JPH06335241A - Transformer-coupled secondary dc power-supply forming device - Google Patents

Transformer-coupled secondary dc power-supply forming device

Info

Publication number
JPH06335241A
JPH06335241A JP18153293A JP18153293A JPH06335241A JP H06335241 A JPH06335241 A JP H06335241A JP 18153293 A JP18153293 A JP 18153293A JP 18153293 A JP18153293 A JP 18153293A JP H06335241 A JPH06335241 A JP H06335241A
Authority
JP
Japan
Prior art keywords
circuit
charging
overcurrent
transformer
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18153293A
Other languages
Japanese (ja)
Inventor
Shinichi Akimoto
信一 秋元
Yoshiaki Matsumoto
芳昭 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba TEC Corp
Original Assignee
Tokyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Co Ltd filed Critical Tokyo Electric Co Ltd
Priority to JP18153293A priority Critical patent/JPH06335241A/en
Publication of JPH06335241A publication Critical patent/JPH06335241A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize a protective function against overcurrent and at the same time miniaturize a device and reduce its weight and cost by forming an overcurrent detection circuit by connecting a time-constant circuit consisting of a charging resistor and a capacitor for charging in parallel with the auxiliary winding of a transformer. CONSTITUTION:An overcurrent detection circuit 50 is formed of a charging resistor R51 and a charging capacitor C51 connected in series between the positive pole side of an auxiliary winding L12 of a transformer 20 and the negative pole side of a rectification circuit 14 and a discharging resistor R52 connected in parallel with the charging capacitor C51 and in series with the charging resistor R51. Then, the point between the charging resistor R51 and the charging capacitor C51 is connected to an element 16 for protection against overcurrent, thus indirectly detecting overcurrent from a control voltage VC and an oscillation frequency, thus miniaturizing the overcurrent detection circuit 50, achieving stabilization against the voltage fluctuation of an AC power supply 11 by adding a constant current circuit, and further easily coping with the change-over of the voltage of the AC power supply 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、1次直流電源回路と2
次直流電源回路とをトランスを介して接続結合し、かつ
過電流保護機能を備えたトランス結合型2次直流電源生
成装置に関する。
The present invention relates to a primary DC power supply circuit and a secondary DC power supply circuit.
The present invention relates to a transformer-coupled secondary DC power generation device that is connected and coupled to a secondary DC power supply circuit via a transformer and has an overcurrent protection function.

【0002】[0002]

【従来の技術】図7において、1次直流電源回路10と
2次直流電源回路30とは、トランス20を介して接続
されている。1次直流電源回路10は、交流電源11,
スイッチ12,ノイズフィルター13,整流回路14,
平滑コンデンサC10,スイッチング素子(トランジス
タ)15,制御回路(40)を含み形成され、スイッチ
ング素子15はトランス20の1次巻線L11と整流回
路14の負極側との間に接続されている。また、制御電
圧Vcは補助巻線L12から誘起されダイオードD10
を介して発振生成されかつ抵抗R10を通して供給され
る。
2. Description of the Related Art In FIG. 7, a primary DC power supply circuit 10 and a secondary DC power supply circuit 30 are connected via a transformer 20. The primary DC power supply circuit 10 includes an AC power supply 11,
Switch 12, noise filter 13, rectifier circuit 14,
The smoothing capacitor C10, the switching element (transistor) 15, and the control circuit (40) are included and formed, and the switching element 15 is connected between the primary winding L11 of the transformer 20 and the negative side of the rectifier circuit 14. In addition, the control voltage Vc is induced from the auxiliary winding L12 and the diode D10
Is oscillated and generated through and is supplied through the resistor R10.

【0003】また、2次直流電源回路30は、トランス
20の2次巻線L21に接続されたダイオードD21、
平滑コンデンサC21,C22を含み形成され、負荷3
5に接続される。45は安定化回路で、ホトカプラを含
むフィードバック信号発生回路46に電圧検出信号を入
力する。
The secondary DC power supply circuit 30 includes a diode D21 connected to the secondary winding L21 of the transformer 20,
The load 3 is formed by including the smoothing capacitors C21 and C22.
Connected to 5. A stabilizing circuit 45 inputs a voltage detection signal to a feedback signal generating circuit 46 including a photo coupler.

【0004】かくして、かかるRCC方式の自励発振型
(周波数変動型)のトランス結合型2次直流電源生成装
置では、制御回路(トランジスタ40)をフィードバッ
ク信号でON−OFFさせることにより制御電圧Vcを
用いてスイッチング素子15をON−OFF制御して1
次巻線L11から2次巻線L21に電力エネルギーを供
給する。2次直流電源回路30では、ダイオードD21
で整流し、かつ平滑コンデンサC21,C22で平滑し
て2次直流電源を生成し負荷35に供給する。負荷35
の変動は、2次直流電源電圧の変動として安定化回路4
5で検出されフィードバック信号生成回路46に出力さ
れる。これにより、2次直流電源電圧が安定化される。
Thus, in such an RCC type self-oscillation type (frequency fluctuation type) transformer-coupled secondary DC power supply generator, the control circuit (transistor 40) is turned on / off by a feedback signal to control the control voltage Vc. ON-OFF control the switching element 15 using
Electric power energy is supplied from the secondary winding L11 to the secondary winding L21. In the secondary DC power supply circuit 30, the diode D21
Is rectified and smoothed by the smoothing capacitors C21 and C22 to generate a secondary DC power supply and supply it to the load 35. Load 35
Fluctuation of the secondary DC power supply voltage as a fluctuation of the stabilization circuit 4
The signal is detected at 5 and is output to the feedback signal generation circuit 46. This stabilizes the secondary DC power supply voltage.

【0005】したがって、負荷35が軽い場合には、ス
イッチング素子15に流れる電流が減少して発振周波数
が高くなる。一方、負荷35が重くなると、スイッチン
グ素子15に流れる電流が増大し発振周波数は低くな
る。制御回路(40)によるスイッチング素子15のO
Nデューティーが一定のためによる。
Therefore, when the load 35 is light, the current flowing through the switching element 15 decreases and the oscillation frequency increases. On the other hand, when the load 35 becomes heavy, the current flowing through the switching element 15 increases and the oscillation frequency decreases. O of the switching element 15 by the control circuit (40)
This is because the N duty is constant.

