JPH01268455A - Input voltage detecting circuit for switching power supply - Google Patents

Input voltage detecting circuit for switching power supply

Info

Publication number
JPH01268455A
JPH01268455A JP9487188A JP9487188A JPH01268455A JP H01268455 A JPH01268455 A JP H01268455A JP 9487188 A JP9487188 A JP 9487188A JP 9487188 A JP9487188 A JP 9487188A JP H01268455 A JPH01268455 A JP H01268455A
Authority
JP
Japan
Prior art keywords
voltage
transistor
oscillation
input
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9487188A
Other languages
Japanese (ja)
Inventor
Mitsugi Tanaka
貢 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Facom Corp
Original Assignee
Fuji Electric Co Ltd
Fuji Facom Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Facom Corp filed Critical Fuji Electric Co Ltd
Priority to JP9487188A priority Critical patent/JPH01268455A/en
Publication of JPH01268455A publication Critical patent/JPH01268455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To minimize power consumption by providing a voltage dividing resistor and a transistor so as to detect an input power and by giving a switching control circuit a signal designating as to whether oscillation is allowable or not. CONSTITUTION:A switching power supply is composed of a primary side rectifier circuit 2 rectifying AC input 1, a primary side smoothing capacitor C1, a transformer 3, a switching FET 4 and its switching control circuit 5, a secondary side rectifier circuit 6, and a voltage detecting circuit 9. In this case, said voltage detecting circuit 9 divides a voltage VC1 across the ends of said smoothing capacitor C1 on the input side by resistors R1-R3 in order to detect the voltage of said AC input 1, and turns ON or OFF a transistor(Tr) 1 by a detected voltage. Then, when said Tr 1 is turned ON, the signal designating that oscillation is not allowable is given to the C terminal of said control circuit 5, and when said Tr 1 is turned OFF, the signal designating that oscillation is allowable is given to said CS terminal. The voltage detecting circuit 9 is further provided with Tr 2 to short-circuit the resistance R3 in the ON state. Thus, the Trs 1-2 are OFF and a power consumption is minimized at the time of normal oscillation.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、スイッチング電源の入力電源の電圧検出回路
に関する。
The present invention relates to a voltage detection circuit for an input power supply of a switching power supply.

【従来の技術】[Conventional technology]

スイッチング電源において、入力電源の電圧が定格範囲
以下となった場合、スイッチング制御が正常に行われず
、大電流が回路に流れることなどにより回路が撰焼する
場合がある。そこで入力電源の電圧検出回路を設け、ス
イッチング動作の制御を行う方法が知られている。
In a switching power supply, if the voltage of the input power supply falls below the rated range, switching control may not be performed normally, and a large current may flow through the circuit, causing the circuit to burn out. Therefore, a method is known in which a voltage detection circuit for the input power source is provided to control the switching operation.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら従来は、この入力電圧検出回路によって電
力が消費されスイッチング電源の変換効率が低下する場
合があった。 そこでこの発明の課題は、スイッチング電源回路におい
て、入力電源電圧が定格範囲内の時には電圧検出回路で
消費される電力を最小にすると共に、入力電源の投入時
のスイッチング開始電圧と電源断時のスイッチング停止
電圧に差を持たせたヒシテリシス回路を構成し、安定し
た人力電源の電圧検出を行うことにある。
However, in the past, this input voltage detection circuit sometimes consumed power and reduced the conversion efficiency of the switching power supply. Therefore, an object of this invention is to minimize the power consumed by the voltage detection circuit when the input power supply voltage is within the rated range in a switching power supply circuit, and also to minimize the power consumed by the voltage detection circuit when the input power supply voltage is turned on and the switching start voltage when the input power supply is turned on and the switching when the power supply is turned off. The purpose is to configure a hysteresis circuit with a difference in stop voltage and to perform stable voltage detection of a human power source.

