JPH01267951A - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery

Info

Publication number
JPH01267951A
JPH01267951A JP63097303A JP9730388A JPH01267951A JP H01267951 A JPH01267951 A JP H01267951A JP 63097303 A JP63097303 A JP 63097303A JP 9730388 A JP9730388 A JP 9730388A JP H01267951 A JPH01267951 A JP H01267951A
Authority
JP
Japan
Prior art keywords
separator
battery
air permeability
lithium ions
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63097303A
Other languages
Japanese (ja)
Other versions
JP2792859B2 (en
Inventor
Satoshi Ubukawa
生川 訓
Minoru Fujimoto
実 藤本
Hiroshi Shimozono
下園 浩史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14188721&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01267951(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63097303A priority Critical patent/JP2792859B2/en
Publication of JPH01267951A publication Critical patent/JPH01267951A/en
Application granted granted Critical
Publication of JP2792859B2 publication Critical patent/JP2792859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the discharging characteristic at low temps. by using a fine porosity film of 10-40mum thick with an air permeability of 50-350sec/100 c.sheet, as a separator to be interposed between a positive and a negative electrode. CONSTITUTION:Use of a fine porosity film with merely small thickness as a separator will shorten the motion distance of lithium ions at discharging, but does not improve the discharge characteristic at low temps. satisfactorily. This is due to easiness for lithium ions to move in the fine porosity film. Because this easiness derives majorly from permeability of the film, its thickness shall be ranging 10 thru 40mum so as to provide a permeability of 50-350sec/100cc/ sheet. Thereby the motion distance of lithium ions and easiness in motion can be improved mutually with good effectiveness, and the discharge characteristic at low temps. be enhanced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム、ナトリウムなどの軽金属を活物質と
する帯状負極と、金属の酸化物、硫化物あるいはハロゲ
ン化物などを活物質とする帯状正極との間に、セパレー
タを介在し、これらを捲回してなる渦巻電極体を備えた
非水電解液電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention relates to a strip-shaped negative electrode using a light metal such as lithium or sodium as an active material, and a strip-shaped negative electrode using a metal oxide, sulfide, or halide as an active material. The present invention relates to a non-aqueous electrolyte battery including a spiral electrode body formed by winding the separator with a separator interposed between the positive electrode and the positive electrode.

(ロ)従来の技術 7池から大きな電流を取り出そうとする場合には、一般
にTL極体を渦巻状として、正、負極間のr1向面積を
大きくする方法がとられる。しかし、有機電解液を用い
る非水電解液電池では、電解液の電気伝導度が比較的低
いので対向面積を大きくするだけでは十分ではなく、電
極間距離をできるだけ小さくする必要がある。つまり、
セパレータの厚みを薄くする必要がある。このような構
造は大15流を取り出すのに都合がよいが、セパレータ
に不織布などを用いた場合には、外部短絡を起こし過大
電流が流れると、短絡電流によるジュール熱で電池が異
常に高温になることがある。
(B) Conventional Technology 7 When attempting to extract a large current from a cell, a method is generally used in which the TL pole body is formed into a spiral shape to increase the area in the r1 direction between the positive and negative electrodes. However, in a non-aqueous electrolyte battery using an organic electrolyte, the electrical conductivity of the electrolyte is relatively low, so simply increasing the facing area is not sufficient, and it is necessary to reduce the distance between the electrodes as much as possible. In other words,
It is necessary to reduce the thickness of the separator. Such a structure is convenient for extracting large currents, but if a non-woven fabric or the like is used for the separator, if an external short circuit occurs and an excessive current flows, the Joule heat caused by the short circuit current will cause the battery to reach an abnormally high temperature. It may happen.

特開昭60−23954号公報では、上記外部短絡時に
於ける安全性を確保するために、セパレータに微多孔膜
を用いることが提案きれている。このようにセパレータ
に微多孔膜を用いると、外部短絡が起きた場合において
も、短絡を流によるジュール熱で電池温度がL昇すると
、微多孔膜の微細孔が溶融物で閉室されてイオンの移動
を阻止できる。
Japanese Unexamined Patent Publication No. 60-23954 proposes the use of a microporous membrane as a separator in order to ensure safety in the event of an external short circuit. If a microporous membrane is used as a separator in this way, even if an external short circuit occurs, if the battery temperature rises by L due to the Joule heat generated by the flow across the short circuit, the micropores of the microporous membrane will be closed by the melt, and ions will be released. Movement can be prevented.

