JPS63245866A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS63245866A
JPS63245866A JP62078144A JP7814487A JPS63245866A JP S63245866 A JPS63245866 A JP S63245866A JP 62078144 A JP62078144 A JP 62078144A JP 7814487 A JP7814487 A JP 7814487A JP S63245866 A JPS63245866 A JP S63245866A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
temperature
gelatinizer
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62078144A
Other languages
Japanese (ja)
Inventor
Toyoji Machida
町田 豊治
Satoshi Ubukawa
生川 訓
Satoru Fukuoka
悟 福岡
Tomoji Mizoguchi
溝口 智司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62078144A priority Critical patent/JPS63245866A/en
Publication of JPS63245866A publication Critical patent/JPS63245866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes

Abstract

PURPOSE:To improve safety of a battery by disposing electrolyte gelatinizer in the battery which reacts making contact with nonaqueous electrolyte to gelatinize the electrolyte and reduce the quantity of current for preventing an abnormal rise of the temperature of the battery when the temperature of the battery reses to a predetermined temperature. CONSTITUTION:For a battery including a negative electrode 2 with light metal as active material, a positive electrode 1, and nonaqueous electrolyte, electrolyte gelatinizer 5 is disposed in the battery which is normally insulated from the nonaqueous electrolyte and which makes contact with the nonaqueous electrolyte when the battery temperature rises to a predetermined temperature to react and gelatinize the electrolyte. A factor for an abnormal rise of the battery temperature is increase of short-circuit current, and when the battery temperature rises a little caused by an external short circuit of the like, the electrolyte gelatinizer 5 enclosed by a member 4 which dissolves at this temperature comes into contact with the electrolyte to gelatinize it and reduce short-circuit current. An abnormal rise of the battery temperature can thus be prevented. As the electrolyte gelatinizer 5 is insulated from the electrolyte normally, it does not give any harmful effects to normal battery reaction.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はリチウム、ナトリウムなどの軽金属を活物質と
する負極と、金属の酸化物、硫化物、ハロゲン化物など
を活物質とする正極と、非水系の電解液とを備えた非水
電解液電池に係り、特に高率放電型或いは高容量型の非
水電解液電池の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a negative electrode using a light metal such as lithium or sodium as an active material, and a positive electrode using a metal oxide, sulfide, halide, etc. as an active material. The present invention relates to a non-aqueous electrolyte battery equipped with a non-aqueous electrolyte, and particularly relates to the improvement of a high-rate discharge type or high-capacity type non-aqueous electrolyte battery.

(ロ)従来の技術 この種電池は高エネルギー密度を有し、且自己放電が少
ないという利点を有するため注目されており、事実、負
極活物質としてリチウム金属を用い、正極活物質として
二酸化マンガン、酸化第2銅、フッ化炭素或いはクロム
酸銀を用いる電池が実用化に至っている。
(b) Conventional technology This type of battery has attracted attention because it has the advantages of high energy density and low self-discharge.In fact, it uses lithium metal as the negative electrode active material, manganese dioxide as the positive electrode active material, Batteries using cupric oxide, carbon fluoride, or silver chromate have come into practical use.

ところで、この種電池はその用途拡大に伴いその安全性
については更に改善が望まれている。
By the way, as the uses of this type of battery expand, further improvements in safety are desired.

例えは外部短絡等が生じた場合、短絡によって電池温度
が上昇し正負極間に介挿せるセパレータが溶融して正負
極が部分的に接し内部短絡が生じる。
For example, when an external short circuit occurs, the battery temperature rises due to the short circuit, and the separator inserted between the positive and negative electrodes melts, causing the positive and negative electrodes to partially contact each other, resulting in an internal short circuit.

その結果、内部短絡部分に過大電流が流れ、電池温度が
異常に上昇することになる。
As a result, an excessive current flows through the internal short circuit, causing an abnormal rise in battery temperature.

このような不都合を解消するために、特開昭60−23
954号公報に開示されているように、セパレータとし
て微多孔性樹脂フィルムを用い温度上昇時にセパレータ
を溶融させて絶縁フィルム化させることによって短絡電
流を抑え電池温度の異常上昇を防ぐ方法が提案されてい
るが、セパレータの多孔部が完全に閉塞されて絶縁フィ
ルム化することは困難であり、セパレータの残孔部を介
して短絡電流は流れ、電池温度の異常上昇に至る。
In order to eliminate such inconvenience,
As disclosed in Japanese Patent No. 954, a method has been proposed in which a microporous resin film is used as a separator and the separator is melted to form an insulating film when the temperature rises, thereby suppressing short circuit current and preventing an abnormal rise in battery temperature. However, it is difficult to completely block the porous portions of the separator to form an insulating film, and a short circuit current flows through the remaining pore portions of the separator, leading to an abnormal rise in battery temperature.