【課題を解決するための手段】[Means to solve the problem]

前記の課題を解決するために本発明の回路は、「入力直
流電圧(コンデンサ電圧VC1など)を第1のトランジ
スタ(スイッチングFET4など)を介し繰返し開閉し
てトランス(3など)の1次巻線(31など)に印加し
、これにより前記トランスの2次巻線(32など)に発
生する電圧を整流して新たな直流電圧(直流比カフなど
)を得るスイッチング電源において、 前記入力直流電圧を分圧し比較用電圧(検出電圧VAな
ど)を得る分圧抵抗(抵抗R1〜R3など)と、 前記比較用電圧が所定の電圧((VDD−VIBE)な
ど)を上回るか否かに応じてそれぞれオフ、オンする第
2のトランジスタ(Triなど)と、(端子C3などに
与えられる)該トランジスタのオフ、オン(の信号)に
応じて前記第1のトランジスタを駆動する発振電圧をそ
れぞれ発生、停止させるスイッチング制御回路(5など
)と、前記分圧抵抗における前記比較用電圧を得る側の
抵抗辺(R2,R3など)に含まれる部分抵抗(R3な
ど)と並列に接続されたトランジスタであって、前記第
2のトランジスタのオン、オフに応じてそれぞれオン、
オフせしめられる第3のトランジスタ(Tr2など)と
。 を備えた」ものとする。
In order to solve the above problems, the circuit of the present invention repeatedly opens and closes the input DC voltage (capacitor voltage VC1, etc.) via the first transistor (switching FET 4, etc.) to connect the primary winding of the transformer (3, etc.). (31, etc.), thereby rectifying the voltage generated in the secondary winding (32, etc.) of the transformer to obtain a new DC voltage (DC ratio cuff, etc.), in which the input DC voltage is Voltage dividing resistors (resistors R1 to R3, etc.) that divide the voltage to obtain a comparison voltage (detection voltage VA, etc.); Generates and stops an oscillation voltage that drives the first transistor according to a second transistor (such as Tri) that turns off and on, and (signals of) the transistor that turns off and on (applied to terminal C3, etc.) A transistor connected in parallel with a switching control circuit (such as 5) that causes the voltage to be set, and a partial resistor (such as R3) included in the resistance side (R2, R3, etc.) of the voltage dividing resistor on the side from which the comparison voltage is obtained. , turned on depending on whether the second transistor is turned on or off, respectively;
and a third transistor (such as Tr2) that is turned off. shall be equipped with the following.

【作 用】[For use]

スイッチング電源の入力電源の電圧を検出するために、
入力側の平滑コンデンサの両端電圧VCIを分圧し、検
出電圧を設定する抵抗R1〜R3と。 これらの抵抗により分圧された検出電圧VAにより、O
N、OFFするトランジスタTriを設け、このトラン
ジスタTriのONによりスイッチング制御回路5のC
S端子に発振不可、OFFにより発振可の信号を与える
。さらに、このトランジスタTriによりベース電流が
供給停止されON。 OFFするトランジスタTr2を設け、このトランジス
タTr2は、先の入力側の平滑コンデンサの両端電圧V
CIを分圧する抵抗の一部R3をON状態で短絡し、分
圧比を変え発振開始電圧と発振停止電圧に差ΔVHを持
たせたシュミット回路を構成する。この構成で、定常の
発振状態にはこの2つのトランジスタTri、Tr2は
OFF状態にあるため、この検出回路で消費される電力
は最小となる。
To detect the voltage of the input power supply of a switching power supply,
Resistors R1 to R3 divide the voltage VCI across the smoothing capacitor on the input side and set the detection voltage. The detection voltage VA divided by these resistors causes O
A transistor Tri that is turned off is provided, and when the transistor Tri is turned on, the C of the switching control circuit 5 is
Give a signal to the S terminal that disables oscillation and enables oscillation by turning it off. Furthermore, this transistor Tri stops supplying the base current and turns ON. A transistor Tr2 that is turned off is provided, and this transistor Tr2 is connected to the voltage V across the smoothing capacitor on the input side.
A Schmitt circuit is constructed in which a part of the resistor R3 that divides CI is short-circuited in the ON state, and the voltage division ratio is changed to provide a difference ΔVH between the oscillation start voltage and the oscillation stop voltage. With this configuration, these two transistors Tri and Tr2 are in an OFF state in a steady oscillation state, so the power consumed by this detection circuit is minimized.