これにより、電池内の電流が流れなくなるので、電池温
度の上昇が抑制きれて、セパレータに不織布を用いた場
合のように電池が異常に高温になることが防止できる。
This prevents current from flowing within the battery, suppressing the rise in battery temperature, and preventing the battery from becoming abnormally high as would be the case when a nonwoven fabric is used for the separator.

また、特開昭60−23954号公報では実施例におい
てポリプロピレラ製とポリエチレン製の2種類の微多孔
膜が記載されているが、ポリエチレンの方が融点が低い
ため、電池温度の上昇が小さくより安全である。
In addition, in JP-A-60-23954, two types of microporous membranes, one made of polypropylera and the other made of polyethylene, are described in the examples, but since polyethylene has a lower melting point, the rise in battery temperature is smaller. It's safe.

ところが、上記微多孔膜を用いた電池は室温(10℃以
上)で使用する場合には問題はないが、0°C以下の温
度で、しかも大電流を取り出す場合には、温度低下に基
づき電解液の電気伝導度が低下し、T!!、極間の抵抗
が増大して電池の放電特性を低下させる。
However, although there is no problem with batteries using the above-mentioned microporous membrane when used at room temperature (above 10 degrees Celsius), when a large current is extracted at temperatures below 0 degrees Celsius, electrolysis may occur due to the temperature drop. The electrical conductivity of the liquid decreases and T! ! , the resistance between the electrodes increases and the discharge characteristics of the battery deteriorate.

(ハ) 発明が解決しようとする課題 本発明は有機電解液を用いる非水電解液の、低温作動時
における大電流放電の特性を改善しようとするものであ
る。
(c) Problems to be Solved by the Invention The present invention aims to improve the characteristics of large current discharge during low temperature operation of a non-aqueous electrolyte using an organic electrolyte.

(ニ)  課題を解決するための手段 本発明の非水電解液電池は、軽金属を活物質とする帯状
負極と、帯状正極との間に、微多孔膜からなるセパレー
タを介在し、これら正、負極及びセパレータを捲回した
渦巻状電極体を備え、前記微多孔膜の透気度を50〜3
50secl100cc・枚とし、膜厚を10〜40ν
mとしたものである。
(d) Means for Solving the Problems The non-aqueous electrolyte battery of the present invention includes a separator made of a microporous membrane interposed between a strip-shaped negative electrode containing a light metal as an active material and a strip-shaped positive electrode. The microporous membrane has an air permeability of 50 to 3.
50sec/100cc/sheet, film thickness 10~40ν
m.

(ポ) 作用 有機電解液を用いるこの種電池において、大電流を取り
出す方法としては、上述したように電極体を渦巻状にし
て正、負極間の対向面積を大きくすること、及びセパレ
ータを薄くして正、負極間の距離を短くすることが挙げ
られる。しかし、セパレータとして単に膜厚の薄い微多
孔膜を用いるだけでは、放電時のリチウムイオンの移動
距離が短くなるものの、低温での放電特性はf分に改善
されない、これは微多孔膜内でのリチウムイオンの移動
のし易さに起因していると考えられる。この膜内におけ
るリチウムイオンの移動の容易きは、微多孔膜の透気度
に大きく起因することが、本発明者の検討により判明し
た。つまり微多孔膜の膜厚をlO〜401++11とし
、加えて、透気度50〜350sec7100cc・枚
と規定することにより、リチウムイオンの移動距離及び
移動の容易さが、相互に効率よく改善でき、低温での放
電特性を向上させることが可能となる。
(Po) In this type of battery that uses a working organic electrolyte, the method of extracting a large current is to make the electrode body spiral to increase the facing area between the positive and negative electrodes, and to make the separator thinner. An example of this is to shorten the distance between the positive and negative electrodes. However, if a thin microporous membrane is simply used as a separator, although the distance traveled by lithium ions during discharge becomes shorter, the discharge characteristics at low temperatures are not improved by f. This is thought to be due to the ease of movement of lithium ions. The inventor's studies have revealed that the ease with which lithium ions move within the membrane is largely due to the air permeability of the microporous membrane. In other words, by setting the film thickness of the microporous membrane to 1O~401++11 and specifying the air permeability to 50~350sec/7100cc/sheet, the distance and ease of movement of lithium ions can be mutually and efficiently improved, and the low temperature It becomes possible to improve the discharge characteristics at