(ハ)発明が解決しようとする問題点 本発明は外部短絡等が生じて電池温度が上昇した際に、
それ以上に電池温度が異常上昇するのを阻止して電池の
安全性を向上させることを目的とする。
(c) Problems to be solved by the invention The present invention solves the problem when the battery temperature rises due to an external short circuit, etc.
The purpose is to improve battery safety by preventing the battery temperature from rising any further.

に)問題点を解決するための手段 本発明は軽金属を活物質とする負極と、正極と、非水電
解液とからなる発電要素を備えた電池において、常時は
前記非水電解液と隔離され、電池温度が所定温度に上昇
した時に前記非水電解液と接触して反応し、該電解液を
ゲル化させ電流量を減じて電池温度の異常上昇を阻止す
る電解液ゲル化剤を電池内に配置したことを特徴とする
非水電解液電池にある。
B) Means for Solving the Problems The present invention provides a battery equipped with a power generation element consisting of a negative electrode using a light metal as an active material, a positive electrode, and a non-aqueous electrolyte, which is normally isolated from the non-aqueous electrolyte. , an electrolyte gelling agent is provided in the battery, which contacts and reacts with the nonaqueous electrolyte when the battery temperature rises to a predetermined temperature, gels the electrolyte, reduces the amount of current, and prevents an abnormal rise in battery temperature. A non-aqueous electrolyte battery is provided.

(ホ)作 用 電池温度の異常上昇の要因は短絡電流の増加にある。本
発明電池によれば、外部短絡等によって若干電池温度が
上昇した際、この温度(所定温度)によって例えば溶融
せる部材で封入していた電解液ゲル化剤が電解液と接し
て電解液をゲル化し短絡電流を減じることによって電池
温度の異常上昇は阻止される。
(E) Function The cause of the abnormal rise in battery temperature is an increase in short-circuit current. According to the battery of the present invention, when the battery temperature rises slightly due to an external short circuit or the like, this temperature (predetermined temperature) causes the electrolyte gelling agent sealed with a meltable material to come into contact with the electrolyte and gel the electrolyte. By reducing the short-circuit current and reducing the short-circuit current, an abnormal rise in battery temperature is prevented.

又、電解液ゲル化剤は常時は電解液と隔離されているた
め通常の電池反応に悪影響を与えることはない。
Furthermore, since the electrolyte gelling agent is always isolated from the electrolyte, it does not adversely affect normal battery reactions.

尚、電解液ゲル化剤を電解液と隔離する手段としては比
較的低融点の樹脂で成形したカプセル内にゲル化剤を封
入して電池内に配置する方法或いは上記樹脂とゲル化剤
とを混合し樹脂材が外表面に位置するように成型した成
型体を電池内に配置する方法が好ましい。
As a means of isolating the electrolyte gelling agent from the electrolytic solution, the gelling agent may be sealed in a capsule molded with a relatively low melting point resin and placed inside the battery, or the above resin and gelling agent may be separated. A preferred method is to place a molded body in which the resin material is mixed and molded so that the resin material is located on the outer surface of the battery.

比較的低融点の樹脂としては以下のものが適用でき、こ
れらを単独或いは二種以上組合せて用いることも可能で
ある。
The following resins can be used as resins having relatively low melting points, and these can be used alone or in combination of two or more.

ポリオレフィン系樹脂: ポリエチレン(融点137℃)、ポリプロピレン(17
6℃)、ポリブテン−1(126℃)、ポリ−5−メチ
ルヘキセン−1(130℃)など。
Polyolefin resin: Polyethylene (melting point 137℃), polypropylene (17℃)
6°C), polybutene-1 (126°C), poly-5-methylhexene-1 (130°C), etc.

ポリエステル系樹脂; ポリへキサメチレンテレフタレート(160℃)、ポリ
ペンタメチレンチレフタレ−)(134℃)など。
Polyester resin; polyhexamethylene terephthalate (160°C), polypentamethylene terephthalate (134°C), etc.