【実施例】【Example】

第1図は本発明の一実施例としての構成を示す回路図で
あり、図中(A) 、 (B)はこのスイッチング電源
をそれぞれいわゆるフォワード型、フライバック型に構
成した場合のトランス3の2次回路を示している。 なおここでフォワード型とはトランス3の1次巻、13
1に入力直流電圧が印加された際に、トランス3の2次
巻線32に誘起する電圧を整流して直流出力電圧を得る
方式をいい、 フライバック型とはトランス3の1次巻線31に印加さ
れた入力直流電圧がしゃ断された際にトランス3の2次
巻線32に誘起する電圧を整流して直流出力電圧を得る
方式をいう。 同図において、1は交流入力、2はこの交流人力1を整
流するダイオードブリッジとしての1次側整流回路、C
Iはこの整流後の電圧を平滑する1次側平滑コンデンサ
である。なおここでコンデンサC1の両端電圧(コンデ
ンサ電圧とも呼ぶ)をVCIとする。3はトランス、4
は1次側整流回路2の出力直流電圧(コンデンサ電圧)
VCIをスイッチング開閉し前記トランス3の1次巻線
31に印加するスイッチングFET、5はFET4の開
閉を制御するスイッチング制御回路である。 この制御回路5においてVDDは図外の適当な手段を介
して供給される駆動用電源、GNDはグランド電位、C
8はスイッチングの発振音、不可を制御する端子で、C
3がHレベル(#VDD)で発振不可、Lレベル(!=
i0■)で発振可とする。 6 (6162)はそれぞれフォワード型(同図(A)
)。 フライバック型(同図(B))における2次側整流回路
であり、それぞれトランス3の2次巻線32の発生電圧
を整流し平滑して直流用カフとして負荷に供給する。 9の電圧検出回路は、−次側平滑コンデンサC1の両端
電圧VCIを検出しており、その検出した結果をスイッ
チング制御回路5のCS端子に伝えている。 次に前記電圧検出回路9の動作について説明する。 (i)電源投入直後(発振停止状態):電源投入直後、
コンデンサC1はまだ充電が十分されていないため、コ
ンデンサ電圧VCIは低い、この場合VCIをR1,R
2,R3の抵抗で分圧した検出電圧VAが、 VDD−VA≧VIBE (但しVIBEはトランジスタTriがONとなるベー
ス・エミッタ間電圧) (1)弐を満しているためTrlにベース電流が流れT
rlがON状態となる。さらにTriのONによってト
ランジスタTr2にベース電流が供給され、Tr2もO
N状態となり、制御回路5のCS端子の電圧はほぼVD
Dに等しく発振停止状態となり、FET4はOFF状態
にある。 (ii)入力直流電圧(コンデンサ電圧)VCI確立後
: 電源投入後、コンデンサCIが徐々に充電されコンデン
サ電圧VCIを分圧した検出電圧VAがV DD −V
 A < V IBIE        −一−−−−
−(2)上記(2)式を満足した時、トランジスタTr
iがOFFする。このTriがOFFすると端子C3の
電圧はLレベル(!=i0V)となり発振が可能となる
。このときトランジスタTr2は、TriがOFF状態
であるためベース電流が供給されず、OFFする。従っ
て定常発振時にはTrl、 Tr2の2つのトランジス
タはOFF状態であるため電力の消費が最小となる。 また、発振可能となる限界のコンデンサC1の両端電圧
VCIについては、前記(i)の状態においてトランジ
スタTr2がONであるため、コンデンサ電圧■C1は
抵抗R1,R2で分圧され、検出電圧VAは下記(3)
式で与えられる。 R1+R2 (但し V 2CEζ0とする) 従ってコンデンサ電圧VCIは(2)式を用い、I VCl2(1+−)(VDD−VIBE)  −・−(
4)で発振可能となることになる。 (iii )電源断時: 定常発振中、入力電源が断たれた時、コンデンサC1の
両端電圧■C1が徐々に降下する。このとき初めは前記
輔)で述べたようにトランジスタTr2がOFF状態で
あるため、コンデンサ電圧■C1は抵抗R1,R1,R
3で分圧される。従って検出電圧VA下記の(5)式で
表わされる。 次にコンデンサ電圧が下降して前記検出電圧VAが下記
の(6)式を満足したとき、トランジスタTriがON
L、CS端子がHレベル(!=iVDD)となって発振
が停止する。 VDD−VA≧VIBE        −m−−−・
−(6)(5)、 (6)より発振が停止するコンデン
サCIの両端電圧■C1は下記(7)式で与えられるI
?I (4)式の発振開始電圧と(7)弐の発振停止電圧との
差ΔVHは(4)、 (7)式より下記(8)式のよう
になる。 I?2(R2+R3) 即ちこの差電圧Δ■11がシュミット回路のヒステリシ
ス電圧に相当するものとなって、スイッチング制御回路
5が発振開始と発振停止の2つの状態の間を不安定に往
復せしめられる現象(ハンチング)を防止する。
FIG. 1 is a circuit diagram showing a configuration as an embodiment of the present invention, and (A) and (B) in the figure show the transformer 3 when the switching power supply is configured as a forward type and a flyback type, respectively. A secondary circuit is shown. Note that the forward type here refers to the primary winding of transformer 3, 13
A flyback type refers to a method in which a DC output voltage is obtained by rectifying the voltage induced in the secondary winding 32 of the transformer 3 when an input DC voltage is applied to the transformer 3. A method of obtaining a DC output voltage by rectifying the voltage induced in the secondary winding 32 of the transformer 3 when the input DC voltage applied to the transformer 3 is cut off. In the figure, 1 is an AC input, 2 is a primary side rectifier circuit as a diode bridge that rectifies this AC human power 1, and C
I is a primary side smoothing capacitor that smoothes this rectified voltage. Here, the voltage across the capacitor C1 (also referred to as capacitor voltage) is defined as VCI. 3 is trance, 4
is the output DC voltage (capacitor voltage) of the primary rectifier circuit 2
A switching FET 5 which switches the VCI on and off and applies it to the primary winding 31 of the transformer 3 is a switching control circuit that controls the opening and closing of the FET 4. In this control circuit 5, VDD is a driving power supply supplied through an appropriate means not shown, GND is a ground potential, and C
8 is a terminal that controls switching oscillation sound and disable, and C