(へ) 実施例 二酸化マンガン、導電剤及び結着剤としてのフッ素樹脂
を85:10:5の重量比で混合しペースト状としたも
のを、ステンレス製のラス板に塗着、乾燥した後、圧延
を数回骨なって所定の厚みにし、これを熱処理して帯状
正極°を得た。
(F) Example Manganese dioxide, a conductive agent, and a fluororesin as a binder were mixed in a weight ratio of 85:10:5 to form a paste, which was applied to a stainless steel lath plate and dried. The material was rolled several times to a predetermined thickness, and then heat treated to obtain a strip-shaped positive electrode.

また、セパレータとしてポリエチレン含有量が99重祉
%以上であり、膜厚が25un+、透気度が170se
c/100cc・枚の微多孔膜を用い、このセパレータ
で帯状リチウム負極の両面を覆ったものを用意する。
In addition, as a separator, the polyethylene content is 99% or more, the film thickness is 25un+, and the air permeability is 170se.
A microporous membrane of c/100 cc sheet is used, and both sides of a strip-shaped lithium negative electrode are covered with this separator.

次いで、セパレータで覆ったリチウム負極に前記正極を
重ねて、これらを巻き取り渦巻状電極体を構成した。こ
の渦巻電極体を外装缶に挿入した後、プロピレンカーボ
ネートと、1.3−ジオキソランの混合溶媒に、過塩素
酸リチウムを溶解してなる電解液を注液し、封口して本
発明電池Aを作製した。
Next, the positive electrode was stacked on a lithium negative electrode covered with a separator, and these were wound up to form a spiral electrode body. After inserting this spiral electrode body into the outer can, an electrolytic solution prepared by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and 1,3-dioxolane is injected, and the cap is sealed to form the battery A of the present invention. Created.

第2図は、上記電池の縦断面図である。第2図において
、(1〉は正極、(2)は負極、(3〉はセパレータ、
(4)は外装缶、(5)は封口蓋、〈6)は絶縁バッキ
ング、(7)は負極リード、(8)は正極リード、(9
)は缶底絶縁板、(10)は絶縁部材である。
FIG. 2 is a longitudinal sectional view of the battery. In Figure 2, (1> is a positive electrode, (2) is a negative electrode, (3> is a separator,
(4) is the outer can, (5) is the sealing lid, (6) is the insulating backing, (7) is the negative electrode lead, (8) is the positive electrode lead, (9
) is a can bottom insulating plate, and (10) is an insulating member.

また、同時に前記電池Aにおいて、セパレータの膜厚の
み種々変化させ、その他は同一の電池B〜Kを作製し、
これら電池A−Kについてパルス放電特性比較試験を行
なった。この時の条件は、−20℃において1.0A(
7)を流で3秒間放電した後、7秒間放置し、これを繰
り返し行なうものであり、電池電圧が1.5vの終止電
圧になる迄のパルス回数を測定するというものである0
次表に、各電池のセパレータの膜厚、透気度及びパルス
放電回数の相対値を示す、尚、透気度はJIS−P81
17に基づいて測定した値であり、またパルス放電回数
の相対値は電池Aのパルス放電回数を100として示し
ている。
Further, at the same time, in the battery A, only the film thickness of the separator was varied, and batteries B to K were otherwise the same,
A pulse discharge characteristic comparison test was conducted on these batteries A-K. The conditions at this time were 1.0 A (
7) is discharged with a current for 3 seconds, then left for 7 seconds, and this is repeated, and the number of pulses until the battery voltage reaches the final voltage of 1.5V is measured.
The following table shows the relative values of the separator film thickness, air permeability, and number of pulse discharges for each battery.The air permeability is based on JIS-P81.
17, and the relative value of the number of pulse discharges is shown assuming that the number of pulse discharges of battery A is 100.

※電池作製時に内部短絡が生じて不良電池となり測定で
きなかった。
*An internal short circuit occurred during battery production, resulting in a defective battery that could not be measured.

