JPH01264569A - Power converter - Google Patents

Power converter

Info

Publication number
JPH01264569A
JPH01264569A JP8724588A JP8724588A JPH01264569A JP H01264569 A JPH01264569 A JP H01264569A JP 8724588 A JP8724588 A JP 8724588A JP 8724588 A JP8724588 A JP 8724588A JP H01264569 A JPH01264569 A JP H01264569A
Authority
JP
Japan
Prior art keywords
circuit
phase
auxiliary
power
phase bridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8724588A
Other languages
Japanese (ja)
Inventor
Yasuyuki Nishida
西田 保幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP8724588A priority Critical patent/JPH01264569A/en
Publication of JPH01264569A publication Critical patent/JPH01264569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce pulsations by newly installing a changeover circuit and an auxiliary circuit composed of auxiliary windings for two pairs of interphase reactors equipped with a plurality of taps. CONSTITUTION:The AC side input terminals U1-W1, U2-W2 of one three-phase bridge rectifier circuit 1 using thyristors T1-T6 as rectifying devices, the other three-phase bridge rectifier circuit 2 employing thyristors T7-T12 as rectifying devices, and a three-phase AC power supply 3 are connected in series at nodes U-W. The positive pole terminal P and negative pole terminal N of the DC side outputs of the three-phase bridge rectifier circuits 1-2 are connected respectively through main windings 4a, 4a' for interphase reactors 4, 4', and an auxiliary circuit 7 and a series circuit 5 are connected in series between the midpoints Oa, O'a of the interphase reactors. The auxiliary circuit 7 is composed of auxiliary windings 4b, 4b' and a changeover circuit 6 using auxiliary thyristors TO, TP1, TQ1, and the midpoints Oa, Ob of the main winding 4a and the auxiliary winding 4b are connected directly. Accordingly, the AC side current waveforms of both circuits 1-2 take a stepped waveform, and the waveforms are synthesized and the AC current waveform of the AC circuit 3 is acquired.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は電力変換装置に関するもので、さらに詳しく言
えば、電力変換装置の交流側電流の高調波および直流側
電圧の脈動の低減に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a power conversion device, and more specifically, to reduction of harmonics of AC side current and pulsation of DC side voltage of a power conversion device. be.

「従来の技術」 従来から整流器などの電力変換装置においては、該電力
交換装置の交流側電流に高調波成分が含まれ、一方直流
側電圧に脈動分か含まれている。この交流側電流に含ま
れる高調波成分(以下高調波電流と称す)か交流電源側
特に電力系統に流れ出ずことにより、該交流電源酸いは
電力系統に接続された各種機器に焼損、加熱、誤動作な
どの広範囲に及ぶ障害か発生し問題となっている。一方
直流側電圧に含まれる脈動分においても、該電力変換装
置の直流側に接続される直流電源あるいは各種機器に障
害を発生させる為、リアクl〜ルやコンデンサを用いた
直流フィルタの設置が不可欠であった。しかしながら該
直流フィルタの寸法・重量は大きく、電力変換装置の大
型化、高コスl−化の一因となっている。この為従来に
おいては、電力変換装置の多重化、多パルス化等により
高調波電流や直流側電圧の脈動分の低減を泪って来た。
"Prior Art" Conventionally, in power conversion devices such as rectifiers, the AC side current of the power exchange device includes harmonic components, while the DC side voltage includes pulsating components. If the harmonic components contained in this AC side current (hereinafter referred to as harmonic current) do not flow to the AC power supply side, especially to the power grid, the AC power source may cause burnout, heating, etc. to various devices connected to the power grid. This has caused widespread problems such as malfunctions. On the other hand, the pulsating component included in the DC side voltage can also cause trouble in the DC power supply or various equipment connected to the DC side of the power converter, so it is essential to install a DC filter using a reactor or capacitor. Met. However, the size and weight of the DC filter are large, contributing to the increase in size and cost of the power converter. For this reason, in the past, efforts have been made to reduce harmonic currents and pulsations in the DC side voltage by multiplexing power conversion devices, increasing the number of pulses, and the like.

第9図において従来の多種多相化の実施例として2重3
相サイリスクブリッジ12パルス整流装置の回路を示し
説明を行う。第9図に示す2重3相ザイリスタブリッジ
12パルス整流装置は公知のものであり、星形結線及び
三角結線の組合せからなる相間リアクl〜ル付2重3相
サイリスクブリッジ12パルス整流回路を有している。
In Fig. 9, as an example of conventional multi-type multi-phase conversion,
The circuit of the phase silis bridge 12 pulse rectifier will be shown and explained. The dual three-phase Xyristor bridge 12-pulse rectifier shown in Fig. 9 is a known one, and is a dual three-phase Xyristor bridge 12-pulse rectifier circuit with interphase reactors consisting of a combination of star-shaped and triangular connections. have.