3 is H level (#VDD), oscillation is not possible, L level (!=
i0■) enables oscillation. 6 (6162) are forward type (same figure (A)
). This is a secondary rectifier circuit in the flyback type ((B) in the same figure), which rectifies and smoothes the voltage generated by the secondary winding 32 of the transformer 3 and supplies it to the load as a DC cuff. The voltage detection circuit 9 detects the voltage VCI across the negative side smoothing capacitor C1, and transmits the detected result to the CS terminal of the switching control circuit 5. Next, the operation of the voltage detection circuit 9 will be explained. (i) Immediately after power-on (oscillation stopped state): Immediately after power-on,
Since capacitor C1 is not sufficiently charged yet, capacitor voltage VCI is low. In this case, VCI is set to R1, R.
2. The detection voltage VA divided by the resistor R3 is VDD-VA≧VIBE (VIBE is the base-emitter voltage at which the transistor Tri is turned on) (1) Since it satisfies 2, the base current in Trl is flow T
rl becomes ON state. Furthermore, by turning on Tri, a base current is supplied to transistor Tr2, and Tr2 is also turned on.
The state is N, and the voltage at the CS terminal of the control circuit 5 is approximately VD.
Equal to D, the oscillation is stopped and the FET 4 is in the OFF state. (ii) Input DC voltage (capacitor voltage) After establishing VCI: After the power is turned on, capacitor CI is gradually charged and the detection voltage VA, which is the divided capacitor voltage VCI, is V DD -V
A < V IBIE -1---
-(2) When the above formula (2) is satisfied, the transistor Tr
i turns off. When this Tri is turned off, the voltage at the terminal C3 becomes L level (!=i0V) and oscillation becomes possible. At this time, since Tri is in the OFF state, the base current is not supplied to the transistor Tr2, and the transistor Tr2 is turned OFF. Therefore, during steady oscillation, the two transistors Trl and Tr2 are in the OFF state, so power consumption is minimized. Regarding the voltage VCI across the capacitor C1, which is the limit at which oscillation is possible, since the transistor Tr2 is ON in the state (i) above, the capacitor voltage C1 is divided by the resistors R1 and R2, and the detection voltage VA is Below (3)
It is given by Eq. R1+R2 (However, V 2CEζ0 is assumed.) Therefore, the capacitor voltage VCI is calculated using equation (2), I VCl2(1+-)(VDD-VIBE) -・-(
4) makes it possible to oscillate. (iii) When the power supply is cut off: During steady oscillation, when the input power supply is cut off, the voltage across the capacitor C1, ■C1, gradually drops. At this time, since the transistor Tr2 is initially in the OFF state as mentioned in the previous comment, the capacitor voltage ■C1 is reduced by the resistors R1, R1, R
The pressure is divided by 3. Therefore, the detection voltage VA is expressed by the following equation (5). Next, when the capacitor voltage falls and the detection voltage VA satisfies the following equation (6), the transistor Tri is turned on.
The L and CS terminals become H level (!=iVDD) and oscillation stops. VDD-VA≧VIBE-m---・
- (6) (5), From (6), the voltage across the capacitor CI at which oscillation stops ■C1 is given by the following equation (7) I
? I The difference ΔVH between the oscillation start voltage in equation (4) and the oscillation stop voltage in (7) 2 is expressed by equation (8) below from equations (4) and (7). I? 2(R2+R3) In other words, this difference voltage Δ■11 corresponds to the hysteresis voltage of the Schmitt circuit, causing the switching control circuit 5 to unstably reciprocate between the two states of oscillation start and oscillation stop ( hunting).

