JPH01267513A - Imaging lens - Google Patents

Imaging lens

Info

Publication number
JPH01267513A
JPH01267513A JP9630288A JP9630288A JPH01267513A JP H01267513 A JPH01267513 A JP H01267513A JP 9630288 A JP9630288 A JP 9630288A JP 9630288 A JP9630288 A JP 9630288A JP H01267513 A JPH01267513 A JP H01267513A
Authority
JP
Japan
Prior art keywords
lens
positive
lens group
lenses
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9630288A
Other languages
Japanese (ja)
Other versions
JPH0427523B2 (en
Inventor
Tazuko Ishizuka
石塚 多津子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP9630288A priority Critical patent/JPH01267513A/en
Publication of JPH01267513A publication Critical patent/JPH01267513A/en
Publication of JPH0427523B2 publication Critical patent/JPH0427523B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high resolution on a short wavelength side by consisting the imaging lens of lenses constituted, successively from an object side, of 1st, 2nd and 3rd lens groups having positive, negative and positive refracting powers and determining the focal lengths of the respective lens groups and the entire system so as to satisfy specific conditions. CONSTITUTION:The entire part of this lens is constituted, successively from the object side, of the 1st, 2nd, and 3rd lens groups having the positive, negative and positive refracting powers. The 1st lens group is constituted of 2 pieces of the positive lens and the 2nd lens group is constituted of 2 pieces of the negative lenses and the 3rd lens group is constituted to include 3 pieces of the positive lenses. A meniscus lens, the convex face of which is directed to the image side, is used for a piece on the object side among these positive lenses and a meniscus lens, the convex face of which is directed to the object side, is used for a piece on the image side. The focal lengths of the respective lens groups and the entire system, designated as fI, fII, iIII, (f), are so determined as to satisfy the condition 0.4<¦fI/f¦<1.2; 0.05<¦fII/f¦<0.4, fII<0; 0.2<fII/f¦0.6. The resolving power in a UV region is thereby enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、縮小投影像を例えばハイレゾフィルムやレ
ジスト上にリード描画またはドツト描画して液晶パター
ン、プリンターのサーマルヘッド。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to lead drawing or dot drawing of a reduced projection image on, for example, a high-resolution film or resist to produce a liquid crystal pattern and a thermal head of a printer.

エンコーダー、LSIのレチクル等を製造する縮小投影
装置に利用される短波長用の結像レンズに関するもので
ある。
The present invention relates to a short wavelength imaging lens used in a reduction projection device for manufacturing encoders, LSI reticles, and the like.

[従来技術及び発明が解決しようとする課題]この種の
縮小投影装置の結像レンズには、対象物に対して高密度
のパターンを焼き付けるために非常に高い解像力が要求
されている。
[Prior Art and Problems to be Solved by the Invention] The imaging lens of this type of reduction projection apparatus is required to have extremely high resolving power in order to print a high-density pattern onto an object.

一般に、結像レンズによる解像力は使用波長が短くなる
に従って向上するため、この種の投影装置ではh線(4
05nm)あるいはi線(365nm)といった光を発
生する超高圧水銀灯等の光源が用いられている。なお、
これらの装置ではハイレゾフィルムやレジスト等の短波
長側に感度を持つ感材を使用するため、短波長の光源は
描画スピードを向上させる上でも有利である。
In general, the resolving power of an imaging lens improves as the wavelength used becomes shorter, so in this type of projection device, the H-line (4
A light source such as an ultra-high pressure mercury lamp that generates light such as 0.05 nm) or i-line (365 nm) is used. In addition,
Since these devices use sensitive materials such as high-resolution films and resists that are sensitive to short wavelengths, a short wavelength light source is also advantageous in improving drawing speed.

また、高解像力を得るため、結像レンズの各収差は理論
限界に近い値に抑える必要がある。特にステッパーの結
像レンズでは、LSI等のウェハーを相対的にステップ
させて多数ショットに分割して露光を行なうため、各シ
ョット毎のパターンのズレを防ぐ必要から歪曲収差につ
いてはこれを完全に補正する必要がある。
Furthermore, in order to obtain high resolution, it is necessary to suppress each aberration of the imaging lens to a value close to the theoretical limit. In particular, with the imaging lens of a stepper, the wafer such as an LSI is stepped relative to each other and exposed by dividing it into multiple shots, so it is necessary to prevent pattern deviation for each shot, so it is necessary to completely correct distortion aberration. There is a need to.

