枝状デンドライト層に沿って不均一
に腐食が生じδフェライト相が腐食されたように見える
ため、従来はδフェライト相が腐食されると考えてその
量を減少させる方法がとられていたが、本発明はこの考
えと全く異っている。
Corrosion occurs unevenly along the dendritic dendrite layer generated during solidification, giving the appearance that the δ-ferrite phase has been corroded. Conventionally, methods have been taken to reduce the amount of δ-ferrite, assuming that the δ-ferrite phase is being corroded. However, the present invention is completely different from this idea.

腐食はδフェライトの量ではなく、δフェライトが凝固
時にどのような形で晶出したかが重要であり、オーステ
ナイト合金凝固部の耐食性は凝固モードをType I
に制御することによって耐食性の優れた接合部が得られ
る。
Corrosion is not the amount of δ ferrite, but the form in which δ ferrite crystallizes during solidification.
By controlling this, a joint with excellent corrosion resistance can be obtained.

このためには、溶接材料の組成を規制して凝固形態を選
定すると伴に、使用する母材の組成も同様に規制するこ
とが不可欠である。何故なら、溶接材料と母材とが溶融
時に混合することによって両者の中間の組成を有する領
域が存在するからである。
For this purpose, it is essential to control the composition of the welding material and select the solidification form, and to similarly control the composition of the base material used. This is because the welding material and the base metal are mixed during melting, so that there is a region having a composition intermediate between the two.

このような溶接接合継手において、特に高耐食性を得る
に有効なオーステナイト系ステンレス鋼母材の組成の範
囲は、重量%で、C: 0.05%以下、Si:1.0
%以下、Mn : 0.2〜2.5%。
In such welded joints, the composition range of the austenitic stainless steel base metal that is particularly effective in obtaining high corrosion resistance is, in weight percent, C: 0.05% or less, Si: 1.0
% or less, Mn: 0.2 to 2.5%.

P:0.035%以下、S:0.035%以下、Ni:
8〜12%、Cr:17〜21%、MO二0.1〜3.
0%、残部Fe及び不可避的な不純物から成り、更に、
好適には上記の(1)及び(2)式で計算されるCr当
量及びNi当量において、Cr当量/ N i当量≧1
.6 を満足する組成である。また、溶接施工に際し少
なくとも初層から3層までを溶接する溶接材料は、その
Cr当量及びN i ”j量が第1図に示す領域A内に
あるもので、次いで領域B内にある溶接材料で溶接する
ことを特徴とする。
P: 0.035% or less, S: 0.035% or less, Ni:
8-12%, Cr: 17-21%, MO2 0.1-3.
0%, the balance consists of Fe and unavoidable impurities, and further,
Preferably, in the Cr equivalent and Ni equivalent calculated by the above formulas (1) and (2), Cr equivalent/Ni equivalent ≧1
.. The composition satisfies 6. In addition, welding materials for welding at least the first layer to the third layer during welding are those whose Cr equivalent and Ni''j amount are within region A shown in Figure 1, followed by welding materials which are within region B. It is characterized by welding.

次に本発明のオーステナイト系ステンレス鋼及びその溶
接接合継手の化学組成の範囲を限定した理由を示す。
Next, the reason for limiting the range of chemical composition of the austenitic stainless steel of the present invention and its welded joint will be explained.

C:Cは0.05 %を越えるとオーステナイト合金の
接合継手においてCr炭化物の析出物が多くなりこの析
出物の近傍のCrが欠乏する結果、耐食性が減少するこ
とから、上限として0.05%と定めた。
C: If C exceeds 0.05%, Cr carbide precipitates will increase in the austenitic alloy joint, resulting in a lack of Cr near these precipitates, resulting in a decrease in corrosion resistance, so the upper limit is 0.05%. It was determined that

SiおよびMn:SiおよびMnは製鋼上脱酸剤として
使用する元素である。このため、工業的にはSiは1.
0%以下の添加が必要であり、またMnはオーステナイ
ト相の安定性からも0.2〜2.5%の範囲がよい。
Si and Mn: Si and Mn are elements used as deoxidizing agents in steel manufacturing. Therefore, industrially, Si is 1.
It is necessary to add Mn in an amount of 0% or less, and the range of Mn is preferably 0.2 to 2.5% from the viewpoint of stability of the austenite phase.