【0006】また、図8に示す他励フライバック方式の
周波数固定型では、制御回路40はPWM・ICから形
成され、負荷35が軽い場合にはスイッチング素子15
に流れる電流が減少しその通電時間が短くなる。一方、
負荷35が重くなると、スイッチング素子15に流れる
電流が増大しそれに伴って通電時間が長くなる。発振周
波数が一定のためである。なお、制御回路40の駆動電
源(電圧Vd)は、2次巻線L12で発振誘起されダイ
オードD10をと通して供給される。すなわち、この駆
動電圧Vdは、図7の場合の制御電圧Vcと同様に生成
されるわけである。
In the separately-excited flyback type fixed frequency type shown in FIG. 8, the control circuit 40 is formed of a PWM IC, and when the load 35 is light, the switching element 15 is used.
The current flowing through the device decreases, and the energizing time becomes shorter. on the other hand,
When the load 35 becomes heavy, the current flowing through the switching element 15 increases, and the energization time becomes longer accordingly. This is because the oscillation frequency is constant. The drive power source (voltage Vd) of the control circuit 40 is induced to oscillate in the secondary winding L12 and supplied through the diode D10. That is, this drive voltage Vd is generated similarly to the control voltage Vc in the case of FIG.

【0007】ところで、いずれの方式の場合でも、特に
スイッチング素子15を過電流から保護するために、1
次直流電源回路10側に過電流検出回路(R50)と過
電流保護用素子16とを設けている。過電流検出回路は
スイッチング素子15と整流回路14の負極側との間に
接続された抵抗R50から形成され、かつ過電流保護用
素子16はスイッチング素子15のベースと整流回路1
4の負荷側とに接続されている。そして、スイッチング
素子15と抵抗R50との間と過電流保護用素子(MO
S・FET)16の駆動端子(ゲート)とを接続してい
る。
By the way, in either case, in order to protect the switching element 15 from overcurrent, 1
An overcurrent detection circuit (R50) and an overcurrent protection element 16 are provided on the side of the next DC power supply circuit 10. The overcurrent detection circuit is formed of a resistor R50 connected between the switching element 15 and the negative side of the rectifier circuit 14, and the overcurrent protection element 16 is a base of the switching element 15 and the rectifier circuit 1.
4 is connected to the load side. Then, between the switching element 15 and the resistor R50 and the overcurrent protection element (MO
It is connected to the drive terminal (gate) of the S.FET) 16.

【0008】したがって、スイッチング素子15に流れ
る電流が増大すると過電流検出回路(R50)によって
検出電圧Vaが高くなる。すると、過電流保護用素子1
6がONとなるから、スイッチング素子15に流れ込ん
でいた電流が過電流保護用素子16に引き込まれる。よ
って、スイッチング素子15をOFFして過電流から保
護することができる。
Therefore, when the current flowing through the switching element 15 increases, the overcurrent detection circuit (R50) increases the detection voltage Va. Then, the overcurrent protection element 1
Since 6 is turned on, the current flowing into the switching element 15 is drawn into the overcurrent protection element 16. Therefore, the switching element 15 can be turned off to protect it from an overcurrent.

【0009】[0009]

【発明が解決しようとする課題】ところで、2次直流電
源回路30側の負荷35が大型化すると、1次直流電源
回路10側のスイッチング素子15に流れる電流もより
大電流となる。すると、当然に過電流検出回路を形成す
る抵抗R50には大きな電流ストレスが加わるから、抵
抗R50自体を大容量としなければならず、形状も大き
くなる。しかるに、一層の軽量・小型化とコスト低減と
が強く望まれるに至り、過電流検出回路(抵抗R50)
がその達成を阻害する要因の一つとなって来た。
When the load 35 on the secondary DC power supply circuit 30 side becomes larger, the current flowing through the switching element 15 on the primary DC power supply circuit 10 side also becomes larger. Then, of course, a large current stress is applied to the resistor R50 forming the overcurrent detection circuit, so that the resistor R50 itself must have a large capacity, and the shape becomes large. However, further weight reduction, downsizing and cost reduction are strongly desired, and an overcurrent detection circuit (resistor R50)
Has become one of the factors that hinder the achievement.

【0010】また、交流電源11の電圧(例えば、AC
100V)が変動(例えば、85〜138V)すると、
過電流保護ポイントが変化してしまうので定数設定が難
しい。さらに、適用性拡大のために交流電源11を例え
ばAC100VとAC200Vとのいずれかに選択使用
可能に構築した場合、その抵抗R50の抵抗値を交換し
なければならず煩わしいという問題もある。
The voltage of the AC power source 11 (for example, AC
100V) fluctuates (for example, 85 to 138V),
It is difficult to set a constant because the overcurrent protection point changes. Further, in order to expand the applicability, when the AC power supply 11 is constructed so that it can be selectively used in either AC100V or AC200V, the resistance value of the resistor R50 must be exchanged, which is troublesome.

【0011】本発明の目的は、過電流保護機能を安定し
て発現させつつ軽量・小型化とコスト低減とを達成する
ことのできるトランス結合型2次直流電源生成装置を提
供することにある。
It is an object of the present invention to provide a transformer-coupled secondary DC power supply generator capable of achieving a light weight / miniaturization and cost reduction while stably exhibiting an overcurrent protection function.

【0012】[0012]

【課題を解決するための手段】請求項1の発明に係るト
ランス結合型2次直流電源生成装置は、整流回路,平滑
コンデンサ,スイッチング素子,制御回路を含む1次直
流電源回路と、安定化回路を含む2次直流電源回路とを
トランスを介して接続結合し、安定化回路から制御回路
へフィードバック信号を加えつつスイッチング素子をO
N−OFF制御して2次直流電源を生成するように形成
され、かつ過電流検出回路で過電流が検出されたときに
過電流保護用素子を介して該スイッチング素子をOFF
させて過電流保護するように形成されたトランス結合型
2次直流電源生成装置において、前記過電流検出回路
を、前記トランスの補助巻線の正極側と前記整流回路の
負極側との間に直列接続された充電抵抗および充電用コ
ンデンサと、この充電用コンデンサと並列でかつ充電抵
抗と直列に接続された放電抵抗とから形成し、かつ充電
抵抗と充電用コンデンサとの間と前記過電流保護用素子
の駆動端子とを接続したことを特徴とする。
A transformer-coupled secondary DC power supply generator according to the invention of claim 1 is a primary DC power supply circuit including a rectifier circuit, a smoothing capacitor, a switching element, and a control circuit, and a stabilizing circuit. A secondary DC power supply circuit including a switch is connected and coupled through a transformer, and a switching element is turned on while applying a feedback signal from the stabilizing circuit to the control circuit.
It is formed so as to generate a secondary DC power source by N-OFF control, and when the overcurrent is detected by the overcurrent detection circuit, the switching element is turned off via the overcurrent protection element.
In the transformer-coupled secondary DC power supply generator formed so as to perform overcurrent protection, the overcurrent detection circuit is connected in series between the positive side of the auxiliary winding of the transformer and the negative side of the rectifier circuit. A charging resistor and a charging capacitor connected to each other, and a discharging resistor connected in parallel with the charging capacitor and in series with the charging resistor, and between the charging resistor and the charging capacitor and for protecting the overcurrent. It is characterized in that it is connected to the drive terminal of the element.