又、電解液ゲル化剤としては重合開始剤が一般的なもの
であり、以下のものが適用できる。
Further, as the electrolyte solution gelling agent, a polymerization initiator is generally used, and the following can be applied.

ルイス酸: 塩化アルミニウム、臭化アルミニウム、塩化チタン、塩
化スズ、塩化アンチモン等。但しルイス酸の場合には水
、エタノール、エーテル、t−ブチルクロライド(t−
Bucl)などの助触媒が必要である。
Lewis acids: aluminum chloride, aluminum bromide, titanium chloride, tin chloride, antimony chloride, etc. However, in the case of Lewis acids, water, ethanol, ether, t-butyl chloride (t-
A promoter such as Bucl) is required.

プロトン酸(フレンステツト酸) 硫酸、リン酸、過塩素酸、トリクロロ酢酸、トリフルオ
ロ酢酸など。
Protic acid (Frensted acid) Sulfuric acid, phosphoric acid, perchloric acid, trichloroacetic acid, trifluoroacetic acid, etc.

(へ)実施例 第1図は本発明の一実施例による円筒型非水電解液電池
の縦断面図を示す。
(F) Embodiment FIG. 1 shows a longitudinal sectional view of a cylindrical non-aqueous electrolyte battery according to an embodiment of the present invention.

第1図において(1)は正極板であって、活物質として
の二酸化マンガンに導電剤としてのアセチレンブラック
及び結着剤としてのフッ素樹脂を85:10:5の重量
比で混合したものを集電網に塗着、乾燥したものである
。(2)は負極板であってリチウム圧延板を所定寸法に
打抜いたものである。
In Figure 1, (1) is a positive electrode plate, which is a mixture of manganese dioxide as an active material, acetylene black as a conductive agent, and fluororesin as a binder in a weight ratio of 85:10:5. It was applied to the electric grid and dried. (2) is a negative electrode plate, which is a rolled lithium plate punched out to a predetermined size.

そしてこれら正負極板fil 12+はポリエチレン製
の微多孔性フィルムよりなるセパレータ(3)を介して
巻回され渦巻電極体が形成される。
These positive and negative electrode plates fil 12+ are wound through a separator (3) made of a microporous polyethylene film to form a spiral electrode body.

又、電解液としてはプロピレンカーボネートと1.3−
ジオキソランとの混合溶媒に過塩素酸リチウムを溶解し
たものを用いた。
In addition, as an electrolyte, propylene carbonate and 1.3-
A solution of lithium perchlorate in a mixed solvent with dioxolane was used.

而して、(4)は渦巻電解体の中央空間に配置されてい
るポリエチレン製のカプセルであって、その内部には塩
化アルミニウムと【−ブチルクロライドとの混合剤より
なる電解液ゲル化剤(5)が封入されている。電解液ゲ
ル化剤の量としては電解液量に対し0.1〜1.Qvo
1%の範囲が好ましい。
(4) is a polyethylene capsule placed in the central space of the spiral electrolyte, and inside the capsule is an electrolyte gelling agent (made of a mixture of aluminum chloride and [-butyl chloride). 5) is included. The amount of electrolyte gelling agent is 0.1 to 1. Qvo
A range of 1% is preferred.

尚、(6)は正極端子を兼ねる外装缶であって絶縁バッ
キング(7)により負極端子を兼ねる封目板(8)とは
電気的に絶縁されている。外装缶(6)は正極リード片
(9)を介して正極板(1)に接続され、封口板(8)
は負極リード片口0)を介して負極板(2)に接続され
ている。(111(121は絶縁ワッシャである。この
本発明電池を(ハ))とする。
Note that (6) is an exterior can that also serves as a positive electrode terminal, and is electrically insulated from a sealing plate (8) that also serves as a negative electrode terminal by an insulating backing (7). The outer can (6) is connected to the positive electrode plate (1) via the positive electrode lead piece (9), and the sealing plate (8)
is connected to the negative electrode plate (2) via the negative electrode lead opening 0). (111 (121 is an insulating washer. This invention battery is referred to as (c)).

又、電解液ゲル化剤を封入したカプセル(4)を具備せ
ず、他は本発明電池と同様の従来電池を(B)とする。
Further, a conventional battery (B) is the same as the battery of the present invention except that it does not include a capsule (4) containing an electrolyte gelling agent.