Ni : Niは主要なオーステナイト形成元素であり
、Crとともにオーステナイト合金においては重要な元
素でる6Niは硝酸中の耐食性維持のため、また凝固部
の組織状態(δフェライ1−相とオーステナイト相との
比)を規制するための主要なフェライト形成元素である
Crの量とバランスさせて8〜12%の範囲がよい。
Ni: Ni is a major austenite-forming element, and along with Cr it is an important element in austenite alloys. 6Ni is used to maintain corrosion resistance in nitric acid and to improve the structure of the solidified part (the ratio of the δ ferrite 1-phase to the austenite phase). ) is preferably in the range of 8 to 12%, in balance with the amount of Cr, which is a main ferrite-forming element for regulating the ferrite-forming element.

Cr : Crはフェライト形成元素であり、硝酸中の
耐食性を得るために必要不可欠な重要元素である。硝酸
中の耐食性を確保すると同時に凝固部の組織制御のため
にNi量と対応して17〜21%がよい。すなわち、1
7%は硝酸中の耐食性の点から必要であり、一方21%
を超えると凝固部の脆化が懸念される。
Cr: Cr is a ferrite-forming element and is an essential and important element in order to obtain corrosion resistance in nitric acid. In order to ensure corrosion resistance in nitric acid and at the same time control the structure of the coagulated part, it is preferable that the Ni content be 17 to 21%, corresponding to the Ni content. That is, 1
7% is necessary for corrosion resistance in nitric acid, while 21%
If it exceeds this, there is a concern that the solidified portion will become brittle.

Mo:Moはフェライト形成元素であるが、表面に形成
される不@態皮膜を強固にする効果があるといわれ、隙
間腐食に対する抵抗を高めることが示されており、本発
明では0.1〜3.0%の範囲がよい。
Mo: Mo is a ferrite-forming element, and is said to have the effect of strengthening the passive film formed on the surface, and has been shown to increase resistance to crevice corrosion. A range of 3.0% is preferable.

この他、必要に応じて各々1%以下のTi。In addition, Ti of 1% or less each as necessary.

Nb、V、Zr等の炭化物形成元素や各々0.5%以下
のAQ、Ca等の脱酸効果のある元素を適量添加しても
良く、その場合でも本発明の効果は得られろ。
Appropriate amounts of carbide-forming elements such as Nb, V, and Zr, and elements having a deoxidizing effect such as AQ and Ca at 0.5% or less each may be added, and the effects of the present invention will still be obtained in this case.

上記のオーステナイト系ステンレス鋼母材の組成に加え
、更にそのCr当量とNi当量の比を1.6 以上に限
定し、また少なくとも初層から3層までに使用する溶接
材料の組成を第1図に示すCr当量とNi当量の範囲A
内の組成に選定することによって、最も効果のある高耐
食性の溶接接合継手が得られる。
In addition to the composition of the austenitic stainless steel base metal mentioned above, the ratio of Cr equivalent to Ni equivalent is further limited to 1.6 or more, and the composition of the welding material used for at least the first to third layers is determined as shown in Figure 1. Range A of Cr equivalent and Ni equivalent shown in
By selecting a composition within the range, the most effective and highly corrosion resistant welded joint can be obtained.

これはNi当量とCr当量を定めることによって、目的
とするオーステナイト相に先立ってδフェライト相を晶
出させることが可能であることを見出した結果である。
This is the result of the discovery that by determining the Ni equivalent and Cr equivalent, it is possible to crystallize the δ ferrite phase prior to the desired austenite phase.

上記オーステナイト系ステンレス鋼母材の組成において
、そのCr当量とNi当の比を1.6以上に限定する理
由は、母材自体の凝固形態をTypeIにコントロール
するためである。このように規制することによって、溶
接材料との組成混合を受けても溶融部の凝固形態をTy
pe Iに保持することが可能である。
In the composition of the austenitic stainless steel base material, the reason why the ratio of Cr equivalent to Ni equivalent is limited to 1.6 or more is to control the solidification form of the base material itself to Type I. By regulating in this way, the solidification form of the molten part can be controlled to Ty even when the composition is mixed with the welding material.
It is possible to hold it in pe I.