【0013】また、請求項2の発明は、前記トランスの
補助巻線から生成された電圧を入力としかつ前記充電抵
抗と充電用コンデンサとに流す電流を一定とする定電流
回路を設けたことを特徴とする。
According to a second aspect of the present invention, a constant current circuit is provided which receives the voltage generated from the auxiliary winding of the transformer as an input and makes the current flowing through the charging resistor and the charging capacitor constant. Characterize.

【0014】[0014]

【作用】上記構成による請求項1の発明の場合、例えば
周波数変動型の場合は2次直流電源回路の負荷が重くな
って来ると、スイッチング素子に流れる電流が増大し発
振周波数は低くなる。つまり、制御電圧の発振周波数が
低下する。この発振周波数に相当する周期が、充電抵抗
と充電用コンデンサとの充電時定数の周期よりも長くな
ると、充電用コンデンサの電圧が設定電圧に高まるの
で、過電流保護用素子がONする。したがって、スイッ
チング素子をOFFさせ過電流から保護できる。その
後、充電用コンデンサに蓄積された電荷は、適時に放電
抵抗を通して放電される。なお、負荷が軽く発振周波数
が高い場合は、充電用コンデンサの電圧が設定電圧に到
達しないので、過電流保護用素子はOFFのままである
から、通常制御運転を続行できる。
In the case of the first aspect of the present invention having the above structure, for example, in the case of the frequency fluctuation type, when the load of the secondary DC power supply circuit becomes heavy, the current flowing through the switching element increases and the oscillation frequency becomes low. That is, the oscillation frequency of the control voltage decreases. If the cycle corresponding to this oscillation frequency becomes longer than the cycle of the charging time constant of the charging resistor and the charging capacitor, the voltage of the charging capacitor rises to the set voltage, and the overcurrent protection element is turned on. Therefore, the switching element can be turned off to protect from overcurrent. After that, the electric charge accumulated in the charging capacitor is discharged through the discharging resistor in a timely manner. When the load is light and the oscillation frequency is high, the voltage of the charging capacitor does not reach the set voltage, and the overcurrent protection element remains OFF, so normal control operation can be continued.

【0015】また、周波数固定型の場合には、2次直流
電源回路の負荷が重くなって来ると、スイッチング素子
に流れる電流が増大し通電時間が長くなる。つまり、制
御回路の駆動電圧の発振時間が長くなる。したがって、
通電時間が充電抵抗と充電用コンデンサとの充電時定数
の時間よりも長くなると、充電用コンデンサの電圧が設
定電圧に高まるので、過電流保護用素子をONさせるこ
とができる。したがって、スイッチング素子をOFFし
過電流から保護できる。なお、軽負荷時には過電流保護
用素子はOFFのままである。
In the case of the fixed frequency type, when the load of the secondary DC power supply circuit becomes heavier, the current flowing through the switching element increases and the energization time becomes longer. That is, the oscillation time of the drive voltage of the control circuit becomes long. Therefore,
When the energization time becomes longer than the charging time constant of the charging resistor and the charging capacitor, the voltage of the charging capacitor rises to the set voltage, so that the overcurrent protection element can be turned on. Therefore, the switching element can be turned off to protect from overcurrent. The overcurrent protection element remains off when the load is light.

【0016】また、請求項2の発明では、請求項1の作
用に加え、制御電圧または駆動電圧を定電流回路に入力
させ、この定電流回路から充電抵抗と充電用コンデンサ
とに定電流を流す。したがって、交流電源の電圧変動や
交流電源の高低切替えが行われる状態で使用した場合で
も、過電流保護ポイントを一定に保持できる。
According to the invention of claim 2, in addition to the function of claim 1, a control voltage or a drive voltage is input to a constant current circuit, and a constant current is caused to flow from this constant current circuit to a charging resistor and a charging capacitor. . Therefore, the overcurrent protection point can be kept constant even when the AC power supply is used in a state in which the voltage fluctuations or the AC power supply is switched between high and low.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 (第1実施例)本トランス結合型2次直流電源生成装置
は、図1に示す如く、基本的構成が従来例(図7)と同
じRCC方式の自励発振型(周波数変動型)とされ、か
つ過電流検出回路50を制御電圧Vcの発振周波数を利
用して間接的に過電流検出するように形成されている。
Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) As shown in FIG. 1, the transformer-coupled secondary DC power source generator is a self-excited oscillation type (frequency fluctuation type) of the same RCC method as the conventional example (FIG. 7). Moreover, the overcurrent detection circuit 50 is formed to indirectly detect the overcurrent by utilizing the oscillation frequency of the control voltage Vc.

【0018】なお、従来例(図7)と共通する部分につ
いては同一の符号を付しその説明は簡略又は省略する。
The same parts as those of the conventional example (FIG. 7) are designated by the same reference numerals, and the description thereof will be simplified or omitted.

【0019】図1において、補助巻線L12の正極側の
制御電圧Vcを発振生成するダイオードD10と抵抗R
10との間と、整流回路14の負極側との間には、周波
数検出方式の過電流検出回路50が設けられている。こ
の過電流検出回路50は、充電抵抗R51と充電用コン
デンサC51とを直列接続し、かつこの充電用コンデン
サC51に放電抵抗R52を並列接続して形成されてい
る。そして、充電抵抗R51と充電用コンデンサC51
との間と、MOS・FETからなる過電流保護用素子1
6の駆動端子(ゲート)とを電路で接続してある。
In FIG. 1, a diode D10 for oscillating and generating a control voltage Vc on the positive side of the auxiliary winding L12 and a resistor R are provided.
An overcurrent detection circuit 50 of a frequency detection method is provided between the output terminal 10 and the negative electrode side of the rectifier circuit 14. The overcurrent detection circuit 50 is formed by connecting a charging resistor R51 and a charging capacitor C51 in series, and connecting a discharging resistor R52 in parallel to the charging capacitor C51. Then, the charging resistor R51 and the charging capacitor C51
Between, and the overcurrent protection element 1 consisting of MOS FET
The drive terminal (gate) of 6 is connected by an electric path.