一般の光学系では色収差、球面収差、コマ収差等を補正
するため、分散゛の大きな硝材と小さな硝材、屈折率の
大きな硝材と小さな硝材とを組み合わせている0例えば
、全体として正の屈折力を有する光学系では、正レンズ
に比較的屈折率の高い硝材を使用してそこで発生するペ
ッツバール和を抑える構成とすることが多い、ペッツバ
ール和を小さく抑えることが、像面湾曲のみでなく、他
の諸収差の補正上からも有利なことが多いからである。
In general optical systems, in order to correct chromatic aberration, spherical aberration, coma aberration, etc., a glass material with a large dispersion and a glass material with a small dispersion, or a glass material with a large refractive index and a glass material with a small refractive index are combined. In optical systems with a positive lens, a glass material with a relatively high refractive index is often used to suppress the Petzval sum that occurs there. Keeping the Petzval sum small is important not only to reduce field curvature but also to reduce other problems. This is because it is often advantageous in terms of correcting various aberrations.

しかしながら、短波長用の光学系では紫外線吸収による
蛍光放射やソラリゼーションを起こし難い硝材、紫外域
での透過率が高い硝材が要求されるため、使用できる硝
材の自由度が少なく、しかもこれらの硝材は屈折率が低
いため、」二連したように正レンズの屈折率を高めるこ
とによって収差補正を行なうことが困難である。
However, optical systems for short wavelengths require glass materials that are difficult to cause fluorescence emission and solarization due to ultraviolet absorption, and glass materials that have high transmittance in the ultraviolet region, so there is little flexibility in the glass materials that can be used. Since the refractive index is low, it is difficult to correct aberrations by increasing the refractive index of the positive lens in a double series.

そこで従来の投影装置では、光源からの光束を波長選択
フィルターを介して色収差をほぼ無視できる程度の狭い
スペクトル幅に限定し、上記の各収差のうち色収差補正
のための設計上の制約を軽減させ、他の収差補正を厳密
に行なうようにしているものが多い。
Therefore, in conventional projection devices, the light beam from the light source is limited to a narrow spectrum width where chromatic aberration can be almost ignored through a wavelength selection filter, thereby reducing the design constraints for correcting chromatic aberration among the above-mentioned aberrations. , and other aberrations are often corrected strictly.

しかしながら、投影光束のスペクトル幅を狭めるほどエ
ネルギーロスが大きくなるため、描画スピードの向上の
面からはスペクトル幅を可能な限り広く採ることが望ま
しい。
However, the narrower the spectral width of the projection light beam, the greater the energy loss, so it is desirable to make the spectral width as wide as possible from the perspective of improving drawing speed.

この発明は、上記の各課題に鑑みてなされたものであり
、短波長側、特にi線付近で従来より広いスペクトル幅
について色消しされた高解像度を備える結像レンズの提
供を目的とする。
The present invention has been made in view of the above-mentioned problems, and aims to provide an imaging lens that has high resolution and is achromatized over a wider spectral width than before on the short wavelength side, particularly near the i-line.

[課題を解決するための手段] 上記目的を達成するための本発明に係る結像レンズの設
計上の特徴は、全体を物体側より順に正、負、正の屈折
力を有する第1、第2、第3レンズ群から構成し、第1
レンズ群を2組の正レンズとし、第2レンズ群を2枚の
負レンズとし、第3レンズ群を3枚の正レンズを含む構
成とすると共に、これらの正レンズ中物体側の1枚を像
側に凸面を向けるメニスカスレンズ、像側の1枚を物体
側に凸面を向けるメニスカスレンズとし、各レンズ群及
び全系の焦点距離を各々fl+fl+fm+fとすると
きに、0.4< lff/fl< 1.2  ・・・■
0.05<lfl/f+<0.4 、  f、<o  
・・・■0.2< lf、/fK0.6  ・・・■の
条件を満たすことにある。
[Means for Solving the Problems] The design features of the imaging lens according to the present invention for achieving the above object include a first lens, a first lens, and a second lens having positive, negative, and positive refractive powers in order from the object side. 2. Consisting of the third lens group, the first
The lens group is composed of two sets of positive lenses, the second lens group is composed of two negative lenses, and the third lens group is composed of three positive lenses, and among these positive lenses, one on the object side is When a meniscus lens has a convex surface facing the image side, and one lens on the image side has a convex surface facing the object side, and the focal length of each lens group and the entire system is fl+fl+fm+f, 0.4<lff/fl< 1.2...■
0.05<lfl/f+<0.4, f,<o
... ■0.2 < lf, /fK0.6 ... The condition of ■ is satisfied.