次に、第1図に示す領域A及びBの限定理由を以下に述
べる。
Next, the reason for limiting areas A and B shown in FIG. 1 will be described below.

[領域A] この領域は、溶接時の溶融凝固時に溶接材料が母材との
組成混合を受けて、溶接材料の凝固形態Typel  
(初晶δ相型)がTypen (初晶γ相型)に変化す
るのを防ぐために、溶接時に少なくとも初層から3層ま
でに用いる溶接材料を規定する。
[Area A] In this area, the welding material undergoes compositional mixing with the base metal during melt solidification during welding, and the solidification form of the welding material Type
In order to prevent (primary δ phase type) from changing to Type (primary γ phase type), welding materials used for at least the first to third layers during welding are specified.

■線AB:この線より下側の高Cr当量では、δフエラ
イト量が多くなり過ぎて溶接性 や加工性等に問題が生じてくる可能性 があるので、この線を限界とする。
(2) Line AB: At a high Cr equivalent below this line, the amount of δ ferrite becomes too large, which may cause problems in weldability, workability, etc., so this line is set as the limit.

■線BC:溶接金属の化学成分の不均一性により、マル
テンサイト組織が生じるのを防止 するためにこの線より上側のNi当量 が必要である。
■ Line BC: Due to the non-uniformity of the chemical composition of the weld metal, a Ni equivalent above this line is required to prevent martensitic structure from forming.

■線CD:この線より上側では、溶接時に溶融凝固に生
じる組成混合による凝固形態の 変化を防止できないため、この線より 高いCr当量と低いNi当量が好適で ある。
(2) Line CD: Above this line, changes in the solidification form due to compositional mixing that occur during melt solidification during welding cannot be prevented, so a higher Cr equivalent and lower Ni equivalent than this line are preferred.

■線DA:この線よりCr当量が大きくなる溶接性、加
工性が低下し、また脆化等の問 題が生じてくるため、実用的な範囲と してCr当量は24%以下とする。
■ Line DA: If the Cr equivalent is larger than this line, the weldability and workability will deteriorate, and problems such as embrittlement will occur, so the Cr equivalent is set to 24% or less as a practical range.

[領域Bコ この領域は、溶接時に先ず領域Aの溶接材料で少なくと
も初層から3層までを溶接した後に、引き続いて溶接を
施工するときに用いる溶接材料を規定する。
[Area B] This area specifies the welding material to be used when welding is performed successively after welding at least the first to third layers with the welding material of area A during welding.

■線EF:この線より下側、すなわち低Ni当量側でT
ype Iの初品δ相型の凝固形態となり高耐食性が得
られる。
■Line EF: T below this line, that is, on the low Ni equivalent side
The initial product of ype I has a solidification form of δ phase type, and high corrosion resistance is obtained.

■線FC:硝酸中の全面腐食に対する耐食性を得るため
に、Cr当辰は18%以1とし、かつ化学成分の不均一
性によりマルテ ンサイト組織が生じるのを防止するた めにこの線よりも高いNi当量とする。
■ Line FC: In order to obtain corrosion resistance against general corrosion in nitric acid, the Cr content should be 18% or more, and it should be higher than this line to prevent the formation of martensitic structure due to the heterogeneity of chemical components. Let it be Ni equivalent.

■線CD:この線を超えた低Ni当量側では脆化の問題
等が生じるため多量に使用する 場合はこの線を超えない方が良い。
■Line CD: If a large amount is used, it is better not to exceed this line because embrittlement problems may occur on the low Ni equivalent side exceeding this line.

■線DE:Cr当量が大きくなるにつれて溶接性。■Line DE: Weldability increases as the Cr equivalent increases.

加工性が低下し、また脆化等の問題が 生じてくるため、実用的な範囲として Cr当量は24%以下とする。Processability decreases and problems such as embrittlement occur. As a practical range, The Cr equivalent is 24% or less.

以上のような理由により、母材の組成のCr当量とNi
当量とを規制し、また母材との組成混合を考慮した溶接
材料を用いて、少なくとも初層から3層までを溶接する
ことによって、溶接金属の凝固形態をType Iの初
晶δ相型にコントロールし、従来材よりも高い耐食性が
得られる。
For the above reasons, the Cr equivalent and Ni
By welding at least the first to third layers using a welding material that takes into account the compositional mix with the base metal, the solidification form of the weld metal can be changed to the Type I primary δ phase type. control and achieve higher corrosion resistance than conventional materials.