第2図及び第3図は本発明電池(へ)と従来電池(B)
とを夫々3ヶ直列に接続し外部短絡させた時の短絡電流
及び電池温度の経時変化を示す。尚、電池温度について
は各3ケの内、最も温度が上昇した電池の経時変化を示
している。
Figures 2 and 3 show the battery of the present invention (B) and the conventional battery (B).
This shows the changes in short-circuit current and battery temperature over time when three batteries are connected in series and short-circuited externally. Regarding the battery temperature, the graph shows the change over time of the battery whose temperature rose the most out of the three.

第2図を参照するに、本発明電池(5)及び従来電池(
B)は外部短絡後、約3分で短絡電流の激減が認められ
るが、この理由はセパレータが溶融してセパレータの多
孔部が部分的に閉塞され絶縁フィルム化したことによる
と考えられる。
Referring to FIG. 2, the present invention battery (5) and the conventional battery (
In case B), a drastic decrease in the short circuit current was observed in about 3 minutes after the external short circuit, and this is thought to be because the separator melted, partially blocking the pores of the separator and forming an insulating film.

その後、従来電池(B)では再度短絡電流が増加し、3
.5Aまで増加することが認められる。
After that, in the conventional battery (B), the short circuit current increases again, and 3
.. An increase up to 5A is observed.

これに対して本発明電池(へでは再度0.7A程度まで
増加したがそれ以上の増加は認められず短絡電流は減じ
られているのがわかる。
On the other hand, in the battery of the present invention, the short-circuit current increased again to about 0.7 A, but no further increase was observed, indicating that the short-circuit current was reduced.

一方、第6図を参照するに、本発明電池(ホ)及び従来
電池中)は外部短絡後、約3分で120℃まで電池温度
が上昇することが認められる。
On the other hand, referring to FIG. 6, it is observed that the battery temperature of the present invention battery (e) and the conventional battery (medium) rose to 120° C. in about 3 minutes after an external short circuit.

その後、従来電池(B)では一旦105℃程度まで降下
するが再度上昇し外部短絡後約22分で約200℃まで
異常上昇した。
After that, in the conventional battery (B), the temperature once dropped to about 105°C, but rose again and abnormally rose to about 200°C about 22 minutes after the external short circuit.

これに対して本発明電池(5)では120℃以上の温度
上昇は認められず徐々に温度は降下した。
On the other hand, in the battery of the present invention (5), no temperature increase of 120°C or more was observed, and the temperature gradually decreased.

第2図及び第3図における本発明電池(5)の特有の現
象は次の理由によるものと考えられる。
The peculiar phenomenon of the battery (5) of the present invention shown in FIGS. 2 and 3 is considered to be due to the following reason.

即ち、外部短絡による電池温度の上昇時に、セパレータ
の溶融とほぼ同時にカプセルが溶融、破壊され、電解液
ゲル化剤が電解液と接して電解液をゲル化し、負極活物
質であるリチウムイオンの移動が阻害されるため短絡電
流が減じられ、その結果電池温度の異常上昇が阻止され
る。
That is, when the battery temperature rises due to an external short circuit, the capsule melts and is destroyed almost simultaneously with the melting of the separator, and the electrolyte gelling agent comes into contact with the electrolyte and gels the electrolyte, causing the movement of lithium ions, which are the negative electrode active material. Since the short-circuit current is inhibited, the short-circuit current is reduced, and as a result, an abnormal rise in battery temperature is prevented.

尚、本発明を開示するに際して渦巻電極体を備えた円筒
型電池を例示したが、これに限定されず扁平型電池のよ
うに他の電池形状にも適用しうろことは明白である。
Incidentally, in disclosing the present invention, a cylindrical battery having a spiral electrode body has been exemplified, but it is obvious that the present invention is not limited to this and may be applied to other battery shapes such as a flat battery.