全体として正の屈折力を有する3群構成のレンズ系にお
いては、物体側の第1群を正、第2群を負、第3群を正
とする構成が諸収差の補正の面から最も有効な構成の1
つである。
In a three-group lens system that has positive refractive power as a whole, a configuration in which the first group on the object side is positive, the second group is negative, and the third group is positive is most effective in terms of correcting various aberrations. configuration 1
It is one.

また、この結像レンズでペッツバール和を小さく抑えて
像面湾曲を良好に補正するためには、前述したように使
用できる硝材が限られていること、及びそれらの硝材の
屈折率が小さいことから個々のレンズの屈折力を抑えて
レンズ構成枚数を増やすことが望ましい。
In addition, in order to keep the Petzval sum small and correct the field curvature well with this imaging lens, as mentioned above, there are a limited number of glass materials that can be used, and the refractive index of those glass materials is small. It is desirable to increase the number of lens components by suppressing the refractive power of each lens.

そのため、この発明の結像レンズでは、比較的大きな正
の屈折力を有する第3レンズ群を、比較的屈折力の小さ
い3枚以上の正レンズから構成することにより、個々の
面で発生する球面収差やコマ収差等の諸収差を極力低減
させている。
Therefore, in the imaging lens of the present invention, by configuring the third lens group having a relatively large positive refractive power from three or more positive lenses having a relatively small refractive power, the spherical surface generated on each surface is Various aberrations such as aberration and coma are reduced as much as possible.

また、第3レンズ群の最も物体側と最も像側には、それ
ぞれ発散光束に対して凹面を向けるメニスカスレンズと
、収斂光束に対して凸面を向けるメニスカスレンズとが
配置されている。これらのメニスカスレンズは、球面収
差の発生を抑える機能を口しているばかりか、メニスカ
ス形状を採ることによって屈折力を小さく設定し、ペッ
ツバール和を小さく抑える上でも有益な構成となってい
る。
Further, a meniscus lens having a concave surface facing a diverging light beam and a meniscus lens having a convex surface facing a converging light beam are arranged at the closest to the object side and the closest to the image side of the third lens group, respectively. These meniscus lenses not only have the function of suppressing the occurrence of spherical aberration, but also have a structure that is useful in setting the refractive power to a small value by adopting a meniscus shape and keeping the Petzval sum small.

第2レンズ群の焦点距離は、第1.第3の正レンズ詳で
発生する補正不足の球面収差、コマ収差、像面湾曲等の
諸収差をバランス良く補正するために■式の範囲内であ
ることが必要となる。上限を越えると負の第2レンズ詳
の屈折力か弱過ぎて前述の諸収差を補正しきれない、逆
に下限を下回ると負の屈折力が強く成りすぎて高次の収
差が補正過剰で残存し、良好な結像性能を保つことが困
難となる。
The focal length of the second lens group is the same as that of the first lens group. In order to correct various aberrations such as undercorrected spherical aberration, coma aberration, and field curvature that occur in the third positive lens in a well-balanced manner, it is necessary that the value be within the range of formula (2). If the upper limit is exceeded, the negative refractive power of the second lens is too weak to correct the various aberrations mentioned above, and conversely, if it is below the lower limit, the negative refractive power becomes too strong and higher-order aberrations are overcorrected. As a result, it becomes difficult to maintain good imaging performance.