また、本発明による凝固モードをType Iに制御し
たオーステナイト合金の接合継手又は表面処理層は、例
えばRu ”十を1100pp含有する100℃の9N
硝酸溶液中では腐食速度が2.Onm/y以下の値以下
耐食性を有している。
Furthermore, the joining joint or surface treatment layer of an austenitic alloy whose solidification mode is controlled to Type I according to the present invention can be made of, for example, 9N at 100°C containing 1100pp of Ru.
In nitric acid solution, the corrosion rate is 2. It has corrosion resistance of less than Onm/y.

以上述べてきた本発明によるオーステナイト系ステンレ
ス鋼の接合継手の優れた耐食性はその接合法1表面処理
法には依らない。すなわち、通常行なわれているアーク
溶接、電子ビーム溶接およびレーザ溶接等で十分な高耐
食性が達成可能である。基本的には本発明による凝固モ
ード制御を行なえる溶融・凝固部分にはその手法を問わ
ず本発明を適用できる。
The excellent corrosion resistance of the austenitic stainless steel joining joint according to the present invention described above does not depend on the joining method 1 and the surface treatment method. That is, sufficiently high corrosion resistance can be achieved by commonly used arc welding, electron beam welding, laser welding, etc. Basically, the present invention can be applied to any melting/solidifying portion where the solidification mode control according to the present invention can be performed, regardless of the method.

更に、凝固モードの違いは不純物元素P、Si等の偏析
の程度に影響を及ぼすと推察される。
Furthermore, it is presumed that the difference in solidification mode affects the degree of segregation of impurity elements P, Si, etc.

従って、耐食性を低下させる不純物元素それ自体を減少
させることはいずれの凝固モードにおいても耐食性向上
に効果がある。すなわち、本発明者らは不純物元素P、
S i含有量を1〕≦0.01%。
Therefore, reducing the impurity elements themselves that reduce corrosion resistance is effective in improving corrosion resistance in any solidification mode. That is, the present inventors have determined that the impurity element P,
The Si content is 1]≦0.01%.

SiS2.05%に同時に規制することにより良好な耐
食性が得られることを見出した。P、Siを両者とも同
時に減少させないと効果が小さい。
It has been found that good corrosion resistance can be obtained by simultaneously regulating SiS to 2.05%. The effect is small unless both P and Si are reduced at the same time.

溶接金属は溶接材からの溶着金属と母材が溶融凝固した
部分をいう。
Weld metal refers to the part where the deposited metal from the welding material and the base metal are melted and solidified.

〔実施例〕〔Example〕

[実施例1コ 第2表及び第3表は本実施例に用いた試験材の化学成分
を示す。溶接継手を製作するのに用いた母材は市販のオ
ーステナイト系ステンレス鋼の4種M (BCI、BO
2,BPI、BF2)である。
[Example 1 Tables 2 and 3 show the chemical components of the test materials used in this example. The base material used to manufacture the welded joints was commercially available austenitic stainless steel type 4 M (BCI, BO
2, BPI, BF2).

また、このときに用いた溶接材料は市販の溶接ワイヤの
4種類(WCI、WO2,WPI、WF2)である、凝
固形態は母材のBCIとBO2はryρe■で、BPI
とBF2はType Iである。また、溶接材料はいず
れもType !である。
The welding materials used at this time were four types of commercially available welding wires (WCI, WO2, WPI, WF2).The solidification form was ryρe■ for the base metal BCI and BO2, and BPI
and BF2 are Type I. Also, all welding materials are Type! It is.