第9図においてサイリスタ゛■゛1〜′l゛6を整流素
子とする3相ブリッジ整流回路1は星形結線された変圧
器8の一方の2次巻線8bに接続され、同様にサイリス
タ1゛1〜.′U1□を整流素子とする3相ブリッジ整
流回路2は三角結線された変圧器8の他方の2次巻線8
Cに接続され、変圧器8の1次巻線8aが3相交流電源
3に接続されている。、そして両3相ブリッジ整流回路
1,2は、直流部正極側が相間リアクトルの巻線4aの
端部であるPa 、Qaを介して接続され直流部質極側
は点O′aにてV[後接続され該相間リアクトルの巻線
4aの中点Oaと前記接続点0’aとの間に脈動低減の
ための直流フィルクリアク1−ル5を介して接続されて
いる負荷6に直流電圧を供給するようになっている。
In FIG. 9, a three-phase bridge rectifier circuit 1 having thyristors 1 to 6 as rectifying elements is connected to one secondary winding 8b of a star-connected transformer 8, and the thyristor 1 1~. A three-phase bridge rectifier circuit 2 with 'U1□ as a rectifier is connected to the other secondary winding 8 of a triangularly connected transformer 8.
C, and the primary winding 8a of the transformer 8 is connected to the three-phase AC power supply 3. , and both three-phase bridge rectifier circuits 1 and 2 are connected on the positive pole side of the DC part through Pa and Qa, which are the ends of the winding 4a of the interphase reactor, and on the positive pole side of the DC part at point O'a, V[ A DC voltage is applied to a load 6 which is connected afterwards and is connected between the midpoint Oa of the winding 4a of the interphase reactor and the connection point 0'a via a DC fill reactor 1-5 for pulsation reduction. It is designed to supply

かかる2種3相サイリスクブリッジ12パルス整流装置
の正常動作時において両3相ブリッジ整流回路1,2の
直流出力電圧etx、ea−はサイリスタ1゛1〜1゛
1□の制御角αの大きさによってその波形は変化するが
、制御角αか60[dO(I]程度の場合は、重なりを
無視すると第10図(a)に示すように互いに30[d
eq]の位相差のある6、f<fは電源周波数)の脈動
分を含む鋸歯状波となり、端子Oa 、O’a間の電圧
e di! Ce dt!= (e d+je d2)
/2〕は12fの脈動分を含む鋸歯状波、相聞リアクト
ルの巻線4aの両端にかかる電圧V、、(Vい−edl
  ed□)は、第10図(b)に示すように6fの略
方形波となる。一方、両3相ブリッジ整流回路1,2の
各交流入力電流js+、is□は第10図(C,)に示
すような120度導逆形の方形波交流波形となり、これ
らを変圧器8で合成した3相交流源3の電流imは第1
0図(C)示すような12パルスの階段波形となる。
During normal operation of this two-type three-phase thyristor bridge 12-pulse rectifier, the DC output voltages etx and ea- of both three-phase bridge rectifier circuits 1 and 2 are determined by the magnitude of the control angle α of the thyristors 1゛1 to 1゛1□. The waveform changes depending on the control angle α, but if the control angle α is about 60 [dO(I)], if the overlap is ignored, the waveform will be 30 [dO
It becomes a sawtooth wave including a pulsating component with a phase difference of 6, f<f is the power supply frequency), and the voltage e di! between terminals Oa and O'a is generated. Ce dt! = (e d+je d2)
/2] is a sawtooth wave including a pulsating component of 12f, and the voltage V applied across the winding 4a of the phase reactor, (V-edl
ed□) becomes a substantially square wave of 6f as shown in FIG. 10(b). On the other hand, each AC input current js+, is□ of both three-phase bridge rectifier circuits 1 and 2 becomes a 120-degree reversible square wave AC waveform as shown in FIG. The combined current im of the three-phase AC source 3 is the first
This results in a 12-pulse staircase waveform as shown in Figure 0 (C).