【0020】さて、スイッチング素子15に印加される
電圧と流れる電流の波形は、図2に示すようになる。す
なわち、2次直流電源回路30の負荷35が軽い場合
〔同(A)〕は、発振周波数f1(周期T1)が高い
(短い)が、負荷35が重くなる〔同(B)〕と、発振
周波数f2(周期T2)が低く(長く)なる。つまり、
制御電圧Vcの発振周波数f2(周期T2)が低く(長
く)なる。
The waveform of the voltage applied to the switching element 15 and the flowing current are as shown in FIG. That is, when the load 35 of the secondary DC power supply circuit 30 is light [same (A)], the oscillation frequency f1 (cycle T1) is high (short), but when the load 35 is heavy [same (B)], oscillation occurs. The frequency f2 (cycle T2) becomes low (long). That is,
The oscillation frequency f2 (cycle T2) of the control voltage Vc becomes low (long).

【0021】かくして、スイッチング素子15を保護す
るために必要な過電流検出値が図2(A),(B)に点
線で示す値であるとすれば、制御電圧Vcの発振周波数
fが図2(B)に示す周期T2よりもさらに長い周期
(T2+α)に相当する発振周波数(f2+α)になっ
たことを検出することによって、過電流検出値を間接的
に検出できる。
Thus, assuming that the overcurrent detection value required to protect the switching element 15 is the value shown by the dotted line in FIGS. 2A and 2B, the oscillation frequency f of the control voltage Vc is shown in FIG. The overcurrent detection value can be indirectly detected by detecting that the oscillation frequency (f2 + α) corresponds to a period (T2 + α) longer than the period T2 shown in (B).

【0022】ここに、充電抵抗R51と充電用コンデン
サC51の定時数(T)は、上記周期(T2+α)と等
しく選択設定されている。
Here, the fixed time (T) of the charging resistor R51 and the charging capacitor C51 is selected and set to be equal to the period (T2 + α).

【0023】かかる構成の実施例において、2次直流電
源回路30の負荷35が軽い場合は、スイッチング素子
15の電圧波形と電流波形とは図2(A)に示すように
発振周波数f1が高く周期T1が短い。したがって、発
振生成される制御電圧Vcの一部は充電抵抗R51と充
電用コンデンサC51とを通して流れるが、その周期
(T2)が設定周期(T2+α)よりも短いので、過電
流保護用素子16をON駆動するための設定電圧Vaは
確立されない。すなわち、過電流保護用素子16はOF
Fのままであるから、スイッチング素子15をON−O
FF制御して通常運転ができる。
In the embodiment having such a configuration, when the load 35 of the secondary DC power supply circuit 30 is light, the voltage waveform and the current waveform of the switching element 15 have a high oscillation frequency f1 as shown in FIG. T1 is short. Therefore, part of the oscillation-generated control voltage Vc flows through the charging resistor R51 and the charging capacitor C51, but its cycle (T2) is shorter than the set cycle (T2 + α), so the overcurrent protection element 16 is turned on. The set voltage Va for driving is not established. That is, the overcurrent protection element 16 is OF
Since it remains F, the switching element 15 is turned ON-O.
Normal operation can be performed by FF control.

【0024】ところが、負荷35が重くなって図2
(B)に示すように発振周波数f2が低く周期T2が長
くなり、さらに高い発振周波数(f2+α)で長い周期
(T2+α)となると、充電用コンデンサC51にセッ
トした設定電圧Vaが確立されるから、過電流保護用素
子16がONとなる。したがって、スイッチング素子1
5をOFFできるから、スイッチング素子15を過電流
から保護できる。
However, since the load 35 becomes heavy,
As shown in (B), when the oscillation frequency f2 is low, the cycle T2 is long, and when the oscillation frequency f2 is higher and the cycle is longer (T2 + α), the set voltage Va set in the charging capacitor C51 is established. The overcurrent protection element 16 is turned on. Therefore, the switching element 1
Since 5 can be turned off, the switching element 15 can be protected from overcurrent.

【0025】なお、充電用コンデンサC51に蓄積され
た電荷は、制御電圧Vcが消失したときに、放電抵抗R
52を通して放電される。
The charge accumulated in the charging capacitor C51 is discharged by the discharge resistor R when the control voltage Vc disappears.
It is discharged through 52.

【0026】しかして、この実施例によれば、過電流検
出回路50を、トランス20の補助巻線L12の正極側
と整流回路14の負極側との間に直列接続された充電抵
抗R51および充電用コンデンサC51と、この充電用
コンデンサC51と並列でかつ充電抵抗R51と直列に
接続された放電抵抗R52とから形成し、かつ充電抵抗
R51と充電用コンデンサC51との間と過電流保護用
素子16の駆動端子(ゲート)とを電路を介して接続し
た構成とし、制御電圧Vcの発振周波数から過電流を間
接的に検出するように形成されているので、スイッチン
グ素子15と直列接続した抵抗R50からなる従来例
(図7)に比較して大容量で大型の抵抗(R50)を一
掃できるから、その過電流保護機能を保障しながら装置
の軽量小型化とコスト低減を達成することができる。
Therefore, according to this embodiment, the overcurrent detection circuit 50 is connected in series between the positive side of the auxiliary winding L12 of the transformer 20 and the negative side of the rectifier circuit 14 and the charging resistor R51 and the charging. Capacitor C51 and a discharging resistor R52 connected in parallel with the charging capacitor C51 and in series with the charging resistor R51, and between the charging resistor R51 and the charging capacitor C51 and the overcurrent protection element 16 Drive terminal (gate) of the control voltage Vc is connected via an electric path, and the overcurrent is indirectly detected from the oscillation frequency of the control voltage Vc. Compared to the conventional example (Fig. 7), a large capacity and large resistance (R50) can be wiped out, so the device is lightweight and compact while maintaining its overcurrent protection function. It is possible to achieve a reduction.