これらの試験材はいずれもTIG溶接でU型開先突合わ
せ溶接継手を製作し、その部分より腐食試験片を採取し
た。腐食試験は100ppm Ruを含有する100℃
の9NHN○3溶液中で500時間浸漬した。浸漬試験
後、試験片の侵食深さを測定し2、それから腐食速度(
閣/y)を算出した6第4表は、従来の溶接継手と本発
明による溶接継手の溶接金属部の腐食速度を示す。第4
表よりわかるように、特に成分の規制を行わない母材B
CI又はBO2、と第1図の領域Bの溶接材料、WCI
又はWO2とによる4種類の溶接試験片、CWJl、−
4はいずれも腐食速度が5.0mm/y以上である。
For each of these test materials, a U-shaped groove butt welded joint was fabricated by TIG welding, and a corrosion test piece was taken from that part. Corrosion test at 100°C containing 100ppm Ru
It was immersed for 500 hours in a 9NHN○3 solution. After the immersion test, the erosion depth of the specimen was measured2, and then the corrosion rate (
Table 4 shows the corrosion rate of the welded metal parts of the conventional welded joint and the welded joint according to the present invention. Fourth
As can be seen from the table, base material B is not subject to any particular regulation of ingredients.
CI or BO2, and welding material in area B in Figure 1, WCI
or 4 types of welding test pieces with WO2, CWJl, -
No. 4 has a corrosion rate of 5.0 mm/y or more.

一方、母材の組成において、Cr当量とNi当量との比
を1.6 以上にコントロールしたものを上記と同じ組
成の溶接材料で溶接した試験片、PWJ 1〜4はいず
れも1〜5 nrn / Yの腐食速度を示しており、
本発明材の方が良好な耐食性を示した。
On the other hand, PWJ 1 to 4, which are test pieces welded with welding materials with the same composition as above, in which the ratio of Cr equivalent to Ni equivalent was controlled to 1.6 or more in the base metal composition, were all 1 to 5 nrn. / indicates the corrosion rate of Y,
The material of the present invention showed better corrosion resistance.

第4表 [実施例2コ 第5表は、従来の溶接継手と本発明による溶接法による
継手の腐食速度を示す。従来材は、比較のために第4表
に示したものと同じ試験片CWJ1.2の結果を示した
。本発明材PWJ5〜8は、溶接施工時に、先ず第1図
の領域Aの溶接材料WPI又はWF2を用いて初層から
3層まで溶接し1次いで領域Bの溶接材料WCI又はW
O2を用いて最終層まで溶接したものである。従来材の
腐食速度が5.Onn+ /y以上であるのに対して、
本発明材のそれは1.0mm/y以下と従来材よりも良
好な耐食性を示した。
Table 4 [Example 2] Table 5 shows the corrosion rates of conventional welded joints and joints produced by the welding method according to the present invention. The conventional material showed the same results as the test piece CWJ1.2 shown in Table 4 for comparison. During welding, the materials PWJ5 to PWJ8 of the present invention are first welded from the first layer to the third layer using the welding material WPI or WF2 of area A in FIG.
The final layer was welded using O2. The corrosion rate of conventional materials was 5. Onn+ /y or more, whereas
The corrosion resistance of the material of the present invention was 1.0 mm/y or less, which was better than that of the conventional material.

このように1本発明法によれば従来の成分を特に規制し
ない母材を用いても良好な耐食性を有する溶接継手を製
作することができる。
As described above, according to the method of the present invention, it is possible to produce a welded joint having good corrosion resistance even when using a conventional base material whose components are not particularly regulated.

第5表 [実施例3] 第6表は、従来の溶接継手と本発明により成分を規制し
た母材と本発明法による溶接法とを組合わせて製作した
継手の腐食速度を示す。従来材は第4表に示した試験片
CWJIとCWJ3の結果を比較のために示した。本発
明材は組成を規制した母材BPi又はBF2を用いて、
実施例2と同じように先ず領域Aの溶接材料WPI又は
WF2で初層から3層までを溶接し、次いで領域Bの溶
接材料WC】又はWO2で最終層まで溶接した。
Table 5 [Example 3] Table 6 shows the corrosion rate of a joint manufactured by combining a conventional welded joint, a base material whose components are regulated according to the present invention, and a welding method according to the present invention. For conventional materials, the results of test pieces CWJI and CWJ3 shown in Table 4 are shown for comparison. The present invention material uses base material BPi or BF2 with regulated composition,
As in Example 2, the first to third layers were first welded using the welding material WPI or WF2 of area A, and then welded to the final layer using the welding material WC] or WO2 of area B.