さらにパルス数を増すためには、例えは千鳥巻線等の3
組の巻線を有する変圧器、3台の3相ブリッジ整流回路
(18個の整流素子により構成される)、および3台の
相間リアクトルを組合わせて18パルス化した3重3相
ブリッジ18パルス整流回路を用いている。
In order to further increase the number of pulses, it is necessary to use a staggered winding, etc.
A triple three-phase bridge 18-pulse system that combines a transformer with two sets of windings, three three-phase bridge rectifier circuits (consisting of 18 rectifying elements), and three interphase reactors to create 18 pulses. A rectifier circuit is used.

「発明が解決しようとする課題」 このように、従来技術の多パルス化を実施するには仕様
の箕なる複数の巻線をもつ変圧器および多数台の変換回
路(パルス数と同数の整流素子)か必要となり、かつ制
御も複雑となるため電力変換装置全体として大幅な大形
化およびコストアップは′p1(すられない欠点がある
``Problems to be Solved by the Invention'' In this way, in order to implement the multi-pulse design of the prior art, it is necessary to use a transformer with multiple windings and a large number of conversion circuits (the same number of rectifiers as the number of pulses). ), and the control becomes complicated, resulting in a significant increase in the size and cost of the power converter as a whole.

本発明は上記従来技術に鑑み、大形かつ高価な変圧器を
必要とぜず、さらに整流素子数も低減し、経済的に交流
側電流の高調波および直流ff!I電圧の脈動を低減す
る変換装置の提供を目的とする。
In view of the above prior art, the present invention eliminates the need for a large and expensive transformer, further reduces the number of rectifying elements, and economically eliminates harmonics of the AC side current and DC ff! The present invention aims to provide a conversion device that reduces pulsations in I voltage.

「課題を解決するための手段」 上記目的を達成するための本発明による電力変換装置の
構成を第1図に示す。本発明による電力変換装置は2 
#JIの3相ブリッジ変換回路1,2の交流端tJ+ 
、 V+ 、 W+とU 2 +’ V 2 、 W2
. カそれぞれ3相交流凹U’63のU、V、Wに直接
接続され、両3相ブリッジ変換回路1,2の直流側正極
端P++を及びPd□は相間リアクトル4の主巻線4a
を介して、また直流側負極端N d+及びNd□は新た
な相間リアクトル4′の主巻線4′aを介してそれぞれ
接続されている。前記2組の相間リアクトル4,4゛に
おいては、それぞれの主巻線4a。
"Means for Solving the Problems" FIG. 1 shows the configuration of a power conversion device according to the present invention for achieving the above object. The power conversion device according to the present invention has two
#AC terminal tJ+ of JI three-phase bridge conversion circuit 1, 2
, V+ , W+ and U 2 +' V 2 , W2
.. are directly connected to U, V, and W of the 3-phase AC concave U'63, respectively, and the DC side positive ends P++ and Pd□ of both the 3-phase bridge conversion circuits 1 and 2 are connected to the main winding 4a of the interphase reactor 4.
, and the DC side negative terminals N d+ and Nd□ are connected to each other via the main winding 4'a of the new interphase reactor 4'. In the two sets of interphase reactors 4, 4', each main winding 4a.

4’aを具偏するとともに複数のタップを設けた補助巻
線4b、4′bを有しており、該2組の補助巻線4b、
4′bの各タップはそれぞれの巻線4b。
The two sets of auxiliary windings 4b, 4'b are provided with a plurality of taps.
Each tap of 4'b corresponds to a respective winding 4b.

4′bの中点を中心にして左右対称に各巻線4b。Each winding 4b is symmetrical about the midpoint of 4'b.

4′bにおいて同様に設けられ、一方の補助巻線4bの
各タップは、補助スイッチング素子(S P+。
4'b, each tap of one auxiliary winding 4b is connected to an auxiliary switching element (S P+).

5p2−−−−およびS。およびS or 、 S Q
2−−−− )により構成する切換回Ii!86を介し
て他方の補助巻線4′bの各タップに接続されている。
5p2---andS. and S or , S Q
2----) The switching circuit Ii! 86 to each tap of the other auxiliary winding 4'b.