【0027】(第2実施例)この第2実施例は、図3お
よび図4に示される。図3において、このトランス結合
型2次直流電源生成装置は、基本的構成が従来例(図
8)と同じ制御回路40をPWM・ICから形成した周
波数固定型とされ、かつ過電流検出回路50(R51,
C51,R52)は第1実施例の場合と同じ構成とされ
ている。
(Second Embodiment) This second embodiment is shown in FIGS. 3 and 4. In FIG. 3, the transformer-coupled secondary DC power supply generator is of a fixed frequency type in which the same basic control circuit 40 as that of the conventional example (FIG. 8) is formed from a PWM IC, and an overcurrent detection circuit 50 is provided. (R51,
C51, R52) have the same structure as in the first embodiment.

【0028】すなわち、この周波数固定型では、負荷3
5が軽い場合はスイッチング素子15に流れる電流とそ
の電圧の波形は図4(A)に示すようになり、その発振
周波数fが一定で通電時間T1が短い。一方、負荷35
が重い場合の電圧・電流波形は同(B)に示すように発
振周波数fが同一で通電時間T2が長くなる。つまり、
補助巻線L12から発振生成される制御回路40の駆動
電圧Vdの発振時間は、スイッチング素子15に流れる
電流が小さければ短く(T1)、大きければ長く(T
2)なる。
That is, in this fixed frequency type, the load 3
When 5 is light, the waveforms of the current and its voltage flowing through the switching element 15 are as shown in FIG. 4 (A), and the oscillation frequency f is constant and the energization time T1 is short. On the other hand, the load 35
When the voltage is heavy, the voltage / current waveform has the same oscillating frequency f as shown in FIG. That is,
The oscillation time of the drive voltage Vd of the control circuit 40 generated by oscillation from the auxiliary winding L12 is short (T1) when the current flowing through the switching element 15 is small, and long (T1) when it is large.
2)

【0029】したがって、充電抵抗R51と充電用コン
デンサC51との時定数を、図4(B)に示す通電時間
T2よりもさらに長い時間(T2+α)となるように選
択設定しておけば、図4に点線で示した過電流検出値を
通電時間として検出できる。
Therefore, if the time constants of the charging resistor R51 and the charging capacitor C51 are selectively set so as to be a time (T2 + α) longer than the energization time T2 shown in FIG. The overcurrent detection value indicated by the dotted line can be detected as the energization time.

【0030】なお、この第2実施例の場合の時定数(R
51×C51)は、第1実施例の場合の時定数(R51
×C51)とは同一符号を用いたがその絶対値は異な
る。
The time constant (R
51 × C51) is the time constant (R51 in the case of the first embodiment.
The same code is used as that of (XC51), but its absolute value is different.

【0031】しかして、この第2実施例の場合も、第1
実施例の場合と同様な作用効果を奏することができる。
Even in the case of the second embodiment, however, the first
It is possible to obtain the same effect as that of the embodiment.

【0032】(第3実施例)第3実施例は、基本的構成
が第1実施例(図1)の場合と同じとされ、かつ過電流
検出回路50に定電流を供給する定電流回路60を設
け、制御電圧Vcの変動があっても過電流保護動作ポイ
ントを一定に保持できるように構成してある。
(Third Embodiment) The third embodiment has the same basic configuration as that of the first embodiment (FIG. 1) and supplies a constant current to the overcurrent detection circuit 50. Is provided so that the overcurrent protection operation point can be kept constant even if the control voltage Vc changes.

【0033】すなわち、第1実施例(図1)において、
交流電源11がAC100Vで所定の制御電圧Vcが生
成された場合、コンデンサC51の充電電圧は図6
(A)に実線で示すカーブで立上るから、設定電圧Va
となるまでの時間は図6(A)に示す「T」となる。
That is, in the first embodiment (FIG. 1),
When the AC power supply 11 is AC100V and the predetermined control voltage Vc is generated, the charging voltage of the capacitor C51 is as shown in FIG.
Since the curve rises with a solid line in (A), the set voltage Va
The time until it becomes is "T" shown in FIG.

【0034】ここに、交流電源11がAC100Vから
例えばAC85Vに電圧降下した場合、制御電圧はトラ
ンス20の特性からして所定の制御電圧Vcよりも低圧
の「Vc2」となる。この制御電圧Vc2では同(A)
に点線で示すカーブで立上る。したがって、同一の設定
電圧Vaに到達する迄の時間は「T2」となり、所定時
間Tよりも長くなってしまう。一方、例えば、AC13
8Vと電圧上昇すると、制御電圧Vc1が制御電圧Vc
よりも高くなるから1点鎖線で示すカーブで立上るため
に所定時間Tよりも短い時間T1で設定電圧Vaに到達
する。
When the AC power supply 11 drops in voltage from AC100V to AC85V, for example, the control voltage becomes "Vc2" which is lower than the predetermined control voltage Vc due to the characteristics of the transformer 20. This control voltage Vc2 is the same (A)
It rises in the curve shown by the dotted line. Therefore, the time required to reach the same set voltage Va is "T2", which is longer than the predetermined time T. On the other hand, for example, AC13
When the voltage rises to 8V, the control voltage Vc1 changes to the control voltage Vc.
Therefore, the voltage reaches the set voltage Va in a time T1 shorter than the predetermined time T in order to rise in the curve indicated by the one-dot chain line.

【0035】つまり、入力電圧(交流電源→制御電圧)
が変動すると、過電流保護動作ポイントが変化してしま
うので、適正な過電流保護ができなくなってしまう。こ
のことは、充電回路(R51,C51)へ流れる電流
が、制御電圧Vc1,Vc,Vc2に相応して図6
(B)に示すIc1,Ic,Ic2と変化するからであ
る。
That is, the input voltage (AC power supply → control voltage)
If f changes, the overcurrent protection operation point changes, and appropriate overcurrent protection cannot be performed. This means that the current flowing through the charging circuit (R51, C51) corresponds to the control voltages Vc1, Vc, Vc2 shown in FIG.
This is because it changes to Ic1, Ic, and Ic2 shown in (B).

【0036】かくして、この第3実施例では、制御電圧
Vcの時間管理により検出すればよいことから、定電流
回路60によって制御電圧Vcの高低変動に拘わらず充
電回路(R51,C51)へ一定電流(Ic)を流すこ
とにしている。
Thus, in the third embodiment, since the control voltage Vc may be detected by the time management, the constant current circuit 60 supplies the constant current to the charging circuit (R51, C51) regardless of the fluctuation of the control voltage Vc. (Ic) is supposed to flow.