(ト)発明の効果 上述した如く、本発明によれば電池温度が異常に上昇す
ることのない安全性に優れた非水電解液電池を得ること
ができるものであり、この種電池の利用分野の拡大に資
するところ極めて大である。
(G) Effects of the Invention As mentioned above, according to the present invention, it is possible to obtain a non-aqueous electrolyte battery that does not cause the battery temperature to rise abnormally and is excellent in safety, and this type of battery is applicable to many fields. This will greatly contribute to the expansion of the industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による円筒型非水電解液電池
の縦断面図、第2図は短絡電流の経時変化を示す図、第
3図は電池温度の経時変化を示す図である。 (1)・・・正極板、(2)・・・負極板、(6)・・
・セパレータ、(4)・・・カプセル、(5)・・・電
解液ゲル化剤、(6)・・・外装缶、(7)・・・絶縁
バッキング、(8)・・・封口板、(へ・・・本発明電
池、(B)・・・従来電池。 第1図 第2図 第3図
FIG. 1 is a longitudinal cross-sectional view of a cylindrical non-aqueous electrolyte battery according to an embodiment of the present invention, FIG. 2 is a diagram showing changes in short-circuit current over time, and FIG. 3 is a diagram showing changes in battery temperature over time. . (1)... Positive electrode plate, (2)... Negative electrode plate, (6)...
・Separator, (4)... Capsule, (5)... Electrolyte gelling agent, (6)... Exterior can, (7)... Insulating backing, (8)... Sealing plate, (B)...Battery of the present invention, (B)...Conventional battery. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)軽金属を活物質とする負極と、正極と、非水電解
液とからなる発電要素を備えた電池において、常時は前
記非水電解液と隔離され、電池温度が所定温度に上昇し
た時に前記非水電解液と接触して反応し、該電解液をゲ
ル化させ電流量を減じて電池温度の異常上昇を阻止する
電解液ゲル化剤を電池内に配置したことを特徴とする非
水電解液電池。
(1) In a battery equipped with a power generation element consisting of a negative electrode using a light metal as an active material, a positive electrode, and a non-aqueous electrolyte, it is normally isolated from the non-aqueous electrolyte, and when the battery temperature rises to a predetermined temperature. A non-aqueous battery, characterized in that an electrolyte gelling agent is disposed inside the battery, which reacts with the non-aqueous electrolyte to gel the electrolyte, reduce the amount of current, and prevent an abnormal rise in battery temperature. electrolyte battery.
(2)前記電解液ゲル化剤を前記所定温度で溶融或いは
破壊される部材で封入して常時は電解液と隔離している
ことを特徴とする特許請求の範囲第1項記載の非水電解
液電池。
(2) The nonaqueous electrolytic solution according to claim 1, characterized in that the electrolyte gelling agent is enclosed in a member that melts or breaks at the predetermined temperature and is always isolated from the electrolyte. liquid battery.
JP62078144A 1987-03-31 1987-03-31 Nonaqueous electrolyte battery Pending JPS63245866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62078144A JPS63245866A (en) 1987-03-31 1987-03-31 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62078144A JPS63245866A (en) 1987-03-31 1987-03-31 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS63245866A true JPS63245866A (en) 1988-10-12

Family

ID=13653692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62078144A Pending JPS63245866A (en) 1987-03-31 1987-03-31 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS63245866A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079624A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Cell and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079624A1 (en) * 1999-06-22 2000-12-28 Mitsubishi Denki Kabushiki Kaisha Cell and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5506068A (en) Non-aqueous safe secondary cell
US4375501A (en) Electrochemical cell
US6045939A (en) Lithium secondary battery having thermal switch
US4879187A (en) Battery terminal fuse
JPH07302597A (en) Lithium battery
US4060676A (en) Metal periodate organic electrolyte cells
US4209571A (en) Primary electrochemical cell
JP2021180064A (en) Lithium primary battery
JPS6023954A (en) Nonaqueous electrolyte battery
JPH0750601B2 (en) Non-aqueous electrolyte battery
JPH01161671A (en) Nonaqueous electrolyte battery
JPH0562662A (en) Nonaqueous electrolyte secondary battery
JPS63245866A (en) Nonaqueous electrolyte battery
US3904432A (en) Metal permanganate and metal periodate organic electrolyte cells
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JP3447285B2 (en) Non-aqueous secondary battery
JPH0541206A (en) Cylindrical nonaqueous electrolyte secondary battery
JPH05266878A (en) Cylindrical secondary battery
JPH0548209U (en) Non-aqueous electrolyte battery
JPH05234614A (en) Cylindrical battery
JPH11204096A (en) Non-aqueous electrolyte battery and non-aqueous electrolyte battery pack
JPH05266877A (en) Cylindrical nonaqueous electrolyte secondary battery
JP2925631B2 (en) Non-aqueous electrolyte battery
JPH0318308B2 (en)
JP3108142B2 (en) Non-aqueous electrolyte battery