第1、第3レンズ群の焦点距離は、■式との関連でそれ
ぞれ■、0式の範囲とすることが好ましい。
It is preferable that the focal lengths of the first and third lens groups be within the ranges of formulas 1 and 0, respectively, in relation to formula 2.

いずれも上限を越えれば正レンズの屈折力が弱くなり過
ぎて球面収差、コマ収差等の補正が困難となり、下限を
下回ると正レンズの屈折力が大きくなり過ぎて正レンズ
で発生するペッツバール和を第2レンズ群によってjf
J殺しきれなくなり、像WJ湾曲の補正が困難となる。
If the upper limits are exceeded, the refractive power of the positive lens becomes too weak, making it difficult to correct spherical aberrations, comatic aberrations, etc. Below the lower limits, the refractive power of the positive lens becomes too large, and the Petzval sum generated by the positive lens becomes jf by the second lens group
J cannot be completely eliminated, making it difficult to correct the image WJ curvature.

更に、軸上の色収差、及び倍率の色収差を良好に補正す
るためには、以下の条件式を満たすことが望ましい。
Furthermore, in order to satisfactorily correct axial chromatic aberration and lateral chromatic aberration, it is desirable that the following conditional expression be satisfied.

波長λに対する屈折率をnλとしたときに、nssm−
nssm で定義される第2レンズ群の物体側のレンズの分散値V
°1と、第2レンズ群の像側のレンズの分散値V’mt
と、第1、第3レンズ詳の正レンズの分散値V°□1と
を、 ”m+<75  ・・・■−1 ”at<95  ・・・■−2 ” +w* > 100  ・・・■−3の条件を満た
す値とすること、そして、第1、第2レンズ群間の間隔
d、を、 0.05<Idt、/f+< 0.4  ・・・■とす
ることである。
When the refractive index for the wavelength λ is nλ, nssm-
Dispersion value V of the object side lens of the second lens group defined by nssm
°1 and the dispersion value V'mt of the image side lens of the second lens group
and the dispersion value V°□1 of the positive lens of the first and third lenses, "m+<75...■-1"at<95...■-2"+w*>100... (2) The distance d between the first and second lens groups should be set to a value that satisfies the condition of -3, and the distance d between the first and second lens groups should be 0.05<Idt, /f+<0.4...■.

■式は、第1レンズ群と第2レンズ群との間隔を焦点距
離との関連で制限しようとするものであり、下限を下回
ると第1レンズ群が第2レンズ群に接近して第2レンズ
群へ入射する光線の高さが高くなるため、第2レンズ群
の負の屈折力が弱くなり過ぎてペッツバール和が増大し
、像面湾曲の補正が困難となる。また、上限を越又た場
合には反対に第2レンズ群へ入射する光線の高さが低い
ため、軸外光に関する倍率の色収差の補正が困難となる
と共に、第2レンズ群の負の屈折力が増大し過ぎ、高次
の収差が発生してIj1々fな結像性能が得られない。
Equation (2) attempts to limit the distance between the first lens group and the second lens group in relation to the focal length, and when it falls below the lower limit, the first lens group approaches the second lens group and the second lens group approaches the second lens group. Since the height of the light rays incident on the lens group increases, the negative refractive power of the second lens group becomes too weak, the Petzval sum increases, and it becomes difficult to correct the curvature of field. If the upper limit is exceeded, on the other hand, the height of the light rays incident on the second lens group will be low, making it difficult to correct chromatic aberration of magnification related to off-axis light, and the negative refraction of the second lens group The force increases too much and high-order aberrations occur, making it impossible to obtain good imaging performance.

■式は、i線付近の波長における屈折率を用いて定義し
た分散の範囲を示したもので、これらが所定の範囲内に
あることによりi線近傍での軸上、倍率の色収差を良好
に補正することができる。
The formula shows the range of dispersion defined using the refractive index at the wavelength near the i-line, and if these are within the specified range, axial and lateral chromatic aberrations near the i-line can be suppressed. Can be corrected.

なお、正レンズには低分散材料としてFk5または溶融
石英といった内部吸収の少ない硝材が適しており、第2
レンズ群の負レンズは高分散材料とじてLf、F等のi
線付近で比較的透過率の良い硝材とすることが好ましい
For the positive lens, a glass material with low internal absorption such as Fk5 or fused silica is suitable as a low dispersion material.
The negative lens of the lens group is made of high dispersion material and is made of i such as Lf and F.
It is preferable to use a glass material that has relatively good transmittance near the line.