表の電池A、B、C,Dの結果より、膜厚が同し場合に
は透気度が小さくなる程、低温パルス放電特性が向上す
る傾向があることがわかる。また、電池E、Fの結果よ
り、透気度が低くなり過ぎる(例えば40sec710
0cc・枚以下〉と、セパレータとしての隔離性が十分
でなく、電池作製時にヒバレータを介して内部短絡を起
こし電圧不良となり、パルス放電が行なえなくなるとい
う不都合が生しることがわかる。
From the results of batteries A, B, C, and D in the table, it can be seen that when the film thickness is the same, the lower the air permeability, the more the low-temperature pulse discharge characteristics tend to improve. Also, from the results of batteries E and F, the air permeability is too low (for example, 40sec710
0 cc/sheet or less, the isolation property as a separator is insufficient, and it can be seen that when a battery is manufactured, an internal short circuit occurs through the hibbalator, resulting in a voltage failure and the inconvenience that pulse discharge cannot be performed.

第1図はセパレータの膜厚が同じまたは類似した電池A
、B、C,D、Gにおける、セパレータの透気度と、パ
ルス放電回数の相対値との関係を示す区である。この図
から透気度が小さくなる程、パルス放電特性が向上し、
350sec7100cc・枚程度を境にして透気度が
小さくなってもパルス放電特性の向上の度合が小さくな
ることがわかる。したがって、透気度の範囲としては、
50・〜350sec/LOOcc・枚が望ましい。
Figure 1 shows battery A with the same or similar separator thickness.
, B, C, D, and G, which show the relationship between the air permeability of the separator and the relative value of the number of pulse discharges. From this figure, the smaller the air permeability, the better the pulse discharge characteristics.
It can be seen that even if the air permeability decreases after approximately 350 sec/7100 cc/sheet, the degree of improvement in the pulse discharge characteristics decreases. Therefore, the range of air permeability is:
50.~350 sec/LOOcc.sheet is desirable.

一方、セパレータの膜厚に関しては、セパレータの透気
度が似ている電池A、H,Iの表中の結果より、膜厚が
薄くなる程パルス放電特性が向上する傾向があることが
わかる。また、電池J、にの結果より、膜厚が厚いと透
気度が小さいにもかかわらずパルス放電特性が低下する
ことが明らかであり、以上の結果より40−の膜厚迄は
モ分な効果が得られることがわかる。逆に膜厚が薄すぎ
ると電池作製時にセパレータを介して内部短絡が多発す
ることから、膜厚の下限は15−であることが望ましい
、したがって、膜厚の範囲としては15〜40囮が望ま
しい。
On the other hand, regarding the film thickness of the separator, it can be seen from the results in the table for batteries A, H, and I whose separators have similar air permeability that the pulse discharge characteristics tend to improve as the film thickness becomes thinner. Furthermore, from the results for battery J, it is clear that when the film thickness is large, the pulse discharge characteristics deteriorate despite the low air permeability. It can be seen that the effect can be obtained. On the other hand, if the film thickness is too thin, internal short circuits will occur frequently through the separator during battery production, so it is desirable that the lower limit of the film thickness is 15-40. .

以上、詳述した実施例では、セパレータとして純度99
重量%以上のポリエチレン微多孔膜を用いたが、電池温
度が上昇した時にセパt・−夕が溶融し、絶縁膜化する
ものであれば使用可能であり、ポリプロピレン微多孔膜
なども使用できる。ただし、ポリエチレンの方がポリプ
ロピレンより融点が低いためより有効であり、ポリエチ
レンと他の樹脂との混合物や共重合体なども有効である
In the detailed embodiments described above, the separator has a purity of 99%.
Although a microporous polyethylene film with a concentration of % by weight or more was used, any material can be used as long as the septum melts and becomes an insulating film when the battery temperature rises, and a microporous polypropylene film can also be used. However, polyethylene is more effective than polypropylene because it has a lower melting point, and mixtures and copolymers of polyethylene and other resins are also effective.