【発明の効果】【Effect of the invention】

本発明によれば入力直流電圧■C1を第1のトランジス
タFETを介し繰返し開閉してトランス3の1次巻線3
1に印加し、これにより前記トランスの2次巻線32に
発生する電圧を整流して新たな直流電圧7を得るスイッ
チング電源番ごおいて、前記入力直流電圧を分圧し比較
用電圧(検出電圧■八)を得る分圧抵抗R1−R3と、
前記比較用電圧VAが所定の電圧(VDD−VIBE)
を上回るか否かに応じてそれぞれオフ、オンする第2の
トランジスタTr2と、 該トランジスタのオフ、オンに応じて前記第1のl・ラ
ンジスタを駆動する発振電圧をそれぞれ発生、停止させ
るスイッチング制御回路5と、前記分圧抵抗における前
記比較用電圧を得る側の抵抗辺R2,R3に含まれる部
分抵抗R3と並列に接続されたトランジスタであって、
前記第2のトランジスタのオン、オフに応じてそれぞれ
オン。 オフせしめられる第3のトランジスタTr2と、を備え
るようにしたので、定格入力範囲以下の入力電圧時の異
常発振によるスイッチング電源回路の横坑を防ぎ、かつ
、定常発振時(定格入力時)には、電圧検出回路9にお
ける消費電力を最小に押えスイッチング電源の変換効率
を低下させないようにすることができる。また、この電
圧検出回路9は、シュミット回路を構成しているため発
振開始、停止の信号を安定して得ることができる。
According to the present invention, the input DC voltage ■C1 is repeatedly opened and closed via the first transistor FET, and the primary winding 3 of the transformer 3 is
1 and thereby rectify the voltage generated in the secondary winding 32 of the transformer to obtain a new DC voltage 7. At each switching power supply number, the input DC voltage is divided and a comparison voltage (detection voltage ■ Voltage dividing resistors R1-R3 to obtain 8),
The comparison voltage VA is a predetermined voltage (VDD-VIBE)
a second transistor Tr2 that turns off and turns on depending on whether or not the voltage exceeds Tr2; and a switching control circuit that generates and stops an oscillation voltage that drives the first l transistor depending on whether the transistor is turned off or turned on. 5 and a transistor connected in parallel with a partial resistor R3 included in resistance sides R2 and R3 of the voltage dividing resistor on the side from which the comparison voltage is obtained,
Turns on depending on whether the second transistor is turned on or off. Since the third transistor Tr2 is turned off, it is possible to prevent the switching power supply circuit from collapsing due to abnormal oscillation when the input voltage is below the rated input range, and to prevent the switching power supply circuit from collapsing due to abnormal oscillation when the input voltage is below the rated input range. , it is possible to minimize the power consumption in the voltage detection circuit 9 and prevent the conversion efficiency of the switching power supply from decreasing. Further, since this voltage detection circuit 9 is configured as a Schmitt circuit, it is possible to stably obtain signals for starting and stopping oscillation.