[実施例] 第14ページ及び第15ページにこの発明の数値実施例
を示す1表中Rは物体側から順に示したレンズ面の曲率
半径、Dは光軸に沿った各面間の距#(レンズ厚及び空
気間隔)、nはd線(波長588nm)における屈折率
、ydはアツベ数、niはi線における屈折率、Fmo
、はFナンバー、fは焦点距離である。
[Example] In Table 1 showing numerical examples of the present invention on pages 14 and 15, R is the radius of curvature of the lens surface shown in order from the object side, and D is the distance # between each surface along the optical axis. (lens thickness and air spacing), n is the refractive index at the d-line (wavelength 588 nm), yd is the Atsube number, ni is the refractive index at the i-line, Fmo
, is the F number, and f is the focal length.

各数値実施例と前述した本発明の条件式■〜■との関係
は下表の通りである。
The relationship between each numerical example and the conditional expressions (1) to (2) of the present invention described above is as shown in the table below.

数値実施例 条件式   (1)   (2)   (3)%式% 第1図、第3図、第5図は各数値実施例に対応するレン
ズ断面図である。これらの結像レンズは、図中左側とな
る物体側から順に、2枚の正レンズから成る第ルンズ群
I、2枚の負レンズから成る第2レンズ詳I!、4枚の
正レンズから成る第3レンズ群IIIを配列することに
よって構成されている。
Numerical Example Conditional Expression (1) (2) (3) % Expression % FIGS. 1, 3, and 5 are lens sectional views corresponding to each numerical example. These imaging lenses are, in order from the object side on the left side in the figure, a lens group I consisting of two positive lenses, and a second lens group I consisting of two negative lenses. , is constructed by arranging a third lens group III consisting of four positive lenses.

第1、第2数値実施倒では、物体側から2.4,5,6
゜8番目がメニスカスレンズであり、それぞれ収斂光束
に対して凸面を向け、発散光束に対して凹面を向けるよ
う配置されている。また、これらの内圧レンズはいずれ
も屈折力が小さく設定されており、球面収差の補正及び
ペッツバール和を低く抑える上で有利な構成とされてい
る。
In the first and second numerical implementation, 2.4, 5, 6 from the object side.
The eighth lens is a meniscus lens, which is arranged so that its convex surface faces a converging light beam and the concave surface faces a diverging light beam. Further, each of these internal pressure lenses has a small refractive power, and is advantageous in correcting spherical aberration and keeping the Petzval sum low.

第2図、第4図、第6図は、各数値実施例の収差図であ
る。左端の図では球面収差SAが実線、正弦条件SCが
破線で示されている。また、軸上の色収差、倍率色収差
では、365 、350 、380 、345 、38
5nfflの5つのデータを示している。非点収差はサ
ジタル方向Sを実線、メリディオナル方向Hを破線で示
している。
FIG. 2, FIG. 4, and FIG. 6 are aberration diagrams of each numerical example. In the leftmost diagram, the spherical aberration SA is shown by a solid line, and the sine condition SC is shown by a broken line. Also, for axial chromatic aberration and lateral chromatic aberration, 365, 350, 380, 345, 38
Five data of 5nffl are shown. Astigmatism is shown in the sagittal direction S by a solid line and in the meridional direction H by a broken line.

いずれも良好に収差補正がなされている。In both cases, aberrations are well corrected.

なお、第3数値実施例では、第ルンズ群Iの正レンズ中
の一枚を高度の色収差補正のために貼合せレンズとして
いる。
In the third numerical example, one of the positive lenses in the lens group I is a bonded lens in order to highly correct chromatic aberration.

[効果] 以上説明した通り、この発明によれば紫外域において収
差が少なく、解像力の高い結像レンズを提供することが
できる。
[Effects] As explained above, according to the present invention, it is possible to provide an imaging lens with few aberrations and high resolution in the ultraviolet region.