本発明材の腐食速度は1.0mm/y以下であり。The corrosion rate of the material of the present invention is 1.0 mm/y or less.

従来材よりも優れた耐食性を有していることが示された
It was shown that it has better corrosion resistance than conventional materials.

第6表 〔発明の効果〕 本発明によれば、高酸化性イオンを含有する硝酸中にお
ける耐食性向上が図れるので、信頼性が高くかつ使用寿
命の長い接合継手が得られる。
Table 6 [Effects of the Invention] According to the present invention, since corrosion resistance in nitric acid containing highly oxidizing ions can be improved, a joint with high reliability and a long service life can be obtained.

本発明は高酸化性イオンを含有する硝W&環境下で効果
を発揮し、このような環境下で使用する化学プラント、
産業プラント、原子力プラント機器およびその構成部材
に使用可能である。特に、原子燃料再処理プラン1〜機
器及びその構成部材への適用に著しい効果を示す。
The present invention is effective in nitrogen environments containing highly oxidizing ions, and is suitable for chemical plants used in such environments.
It can be used for industrial plants, nuclear power plant equipment, and their constituent parts. In particular, it shows remarkable effects when applied to nuclear fuel reprocessing plan 1 to equipment and its constituent members.

ここで高酸化性イオンとは、F e 8+、 Cr 8
+。
Here, highly oxidizing ions include Fe 8+, Cr 8
+.

Ce’+、Ru’十等高等高価数属イオンを示し、これ
ら高酸化性イオンを一種又は複合種含む硝酸溶液環境下
で効果を発揮する。この高酸化性イオンを含む硝酸溶液
を定量的に示すと、ステンレス鋼の腐食電位が参照照合
電極(SHE)に比較して0.95V以上を示す過不働
態領域で効果を発し、この領域で高耐食性を示す機器及
びその構成部材を提供する。
It represents ions of a higher number group such as Ce'+ and Ru' 10, and is effective in a nitric acid solution environment containing one or a combination of these highly oxidizing ions. Quantitatively showing this nitric acid solution containing highly oxidizing ions, it is effective in the overpassive region where the corrosion potential of stainless steel is 0.95V or more compared to the reference comparison electrode (SHE), and in this region Provided are devices and their constituent parts that exhibit high corrosion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るCr当量とNi当量の範囲を示す
線図、第2図は原子燃料再処理プラントのブロック図、
第3図は廃液濃縮蒸発缶の構成図、第4図は廃液貯蔵タ
ンクの構成図である。 1・・・溶解槽、2・・・廃液濃縮蒸発缶、3・・・酸
回収蒸発缶、4・・・酸回収精留塔、5・・・廃液貯蔵
タンク。 6・・・冷却用配管、7・・・廃液貯蔵容器、8・・・
伝熱管、9・・・蒸発容器。
FIG. 1 is a diagram showing the range of Cr equivalent and Ni equivalent according to the present invention, FIG. 2 is a block diagram of a nuclear fuel reprocessing plant,
FIG. 3 is a block diagram of the waste liquid concentration evaporator, and FIG. 4 is a block diagram of the waste liquid storage tank. 1... Dissolution tank, 2... Waste liquid concentration evaporator, 3... Acid recovery evaporator, 4... Acid recovery rectification column, 5... Waste liquid storage tank. 6... Cooling piping, 7... Waste liquid storage container, 8...
Heat exchanger tube, 9...evaporation container.

Claims (1)