前記2組の補助巻線と切換回路6から成る補助口1i1
87の一端において前記正極側相間リアクトル4の主巻
m4aと補助巻線4bの各中点OaおよびO’aを直結
し、他端においては負極側相聞リアクトル4′の補助巻
線4′bの中点0゛bを直流回路5の−@Pに接続して
いる。或いは、該補助回路7を前記負極側相聞リアクト
ル4′の主巻線4′aと補助巻線4′bの各中点0’a
およびO′bを直結し、他方の正極側相聞リアクトル4
の補助巻線4bの中点Obを前記直流回路5の一端Pに
接続することにより電力変換装置を構成している。
Auxiliary port 1i1 consisting of the two sets of auxiliary windings and switching circuit 6
At one end of the 87, the main winding m4a of the positive interphase reactor 4 and the midpoints Oa and O'a of the auxiliary winding 4b are directly connected, and at the other end of the auxiliary winding 4'b of the negative interphase reactor 4'. The midpoint 0'b is connected to -@P of the DC circuit 5. Alternatively, the auxiliary circuit 7 can be connected to each midpoint 0'a of the main winding 4'a and the auxiliary winding 4'b of the negative phase reactor 4'.
and O'b are directly connected, and the other positive electrode side phase reactor 4
A power converter is constructed by connecting the midpoint Ob of the auxiliary winding 4b to one end P of the DC circuit 5.

1作用」 このように、切換回路6と複数のタッグを持つ2紺の相
間リアクトル4,4゛の補助巻線4b。
1 action'' In this way, the switching circuit 6 and the auxiliary winding 4b of the two navy blue interphase reactors 4, 4' having a plurality of tags.

4’bからなる補助回路7を新たに設すなことにより、
切換凹1i46によって選択された前記2組の相間リア
クトル4,4′の補助巻線4b、4bの一部により直流
回路5の電圧e4、は、2台の3相ブリッジ変換回路1
.2の直流側電圧eat、e(12の平均値である点O
a〜O’a間の電圧e da (e daれる点Oa、
−P間の電圧edβの和(e d = e da−1−
edβ)となる。ここで前記補助回路7により得られる
電圧edβは、該補助回路7に設すなタップの数により
異なるが、階段状の交流波形となり前記2組の相間リア
クトル4.4′の主巻線4a。
By newly installing the auxiliary circuit 7 consisting of 4'b,
The voltage e4 of the DC circuit 5 is changed by a portion of the auxiliary windings 4b, 4b of the two pairs of interphase reactors 4, 4' selected by the switching recess 1i46 to the voltage e4 of the two three-phase bridge conversion circuits 1.
.. 2 DC side voltage eat, e (point O which is the average value of 12
Voltage e da between a and O'a (point Oa where e da is applied,
-P voltage edβ sum (ed = e da-1-
edβ). Here, the voltage edβ obtained by the auxiliary circuit 7 differs depending on the number of taps provided in the auxiliary circuit 7, but it becomes a stepped AC waveform and the main winding 4a of the two sets of interphase reactors 4, 4'.

4aに誘起される電圧V□に作用し、該電圧■。It acts on the voltage V□ induced in 4a, and the voltage ■.

の波形を階段状に変化させる。これにより前記edαの
脈動分が該edβにより相殺され直流回路の電圧edの
脈動分が低減される。
The waveform changes stepwise. As a result, the pulsation of the edα is offset by the edβ, and the pulsation of the voltage ed of the DC circuit is reduced.

一方、前記直流回路5の電流Idは前記2組の相間リア
クトル4,4′によるアンペアターン相配されるか該電
流Idは前記補助回路7を通る為該補助回路7を構成す
る前記2組の相間リアクトル4,4′の補助巻線4b、
4bを通ることになる。
On the other hand, since the current Id of the DC circuit 5 is divided into ampere turns by the two sets of interphase reactors 4 and 4', or the current Id passes through the auxiliary circuit 7, the current Id is passed through the auxiliary circuit 7 between the two sets of interphase reactors 4 and 4'. Auxiliary winding 4b of reactor 4, 4',
It will pass through 4b.

該補助巻線4b、4bに発生ずるアンペアターンは切換
回路6を構成する各スイッチング素子の動作(S P+
、 S p7−−−−5o−−−−8Q2+ S or
、)により変化するが、該袖助巻#!4b、4bと相聞
リアクトル4,4′の主巻線4a、、4aは磁気結合さ
れているため、該補助巻線4b、4.bに発生するアン
ペアターンは前記主巻線4 a、 、 4 aに誘起さ
れる。これにより前記相聞リアクトル4./1゜7.2 により分配されるidlとid2及びidl、1d2は
、! それぞれ前記補助巻線4b、4bのアンペアターンによ
る電流か重畳され凸凹のある電流波形となる。よって前
記2紐の3相ブリッジ変換回路1゜2の交流側電流波形
は階段状の波形となり3相交流回路3における交流電流
波形は、前記2組の3相ブリッジ変換回路1.2の交流
電流波形か合成された波形となる。この合成された波形
は多パルス化された波形となる為、高調波成分は低減さ
れた波形となる。
The ampere turns generated in the auxiliary windings 4b, 4b are caused by the operation of each switching element constituting the switching circuit 6 (S P+
, S p7−−−−5o−−−−8Q2+ S or
,), but the number of Sode Suke volume #! 4b, 4b and the main windings 4a, 4a of the phase reactors 4, 4' are magnetically coupled, so that the auxiliary windings 4b, 4. The ampere turn generated in the main windings 4a, 4a is induced in the main windings 4a, 4a. This causes the phase reactor 4. /1°7.2 idl, id2 and idl, 1d2 are distributed by ! The currents generated by the ampere turns of the auxiliary windings 4b and 4b are superimposed, resulting in an uneven current waveform. Therefore, the AC side current waveform of the two-string three-phase bridge conversion circuit 1.2 becomes a stepped waveform, and the AC current waveform in the three-phase AC circuit 3 is the AC current of the two sets of three-phase bridge conversion circuits 1.2. Either a waveform or a synthesized waveform. Since this synthesized waveform becomes a multi-pulse waveform, it becomes a waveform with reduced harmonic components.