また、所定の条件を満たすことによって比較的広い範囲
に亘って色消しすることかでき、使用できる光束のスペ
クトル幅を広げ、エネルギー効率を高めて露光に要する
時間を従来より短縮することができる。
Furthermore, by satisfying predetermined conditions, it is possible to achromatize over a relatively wide range, widening the spectral width of the usable luminous flux, increasing energy efficiency, and shortening the time required for exposure compared to conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の第1数値実施例に係る結像レンズの
断面図、第2図はその収差図である。 第3図は第2数値実施例に係る結像レンズの断面図、第
4図はその収差図である。 第5図は第3数値実施例に係る結像レンズの断面図、第
6図はその収差図である。 I、II、[11・・・第1、第2、第3レンズ群手続
補正書(方式) 昭和63年8月IK日 昭和63年特許願第96302号 2、発明の名称 結像レンズ 3、補正をする者 県外との関係  特許出願人 住 所 東京都板橋区前野町2丁目36番9号名称(0
52)旭光学工業株式会礼 4、代理人 住 所 東京都中央区日本橋蛎殻町1−13−12和孝
第4ビル4F 6、補正の対象  明細書 7、補正の内容 (1)明細書第14頁及び第15頁を削除する。 (2)明細書第10頁第4行に「第14ページ及び第1
5ページに」とあるのをr以下にJと補正する。 (3)別紙添付の第1〜第3数値実施例を明細書第10
頁最終行の後に挿入する。 以上 第3数値実施例
FIG. 1 is a sectional view of an imaging lens according to a first numerical example of the present invention, and FIG. 2 is an aberration diagram thereof. FIG. 3 is a sectional view of the imaging lens according to the second numerical example, and FIG. 4 is an aberration diagram thereof. FIG. 5 is a sectional view of an imaging lens according to the third numerical example, and FIG. 6 is an aberration diagram thereof. I, II, [11... 1st, 2nd, 3rd lens group procedural correction document (method) August 1988 IK date 1988 Patent Application No. 96302 2, title of invention Imaging lens 3, Relationship of the person making the amendment with outside the prefecture Patent applicant address 2-36-9 Maeno-cho, Itabashi-ku, Tokyo Name (0
52) Asahi Optical Industry Co., Ltd. Rei 4, Agent address: 4F Kazutaka Dai 4 Building, 1-13-12 Kakigara-cho, Nihonbashi, Chuo-ku, Tokyo 6, Subject of amendment: Specification 7, Contents of amendment (1) Specification No. Delete pages 14 and 15. (2) On page 10, line 4 of the specification, “Page 14 and
"on page 5" should be corrected to "J" below "r". (3) The 1st to 3rd numerical examples attached in the attached sheet are listed in the 10th specification.
Insert after the last line of the page. Third numerical example

Claims (3)