(ト)発明の効果 本発明は有機寛解液を用い、渦巻電極体を備える電池に
おいて、正、負極間に介在させるセパレータとして、透
気度50〜350sec7100cc・枚、膜厚10〜
40−の微多孔膜を用いたものであり、放電時のリチウ
ムイオンの移動距離及び移動の容易さが効果的に改良で
き、低温での放置特性を向上させることができる。
(G) Effects of the Invention The present invention uses an organic ameliorating liquid as a separator interposed between the positive and negative electrodes in a battery equipped with a spiral electrode body.
Using a microporous membrane of 40 mm, the distance and ease of movement of lithium ions during discharge can be effectively improved, and the storage characteristics at low temperatures can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセパレータの透気度とパルス放電の相対値との
関係を示す図、第2図は本発明の対象となる渦巻状電極
体を備えた電池の縦断面図である。 (1)・・・正極、(2)・・・負極、(3)・・・セ
パレータ。
FIG. 1 is a diagram showing the relationship between the air permeability of a separator and the relative value of pulse discharge, and FIG. 2 is a longitudinal cross-sectional view of a battery equipped with a spiral electrode body, which is the object of the present invention. (1)...Positive electrode, (2)...Negative electrode, (3)...Separator.

Claims (1)

【特許請求の範囲】[Claims] (1)軽金属を活物質とする帯状負極と、帯状正極との
間に、合成樹脂製の微多孔膜からなるセパレータを介在
し、これら正、負極及びセパレータを捲回して構成した
渦巻状電極体を備え、前記微多孔膜は透気度が50〜3
50sec/100cc・枚であり、膜厚が10〜40
μmであることを特徴とする非水電解液電池。
(1) A separator made of a microporous synthetic resin membrane is interposed between a strip-shaped negative electrode containing a light metal as an active material and a strip-shaped positive electrode, and a spiral electrode body constructed by winding these positive and negative electrodes and the separator. The microporous membrane has an air permeability of 50 to 3.
50sec/100cc/sheet, film thickness 10~40
A non-aqueous electrolyte battery characterized by a microelectrolyte.
JP63097303A 1988-04-20 1988-04-20 Non-aqueous electrolyte battery Expired - Lifetime JP2792859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63097303A JP2792859B2 (en) 1988-04-20 1988-04-20 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63097303A JP2792859B2 (en) 1988-04-20 1988-04-20 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01267951A true JPH01267951A (en) 1989-10-25
JP2792859B2 JP2792859B2 (en) 1998-09-03

Family

ID=14188721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63097303A Expired - Lifetime JP2792859B2 (en) 1988-04-20 1988-04-20 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2792859B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513713A (en) * 1978-07-14 1980-01-30 Teijin Ltd Porous film
JPS5652881A (en) * 1979-10-03 1981-05-12 Yuasa Battery Co Ltd Lead acid battery
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513713A (en) * 1978-07-14 1980-01-30 Teijin Ltd Porous film
JPS5652881A (en) * 1979-10-03 1981-05-12 Yuasa Battery Co Ltd Lead acid battery
JPS63276868A (en) * 1987-05-08 1988-11-15 Tokuyama Soda Co Ltd Separator for cell

Also Published As

Publication number Publication date
JP2792859B2 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
CA1165815A (en) Electrochemical cell and method of manufacture
JPH0778635A (en) Safe secondary battery of non-aqueous group
US4794057A (en) Separator for electrochemical cells
JPH0516139B2 (en)
JPS6023954A (en) Nonaqueous electrolyte battery
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPH07192753A (en) Lithium secondary battery
JPH01267951A (en) Non-aqueous electrolyte battery
JPS60220574A (en) Chargeable electrochemical apparatus
JPH02304863A (en) Nonaqueous electrolyte battery
JPH0426075A (en) Organicelectrolyte battery
JPH0770308B2 (en) Non-aqueous electrolyte battery
JPH0325865A (en) Nonaqueous electrolyte secondary battery
JPH01161671A (en) Nonaqueous electrolyte battery
JPS61232560A (en) Lithium battery
JPH0887995A (en) Organic electrolyte battery
JP2925631B2 (en) Non-aqueous electrolyte battery
US1978624A (en) Primary cell
JPH067483B2 (en) Non-aqueous electrolyte battery
JP3722824B2 (en) Stacked organic electrolyte battery
JP3722823B2 (en) Stacked organic electrolyte battery
JPS63279562A (en) Battery
JP3106807B2 (en) Mercury-free manganese dry cell
JPS63245866A (en) Nonaqueous electrolyte battery
JPH01281677A (en) Battery of nonaqueous electrolyte