【特許請求の範囲】 1、オーステナイト系ステンレス鋼からなる母材に溶接
部を有する機器部材において、前記母材の溶融凝固した
溶接金属は、凝固時にδフェライト相を最初に晶出する
凝固形態を有することを特徴とする耐硝酸性の優れた機
器部材。 2、請求項1において、該硝酸環境は硝酸溶液により使
用済み原子燃料を溶解し、化学的分離工程によりウラン
及びプルトニウムを抽出する系統と伴に、溶解に用いた
硝酸溶液を回収、浄化して再使用するための系統、及び
各工程により生じた放射性廃液を濃縮、貯蔵する系統を
有する原子燃料再処理プラント環境である耐硝酸性の優
れた機器部材。 3、請求項1又は2において、前記母材が重量%で、C
:0.05%以下、Si:1.0%以下、Mn:0.2
〜2.5%、P:0.035%以下、S:0.035%
以下、Ni:8〜12%、Cr:17〜21%、Mo:
0.1〜3.0%、残部Fe及び不可避的な不純物から
成るオーステナイト系ステンレス鋼からなる耐硝酸性の
優れた機器部材。 4、請求項3において、前記母材であるオーステナイト
系ステンレス鋼が下記の式で計算されるCr当量及びN
i当量の(Cr当量/Ni当量)比が1.6以下である
耐硝酸性の優れた機器部材。 〔Cr当量=%Cr+%Mo+1.5x%SiNi当量
=%Ni+30x%C+0.5x%Mn〕5、請求項3
において、前記母材であるオーステナイト系ステンレス
鋼が、先ず、上記の式で計算されるCr当量及びNi当
量が第1図に示す領域A内にある溶接材料を用いて少な
くとも初層から3層までを溶接し、次いで領域B内の溶
接材料により溶接される耐硝酸性の優れた機器部材。 6、請求項5において、前記母材であるオーステナイト
系ステンレス鋼が上記の式で計算されるCr当量及びN
i当量の(Cr当量/Ni当量)比が1.6以下である
耐硝酸性の優れた機器部材。 7、請求項1〜6のいずれかにおいて、前記溶接部が9
NHNO_3+100ppmRu,100℃での腐食速
度が2.0mm/y以下である耐硝酸性の優れた機器部
材。 8、請求項1〜7のいずれかにおいて、前記溶接部はア
ーク溶接、電子ビーム溶接、レーザビーム溶接の何れか
の溶接法により形成される耐硝酸性の優れた機器部材。 9、請求項1〜8のいずれかにおいて、前記機器部材に
よつて構成された化学プラント産業プラント、原子力プ
ラント。 10、請求項5又は6において、前記オーステナイト系
ステンレス鋼からなる耐硝酸性機器用溶接材料。 11、請求項5において、第1図の領域Aにある溶接材
料が重量%でC0.05%以下、Si0.05%以下、
Mn0.2〜2.5%、P0.01%以下、S0.03
5%以下、Ni8〜12%、Cr17〜21%、Mo0
.1〜3.0%、残部Feおよび不可避的な不純物から
なるオーステナイト系ステンレス鋼により構成される耐
硝酸性の優れた機器部材。
[Scope of Claims] 1. In an equipment member having a welded portion on a base metal made of austenitic stainless steel, the weld metal of the base metal that has been molten and solidified has a solidification form in which a δ ferrite phase is first crystallized during solidification. An equipment member having excellent nitric acid resistance. 2. In claim 1, the nitric acid environment includes a system for dissolving spent nuclear fuel with a nitric acid solution and extracting uranium and plutonium through a chemical separation process, as well as recovering and purifying the nitric acid solution used for dissolution. Equipment components with excellent nitric acid resistance that are used in the environment of a nuclear fuel reprocessing plant, including a system for reuse and a system for concentrating and storing radioactive waste liquid generated from each process. 3. In claim 1 or 2, the base material is C
: 0.05% or less, Si: 1.0% or less, Mn: 0.2
~2.5%, P: 0.035% or less, S: 0.035%
Below, Ni: 8-12%, Cr: 17-21%, Mo:
An equipment member with excellent nitric acid resistance made of austenitic stainless steel containing 0.1 to 3.0%, the balance being Fe and unavoidable impurities. 4. In claim 3, the austenitic stainless steel as the base material has a Cr equivalent and N calculated by the following formula.
An equipment member having excellent nitric acid resistance and having an i equivalent (Cr equivalent/Ni equivalent) ratio of 1.6 or less. [Cr equivalent=%Cr+%Mo+1.5x%SiNi equivalent=%Ni+30x%C+0.5x%Mn] 5, Claim 3
In this process, the austenitic stainless steel that is the base metal is first welded from the first layer to the third layer using a welding material whose Cr equivalent and Ni equivalent calculated by the above formula are within the region A shown in FIG. is welded, and then welded with the welding material in area B to produce equipment parts with excellent nitric acid resistance. 6. In claim 5, the austenitic stainless steel as the base material has a Cr equivalent and N calculated by the above formula.
An equipment member having excellent nitric acid resistance and having an i equivalent (Cr equivalent/Ni equivalent) ratio of 1.6 or less. 7. In any one of claims 1 to 6, the welded portion is 9
NHNO_3+100ppmRu, an equipment member with excellent nitric acid resistance and a corrosion rate of 2.0 mm/y or less at 100°C. 8. The device member according to any one of claims 1 to 7, having excellent nitric acid resistance, wherein the welded portion is formed by any one of arc welding, electron beam welding, and laser beam welding. 9. A chemical plant, industrial plant, or nuclear power plant configured by the equipment member according to any one of claims 1 to 8. 10. The welding material for nitric acid-resistant equipment made of the austenitic stainless steel according to claim 5 or 6. 11. In claim 5, the welding material in area A in FIG.
Mn0.2-2.5%, P0.01% or less, S0.03
5% or less, Ni8-12%, Cr17-21%, Mo0
.. An equipment member with excellent nitric acid resistance, made of austenitic stainless steel consisting of 1 to 3.0% Fe and unavoidable impurities.
JP25183388A 1988-10-07 1988-10-07 Equipment member having excellent nitric acid resistance Pending JPH0299294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25183388A JPH0299294A (en) 1988-10-07 1988-10-07 Equipment member having excellent nitric acid resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25183388A JPH0299294A (en) 1988-10-07 1988-10-07 Equipment member having excellent nitric acid resistance