【図面の簡単な説明】 第1図はこの発明の一実施例としての回路図である。[Brief explanation of the drawing] FIG. 1 is a circuit diagram as an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1)入力直流電圧を第1のトランジスタを介し繰返し開
閉してトランスの1次巻線に印加し、これにより前記ト
ランスの2次巻線に発生する電圧を整流して新たな直流
電圧を得るスイッチング電源において、 前記入力直流電圧を分圧し比較用電圧を得る分圧抵抗と
、 前記比較用電圧が所定の電圧を上回るか否かに応じてそ
れぞれオフ、オンする第2のトランジスタと、 該トランジスタのオフ、オンに応じて前記第1のトラン
ジスタを駆動する発振電圧をそれぞれ発生、停止させる
スイッチング制御回路と、 前記分圧抵抗における前記比較用電圧を得る側の抵抗辺
に含まれる部分抵抗と並列に接続されたトランジスタで
あって、前記第2のトランジスタのオン、オフに応じて
それぞれオン、オフせしめられる第3のトランジスタと
、 を備えたことを特徴とするスイッチング電源の入力電圧
検出回路。
[Claims] 1) The input DC voltage is repeatedly opened and closed via a first transistor and applied to the primary winding of the transformer, thereby rectifying the voltage generated in the secondary winding of the transformer and generating a new voltage. A switching power supply that obtains a direct current voltage, comprising: a voltage dividing resistor that divides the input direct current voltage to obtain a comparison voltage; and a second resistor that turns off and on depending on whether the comparison voltage exceeds a predetermined voltage. a switching control circuit that generates and stops an oscillation voltage that drives the first transistor depending on whether the transistor is turned off or on; and a third transistor connected in parallel with a partial resistor that is turned on and off in response to turning on and off of the second transistor. Voltage detection circuit.
JP9487188A 1988-04-18 1988-04-18 Input voltage detecting circuit for switching power supply Pending JPH01268455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9487188A JPH01268455A (en) 1988-04-18 1988-04-18 Input voltage detecting circuit for switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9487188A JPH01268455A (en) 1988-04-18 1988-04-18 Input voltage detecting circuit for switching power supply

Publications (1)

Publication Number Publication Date
JPH01268455A true JPH01268455A (en) 1989-10-26

Family

ID=14122113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9487188A Pending JPH01268455A (en) 1988-04-18 1988-04-18 Input voltage detecting circuit for switching power supply

Country Status (1)

Country Link
JP (1) JPH01268455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100521111B1 (en) * 1996-09-13 2005-10-14 톰슨 콘슈머 일렉트로닉스, 인코포레이티드 A switched-mode power supply control circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100521111B1 (en) * 1996-09-13 2005-10-14 톰슨 콘슈머 일렉트로닉스, 인코포레이티드 A switched-mode power supply control circuit

Similar Documents

Publication Publication Date Title
US4246634A (en) Start-up circuit for switch mode power supply
JPH06335241A (en) Transformer-coupled secondary dc power-supply forming device
JPH09261958A (en) Uninterruptive switching regulator
JPH01268455A (en) Input voltage detecting circuit for switching power supply
JPH0315423B2 (en)
JP2542810B2 (en) Switching control type power supply circuit
JP2004222472A (en) Switching power supply control circuit
JP2721523B2 (en) Inverter circuit
JP2003348846A (en) Power circuit
JPH11285245A (en) Power source unit
JP3570246B2 (en) High voltage power supply
JPH06222845A (en) Rush current suppressing circuit
JPH0545111Y2 (en)
JPH071863Y2 (en) Timer device
JPH0215129Y2 (en)
JPH0242076Y2 (en)
JPH0242077Y2 (en)
JPH03256558A (en) Switching power supply
JPH0213272A (en) Starting circuit for inverter
JPS61245220A (en) Power supply circuit
JPS6317276B2 (en)
JPH02123929A (en) Charging device
JPS6443060A (en) Switching regulator
JPS63299773A (en) Switching power source device
JPH0348328U (en)