【0037】しかして、この第3実施例によれば、第1
実施例の場合と同じ作用効果を奏することができる他、
さらに交流電源11に電圧変動があっても、さらにまた
例えば交流電源11をAC100VからAC200Vに
切替えて使用しても、適正な通電流保護を確実かつ安定
して行え、適用性を著しく拡大できる。
Therefore, according to the third embodiment, the first
In addition to the same effects as those of the embodiment,
Further, even if the AC power supply 11 has a voltage fluctuation, and even if the AC power supply 11 is switched from AC100V to AC200V for use, proper current protection can be surely and stably performed, and the applicability can be remarkably expanded.

【0038】なお、この第3実施例は、第1実施例(図
1)に定電流回路60を設けた場合とされているが、第
2実施例(図3)に定電流回路60を設けても同じ作用
効果を得られる。
In the third embodiment, the constant current circuit 60 is provided in the first embodiment (FIG. 1), but the constant current circuit 60 is provided in the second embodiment (FIG. 3). However, the same effect can be obtained.

【0039】[0039]

【発明の効果】請求項1の発明によれば、過電流検出回
路を、トランスの補助巻線の正極側と整流回路の負極側
との間に直列接続された充電抵抗および充電用コンデン
サと、この充電用コンデンサと並列でかつ充電抵抗と直
列に接続された放電抵抗とから形成し、かつ充電抵抗と
充電用コンデンサとの間と過電流保護用素子の駆動端子
とを接続した構成とし、周波数変動型の場合は発振周波
数から,周波数固定型の場合は通電時間から過電流を間
接的に検出する構成とされているので、スイッチング素
子と直列接続した抵抗からなる従来例に比較して大容量
で大型の抵抗を一掃できるから、その過電流保護機能を
保障しながら装置の軽量小型化とコスト低減を達成する
ことができる。
According to the invention of claim 1, the overcurrent detection circuit is connected in series between the positive side of the auxiliary winding of the transformer and the negative side of the rectifying circuit, and a charging resistor and a charging capacitor. The charging capacitor is formed in parallel with the discharging resistor connected in series with the charging resistor, and the driving resistor and the driving terminal of the overcurrent protection element are connected between the charging resistor and the charging capacitor. Since the overcurrent is detected indirectly from the oscillation frequency in the variable type and from the energization time in the fixed frequency type, it has a larger capacity than the conventional example consisting of a resistor connected in series with a switching element. Since the large resistance can be wiped out with, it is possible to reduce the size and weight of the device while ensuring the overcurrent protection function.

【0040】また、請求項2の発明によれば、請求項1
の効果に加え、充電抵抗と充電用コンデンサとに定電流
回路から一定電流を流すものと形成しているので、交流
電源が電圧変動しても、また交流電源電圧を高低に切替
えて使用する場合でも確実な過電流保護を保障できるか
ら、適用性を著しく拡大できる。
According to the invention of claim 2, claim 1
In addition to the above effect, a constant current is made to flow from the constant current circuit to the charging resistor and the charging capacitor, so even if the AC power supply voltage changes, the AC power supply voltage can be switched between high and low. However, since the reliable overcurrent protection can be guaranteed, the applicability can be significantly expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】同じく、動作を説明するためのタイミングチャ
ートである。
FIG. 2 is also a timing chart for explaining the operation.

【図3】本第2実施例を示す回路図である。FIG. 3 is a circuit diagram showing a second embodiment.

【図4】同じく、動作を説明するためのタイミングチャ
ートである。
FIG. 4 is also a timing chart for explaining the operation.

【図5】本第3実施例を示す回路図である。FIG. 5 is a circuit diagram showing the third embodiment.

【図6】同じく、第1および第2実施例の改善余地例と
の比較において動作を説明するための図である。
FIG. 6 is also a diagram for explaining the operation in comparison with the examples of the room for improvement of the first and second embodiments.

【図7】周波数変動型の従来例を示す回路図である。FIG. 7 is a circuit diagram showing a conventional frequency variation type example.

【図8】周波数固定型の従来例を示す回路図である。FIG. 8 is a circuit diagram showing a conventional fixed frequency type example.

【符号の説明】[Explanation of symbols]

10 1次直流電源回路 11 交流電源 12 スイッチ 13 ノイズフィルター 14 整流回路 15 スイッチング素子 16 過電流保護用素子 20 トランス 30 2次直流電源回路 35 負荷 40 制御回路 45 安定化回路 46 フィードバック信号発生回路 50 過電流検出回路 60 定電流回路 C10 平滑コンデンサ C51 充電用コンデンサ L12 補助巻線 R51 充電抵抗 R52 放電抵抗 Va 設定電圧 Vc 制御電圧 Vd 駆動電圧 10 Primary DC power supply circuit 11 AC power supply 12 Switch 13 Noise filter 14 Rectifier circuit 15 Switching element 16 Overcurrent protection element 20 Transformer 30 Secondary DC power supply circuit 35 Load 40 Control circuit 45 Stabilization circuit 46 Feedback signal generation circuit 50 Overcurrent Current detection circuit 60 Constant current circuit C10 Smoothing capacitor C51 Charging capacitor L12 Auxiliary winding R51 Charging resistance R52 Discharging resistance Va Set voltage Vc Control voltage Vd Driving voltage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 整流回路,平滑コンデンサ,スイッチン
グ素子,制御回路を含む1次直流電源回路と、安定化回
路を含む2次直流電源回路とをトランスを介して接続結
合し、安定化回路から制御回路へフィードバック信号を
加えつつスイッチング素子をON−OFF制御して2次
直流電源を生成するように形成され、かつ過電流検出回
路で過電流が検出されたときに過電流保護用素子を介し
て該スイッチング素子をOFFさせて過電流保護するよ
うに形成されたトランス結合型2次直流電源生成装置に
おいて、 前記過電流検出回路を、前記トランスの補助巻線の正極
側と前記整流回路の負極側との間に直列接続された充電
抵抗および充電用コンデンサと、この充電用コンデンサ
と並列でかつ充電抵抗と直列に接続された放電抵抗とか
ら形成し、かつ充電抵抗と充電用コンデンサとの間と前
記過電流保護用素子の駆動端子とを接続したことを特徴
とするトランス結合型2次直流電源生成装置。
1. A primary DC power supply circuit including a rectifying circuit, a smoothing capacitor, a switching element, and a control circuit, and a secondary DC power supply circuit including a stabilizing circuit are connected and coupled via a transformer, and control is performed from the stabilizing circuit. It is formed so as to generate a secondary DC power source by ON / OFF controlling the switching element while applying a feedback signal to the circuit, and through an overcurrent protection element when an overcurrent is detected by the overcurrent detection circuit. A transformer-coupled secondary DC power supply generator formed to turn off the switching element to protect against overcurrent, wherein the overcurrent detection circuit includes a positive side of an auxiliary winding of the transformer and a negative side of the rectifier circuit. A charging resistor and a charging capacitor connected in series between the charging resistor and a charging resistor, and a discharging resistor connected in parallel with the charging capacitor and in series with the charging resistor. And trans-coupled secondary DC power generating apparatus being characterized in that connecting the drive terminal of the overcurrent protection element and between the charging capacitor and the charging resistor.
【請求項2】 前記トランスの補助巻線から生成された
電圧を入力としかつ前記充電抵抗と充電用コンデンサと
に流す電流を一定とする定電流回路を設けたことを特徴
とする請求項1のトランス結合型2次直流電源生成装
置。
2. A constant current circuit for inputting a voltage generated from the auxiliary winding of the transformer and for making a current flowing through the charging resistor and the charging capacitor constant, is provided. Transformer-coupled secondary DC power generator.
JP18153293A 1993-03-26 1993-07-22 Transformer-coupled secondary dc power-supply forming device Pending JPH06335241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18153293A JPH06335241A (en) 1993-03-26 1993-07-22 Transformer-coupled secondary dc power-supply forming device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6781293 1993-03-26
JP5-67812 1993-03-26
JP18153293A JPH06335241A (en) 1993-03-26 1993-07-22 Transformer-coupled secondary dc power-supply forming device