【特許請求の範囲】[Claims] (1)物体側より順に正、負、正の屈折力を有する第1
、第2、第3レンズ群から構成され、第1レンズ群は2
組の正レンズから成り、第2レンズ群は2枚の負レンズ
から成り、第3レンズ群は3枚の正レンズを含むと共に
、該正レンズ中物体側の1枚は像側に凸面を向けるメニ
スカスレンズ、像側の1枚は物体側に凸面を向けるメニ
スカスレンズであり、各レンズ群及び全系の焦点距離を
各々f_ I 、f_II、f_III、fとするときに、 0.4<|f_ I /f|<1.2 0.05<|f_II/f|<0.4、f_II<00.2
<|f_III/f|<0.6 の条件を満たすことを特徴とする結像レンズ。
(1) The first lens has positive, negative, and positive refractive powers in order from the object side.
, second and third lens groups, and the first lens group is composed of two lens groups.
The second lens group consists of two negative lenses, and the third lens group includes three positive lenses, with one of the positive lenses on the object side having a convex surface facing the image side. Meniscus lens, the one on the image side is a meniscus lens with a convex surface facing the object side, and when the focal lengths of each lens group and the entire system are f_I, f_II, f_III, and f, respectively, 0.4<|f_ I/f|<1.2 0.05<|f_II/f|<0.4, f_II<00.2
An imaging lens characterized by satisfying the following condition: <|f_III/f|<0.6.
(2)波長λに対する屈折率をn_λとしたときに、ν
′=(n_3_8_5−1)/{(n_3_5_■−n
_3_■_■)}で定義される前記第2レンズ群の物体
側のレンズの分散値ν′_II_1と、該第2レンズ群の
像側のレンズの分散値ν′_II_2と、第1、第3レン
ズ群の正レンズの分散値ν′_ I _III_+とが、 ν′_II_1<75 ν′_II_2<95 ν′_ I _III_+>100 の条件を満たすことを特徴とする請求項1記載の結像レ
ンズ。
(2) When the refractive index for wavelength λ is n_λ, ν
'=(n_3_8_5-1)/{(n_3_5_■-n
_3_■_■)}, the dispersion value ν'_II_1 of the object-side lens of the second lens group, the dispersion value ν'_II_2 of the image-side lens of the second lens group, and The imaging system according to claim 1, wherein the dispersion value ν'_ I _III_+ of the positive lens of the three lens groups satisfies the following conditions: ν'_II_1<75 ν'_II_2<95 ν'_ I _III_+>100. lens.
(3)前記第1、第2レンズ群間の間隔d_ I _IIが
、0.05<|d_ I _II/f|<0.4 の条件を満たすことを特徴とする請求項1記載の結像レ
ンズ。
(3) Imaging according to claim 1, wherein the distance d_ I _II between the first and second lens groups satisfies the following condition: 0.05<|d_ I _II/f|<0.4. lens.
JP9630288A 1988-04-19 1988-04-19 Imaging lens Granted JPH01267513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9630288A JPH01267513A (en) 1988-04-19 1988-04-19 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9630288A JPH01267513A (en) 1988-04-19 1988-04-19 Imaging lens

Publications (2)

Publication Number Publication Date
JPH01267513A true JPH01267513A (en) 1989-10-25
JPH0427523B2 JPH0427523B2 (en) 1992-05-12

Family

ID=14161236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9630288A Granted JPH01267513A (en) 1988-04-19 1988-04-19 Imaging lens

Country Status (1)

Country Link
JP (1) JPH01267513A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138124A (en) * 2014-01-22 2015-07-30 リソテック株式会社 Projection optical system, projection exposure device, and manufacturing method for the same
JP2017007203A (en) * 2015-06-22 2017-01-12 ローム株式会社 Method for manufacturing thermal print head and thermal print head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138124A (en) * 2014-01-22 2015-07-30 リソテック株式会社 Projection optical system, projection exposure device, and manufacturing method for the same
JP2017007203A (en) * 2015-06-22 2017-01-12 ローム株式会社 Method for manufacturing thermal print head and thermal print head

Also Published As

Publication number Publication date
JPH0427523B2 (en) 1992-05-12

Similar Documents

Publication Publication Date Title
JP3624973B2 (en) Projection optical system
JP3500745B2 (en) Projection optical system, projection exposure apparatus, and projection exposure method
JP3819048B2 (en) Projection optical system, exposure apparatus including the same, and exposure method
JP3750123B2 (en) Projection optical system
KR100387149B1 (en) Projection optics and exposure equipment using them
JP3360387B2 (en) Projection optical system and projection exposure apparatus
JPH07128590A (en) Reduction stepping lens
JP2005519347A (en) Maximum aperture projection objective
KR100573913B1 (en) Iprojection optical system and exposure apparatus having the same
JPH08304705A (en) Reflection refractive optical system
JPH08334695A (en) Catadioptric system
JP3823436B2 (en) Projection optical system
JPH06331941A (en) Projection lens system
JPH08211294A (en) Projection exposing device
JPH07140385A (en) Projection optical system and projection aligner
JPH0534593A (en) Contraction projection lens
JP2001343589A (en) Projection optical system, projection exposure device by the same, manufacturing method of devices
JPH06313845A (en) Projection lens system
JPH07128592A (en) Reduction stepping lens
JP2000121934A (en) Projection optical system
JPH0572478A (en) Catadioptric reduction objective lens
JPH01267513A (en) Imaging lens
JPS6190115A (en) Objective lens for forming image
JP2709944B2 (en) Telecentric fθ lens
JPH03156413A (en) Projection lens