Publications (1)

Publication Number Publication Date
JPH0299294A true JPH0299294A (en) 1990-04-11

Family

ID=17228605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25183388A Pending JPH0299294A (en) 1988-10-07 1988-10-07 Equipment member having excellent nitric acid resistance

Country Status (1)

Country Link
JP (1) JPH0299294A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040865B2 (en) 2007-02-27 2015-05-26 Exxonmobil Upstream Research Company Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains
JP2018001171A (en) * 2016-06-27 2018-01-11 日立オートモティブシステムズ株式会社 Two-member joint method and pump manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040865B2 (en) 2007-02-27 2015-05-26 Exxonmobil Upstream Research Company Corrosion resistant alloy weldments in carbon steel structures and pipelines to accommodate high axial plastic strains
JP2018001171A (en) * 2016-06-27 2018-01-11 日立オートモティブシステムズ株式会社 Two-member joint method and pump manufacturing method

Similar Documents

Publication Publication Date Title
Brooks et al. Selection of wrought austenitic stainless steels
JP4699162B2 (en) Austenitic stainless steel welded structure with excellent low temperature toughness and seawater corrosion resistance
JP6513495B2 (en) Duplex stainless steel and duplex stainless steel pipe
JPS6353210A (en) Method for improving stress corrosion cracking resistance of stainless steel
JP2634299B2 (en) Pd-added stainless steel for high temperature, high concentration sulfuric acid
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP4879688B2 (en) Steel arc welded joint with excellent fatigue strength, its welding method and steel structure
JPH02101148A (en) Equipment member excellent in nitric acid resistance
JPH0299294A (en) Equipment member having excellent nitric acid resistance
JP4699161B2 (en) Austenitic stainless steel welding wire with excellent low temperature toughness and seawater corrosion resistance
JPS5910426B2 (en) Fully austenitic stainless steel with excellent crevice corrosion resistance and hot workability.
EP0142015A1 (en) Austenitic steel
US4653684A (en) Welding material for austenite stainless steel having high Si content and method of application
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JPH01268848A (en) Equipment member excellent in nitric acid resistance
JPS62197294A (en) Mig arc welding wire for austenitic stainless steel
JPS62222049A (en) B-containing stainless steel excellent in corrosion resistance
JP4953371B2 (en) Ni-based alloy excellent in nitric acid corrosion resistance and method for producing the same
JPH0285341A (en) Corrosion-resistant stainless steel having low ion-emitting speed
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance
JP3131597B2 (en) Nitrate resistant austenitic stainless steel and weld metal
JPS6188997A (en) Wire for welding 9cr-1mo steel
Votinov et al. Vanadium alloys as structural materials for fusion reactor blanket
JPS6016488B2 (en) Heat treatment method for high purity ferritic stainless steel
JPH0445575B2 (en)