Publications (1)

Publication Number Publication Date
JPH06335241A true JPH06335241A (en) 1994-12-02

Family

ID=26409018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18153293A Pending JPH06335241A (en) 1993-03-26 1993-07-22 Transformer-coupled secondary dc power-supply forming device

Country Status (1)

Country Link
JP (1) JPH06335241A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067540A (en) * 2006-09-08 2008-03-21 Murata Mfg Co Ltd Dc-dc converter
US20130043792A1 (en) * 2011-08-17 2013-02-21 Express Imaging Systems, Llc Electrostatic discharge protection for luminaire
US8872964B2 (en) 2009-05-20 2014-10-28 Express Imaging Systems, Llc Long-range motion detection for illumination control
US8878440B2 (en) 2012-08-28 2014-11-04 Express Imaging Systems, Llc Luminaire with atmospheric electrical activity detection and visual alert capabilities
US8896215B2 (en) 2012-09-05 2014-11-25 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US8922124B2 (en) 2011-11-18 2014-12-30 Express Imaging Systems, Llc Adjustable output solid-state lamp with security features
US8926139B2 (en) 2009-05-01 2015-01-06 Express Imaging Systems, Llc Gas-discharge lamp replacement with passive cooling
US8987992B2 (en) 2009-05-20 2015-03-24 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination
US9125261B2 (en) 2008-11-17 2015-09-01 Express Imaging Systems, Llc Electronic control to regulate power for solid-state lighting and methods thereof
US9131552B2 (en) 2012-07-25 2015-09-08 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US9204523B2 (en) 2012-05-02 2015-12-01 Express Imaging Systems, Llc Remotely adjustable solid-state lamp
US9210751B2 (en) 2012-05-01 2015-12-08 Express Imaging Systems, Llc Solid state lighting, drive circuit and method of driving same
US9210759B2 (en) 2012-11-19 2015-12-08 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9288873B2 (en) 2013-02-13 2016-03-15 Express Imaging Systems, Llc Systems, methods, and apparatuses for using a high current switching device as a logic level sensor
US9301365B2 (en) 2012-11-07 2016-03-29 Express Imaging Systems, Llc Luminaire with switch-mode converter power monitoring
US9360198B2 (en) 2011-12-06 2016-06-07 Express Imaging Systems, Llc Adjustable output solid-state lighting device
US9414449B2 (en) 2013-11-18 2016-08-09 Express Imaging Systems, Llc High efficiency power controller for luminaire
US9445485B2 (en) 2014-10-24 2016-09-13 Express Imaging Systems, Llc Detection and correction of faulty photo controls in outdoor luminaires
US9462662B1 (en) 2015-03-24 2016-10-04 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9466443B2 (en) 2013-07-24 2016-10-11 Express Imaging Systems, Llc Photocontrol for luminaire consumes very low power
US9497393B2 (en) 2012-03-02 2016-11-15 Express Imaging Systems, Llc Systems and methods that employ object recognition
US9538612B1 (en) 2015-09-03 2017-01-03 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9572230B2 (en) 2014-09-30 2017-02-14 Express Imaging Systems, Llc Centralized control of area lighting hours of illumination
US9924582B2 (en) 2016-04-26 2018-03-20 Express Imaging Systems, Llc Luminaire dimming module uses 3 contact NEMA photocontrol socket
US9985429B2 (en) 2016-09-21 2018-05-29 Express Imaging Systems, Llc Inrush current limiter circuit
US10098212B2 (en) 2017-02-14 2018-10-09 Express Imaging Systems, Llc Systems and methods for controlling outdoor luminaire wireless network using smart appliance
US10219360B2 (en) 2017-04-03 2019-02-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10230296B2 (en) 2016-09-21 2019-03-12 Express Imaging Systems, Llc Output ripple reduction for power converters
US10568191B2 (en) 2017-04-03 2020-02-18 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11212887B2 (en) 2019-11-04 2021-12-28 Express Imaging Systems, Llc Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics
US11234304B2 (en) 2019-05-24 2022-01-25 Express Imaging Systems, Llc Photocontroller to control operation of a luminaire having a dimming line
US11317497B2 (en) 2019-06-20 2022-04-26 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067540A (en) * 2006-09-08 2008-03-21 Murata Mfg Co Ltd Dc-dc converter
US9967933B2 (en) 2008-11-17 2018-05-08 Express Imaging Systems, Llc Electronic control to regulate power for solid-state lighting and methods thereof
US9125261B2 (en) 2008-11-17 2015-09-01 Express Imaging Systems, Llc Electronic control to regulate power for solid-state lighting and methods thereof
US8926139B2 (en) 2009-05-01 2015-01-06 Express Imaging Systems, Llc Gas-discharge lamp replacement with passive cooling
US8872964B2 (en) 2009-05-20 2014-10-28 Express Imaging Systems, Llc Long-range motion detection for illumination control
US8987992B2 (en) 2009-05-20 2015-03-24 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination
US8901825B2 (en) 2011-04-12 2014-12-02 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US9713228B2 (en) 2011-04-12 2017-07-18 Express Imaging Systems, Llc Apparatus and method of energy efficient illumination using received signals
US20130043792A1 (en) * 2011-08-17 2013-02-21 Express Imaging Systems, Llc Electrostatic discharge protection for luminaire
US8610358B2 (en) * 2011-08-17 2013-12-17 Express Imaging Systems, Llc Electrostatic discharge protection for luminaire
US8922124B2 (en) 2011-11-18 2014-12-30 Express Imaging Systems, Llc Adjustable output solid-state lamp with security features
US9360198B2 (en) 2011-12-06 2016-06-07 Express Imaging Systems, Llc Adjustable output solid-state lighting device
US9497393B2 (en) 2012-03-02 2016-11-15 Express Imaging Systems, Llc Systems and methods that employ object recognition
US9210751B2 (en) 2012-05-01 2015-12-08 Express Imaging Systems, Llc Solid state lighting, drive circuit and method of driving same
US9204523B2 (en) 2012-05-02 2015-12-01 Express Imaging Systems, Llc Remotely adjustable solid-state lamp
US9801248B2 (en) 2012-07-25 2017-10-24 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US9131552B2 (en) 2012-07-25 2015-09-08 Express Imaging Systems, Llc Apparatus and method of operating a luminaire
US8878440B2 (en) 2012-08-28 2014-11-04 Express Imaging Systems, Llc Luminaire with atmospheric electrical activity detection and visual alert capabilities
US8896215B2 (en) 2012-09-05 2014-11-25 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US9693433B2 (en) 2012-09-05 2017-06-27 Express Imaging Systems, Llc Apparatus and method for schedule based operation of a luminaire
US9301365B2 (en) 2012-11-07 2016-03-29 Express Imaging Systems, Llc Luminaire with switch-mode converter power monitoring
US9433062B2 (en) 2012-11-19 2016-08-30 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9210759B2 (en) 2012-11-19 2015-12-08 Express Imaging Systems, Llc Luminaire with ambient sensing and autonomous control capabilities
US9288873B2 (en) 2013-02-13 2016-03-15 Express Imaging Systems, Llc Systems, methods, and apparatuses for using a high current switching device as a logic level sensor
US9466443B2 (en) 2013-07-24 2016-10-11 Express Imaging Systems, Llc Photocontrol for luminaire consumes very low power
US9781797B2 (en) 2013-11-18 2017-10-03 Express Imaging Systems, Llc High efficiency power controller for luminaire
US9414449B2 (en) 2013-11-18 2016-08-09 Express Imaging Systems, Llc High efficiency power controller for luminaire
US9572230B2 (en) 2014-09-30 2017-02-14 Express Imaging Systems, Llc Centralized control of area lighting hours of illumination
US9445485B2 (en) 2014-10-24 2016-09-13 Express Imaging Systems, Llc Detection and correction of faulty photo controls in outdoor luminaires
US9462662B1 (en) 2015-03-24 2016-10-04 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9538612B1 (en) 2015-09-03 2017-01-03 Express Imaging Systems, Llc Low power photocontrol for luminaire
US9924582B2 (en) 2016-04-26 2018-03-20 Express Imaging Systems, Llc Luminaire dimming module uses 3 contact NEMA photocontrol socket
US10230296B2 (en) 2016-09-21 2019-03-12 Express Imaging Systems, Llc Output ripple reduction for power converters
US9985429B2 (en) 2016-09-21 2018-05-29 Express Imaging Systems, Llc Inrush current limiter circuit
US10098212B2 (en) 2017-02-14 2018-10-09 Express Imaging Systems, Llc Systems and methods for controlling outdoor luminaire wireless network using smart appliance
US10219360B2 (en) 2017-04-03 2019-02-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10390414B2 (en) 2017-04-03 2019-08-20 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10568191B2 (en) 2017-04-03 2020-02-18 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US10904992B2 (en) 2017-04-03 2021-01-26 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11375599B2 (en) 2017-04-03 2022-06-28 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11653436B2 (en) 2017-04-03 2023-05-16 Express Imaging Systems, Llc Systems and methods for outdoor luminaire wireless control
US11234304B2 (en) 2019-05-24 2022-01-25 Express Imaging Systems, Llc Photocontroller to control operation of a luminaire having a dimming line
US11317497B2 (en) 2019-06-20 2022-04-26 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp
US11765805B2 (en) 2019-06-20 2023-09-19 Express Imaging Systems, Llc Photocontroller and/or lamp with photocontrols to control operation of lamp
US11212887B2 (en) 2019-11-04 2021-12-28 Express Imaging Systems, Llc Light having selectively adjustable sets of solid state light sources, circuit and method of operation thereof, to provide variable output characteristics

Similar Documents

Publication Publication Date Title
JPH06335241A (en) Transformer-coupled secondary dc power-supply forming device
JP3707409B2 (en) Switching power supply
JP4682647B2 (en) Switching power supply
JP4254884B2 (en) Power factor correction circuit
JP6424644B2 (en) Semiconductor device for power control
JP2008312359A (en) Switching power supply device and regulation circuit
JP2008289336A (en) Switching power supply apparatus
JPH11122925A (en) Self-oscillating switching power supply
KR100822515B1 (en) Power supply
JP3492882B2 (en) Switching power supply
JPH11235036A (en) Self-excited oscillation switching powder supply
KR100241401B1 (en) A spare electric power source supply circuit
JPH11122926A (en) Self-oscillating switching power supply
JPH11275857A (en) Switching power source circuit
JP3425403B2 (en) Semiconductor device and switching power supply device using this semiconductor device
JPH09117134A (en) Switching power supply
JPH11332220A (en) Dc power supply circuit
JP2006203981A (en) Intermittent protection circuit for power supply device
JPH11122924A (en) Self-oscillating switching power supply
JP4497982B2 (en) Power circuit
KR100226697B1 (en) An over-load protection apparatus in a smps
JPH0315423B2 (en)
JP2001178126A (en) Switching power supply
JPH03207263A (en) Switching power supply
JP2002374671A (en) Overcurrent protective circuit for separately excited converter