「実施例」 本発明による実施例を第2図から第8図に示す。"Example" Embodiments according to the present invention are shown in FIGS. 2 to 8.

第2図は本発明を他励式整流装置に適用した実施例であ
り、第3図と第4図と第5図は第2図における各部動作
説明図であり、第6図は本発明を自励式整流装置に、第
7図は本発明を無効電力供給装置に、第8図は本発明を
他励式インバータ装置にそれぞれ適用した実施例である
。第2図に示す実施例において本発明の詳細な説明を行
う。第2図においてサイリスタ′■゛1〜′■゛6を整
流素子とする一方の3相ブリッジ整流回路1およびサイ
リスタ′F7〜T1□を整流素子とする他方の3相ブリ
ッジ整流回路2の交流側入力端U+ 、V+ 、W+お
よびU2.V2.W2と3相交流電源3か接続点LJ、
V、Wで直接に接続されている。前記3相ブリッジ整流
回路1,2の直流側出力の]F極端P dl+Pd□お
よび負極端N dl + N d2はそれぞれ相聞リア
クタンス4,4′の主巻線4a、4aを介して接続され
ており、該主巻線4.a、、4aの中点Oa 。
FIG. 2 shows an embodiment in which the present invention is applied to a separately excited rectifier, FIGS. 3, 4, and 5 are diagrams explaining the operation of each part in FIG. 2, and FIG. FIG. 7 shows an embodiment in which the present invention is applied to an excited rectifier, FIG. 7 shows an embodiment in which the present invention is applied to a reactive power supply device, and FIG. 8 shows an embodiment in which the present invention is applied to a separately excited inverter device. The present invention will be explained in detail in the embodiment shown in FIG. In Fig. 2, the AC side of one three-phase bridge rectifier circuit 1 with thyristors '■゛1 to '■゛6 as rectifying elements and the other three-phase bridge rectifier circuit 2 with thyristors 'F7 to T1□ as rectifying elements. Input terminals U+, V+, W+ and U2. V2. W2 and 3-phase AC power supply 3 connection point LJ,
They are directly connected by V and W. The F terminal P dl + Pd□ and the negative terminal N dl + N d2 of the DC side outputs of the three-phase bridge rectifier circuits 1 and 2 are connected via main windings 4a and 4a with phase-to-phase reactances 4 and 4', respectively. , the main winding 4. a,, midpoint Oa of 4a.

0’aの間に補助回路7と直流回路5か直列に接続され
ている。該補助口1187は、前記2組の相間リアクト
ル4,4°に設けられた中間タップを有する補助巻線4
b、4bと補助サイリスタ’ro。
0'a, the auxiliary circuit 7 and the DC circuit 5 are connected in series. The auxiliary port 1187 is connected to the auxiliary winding 4 having intermediate taps provided at the two sets of interphase reactors 4, 4°.
b, 4b and auxiliary thyristor 'ro.

Tp + 、 T o +を用いた切換回路6により構
成し、前記補助巻線4b、4bの互いに相対する両端P
I。
It is constituted by a switching circuit 6 using Tp + and T o +, and both ends P of the auxiliary windings 4b, 4b facing each other
I.

P’lおよびQl 、Q’lと中点Ub 、Obをそれ
ぞれ前記補助サイリスタT Pl+ rp Ql+ T
oを介して接続している。また前記相聞リアクトル4の
主巻線4aと補助巻線4bの中点Oa 、Obを直結し
、前記相聞リアクトル4′の補助巻線4bの中点O′b
は前記直流回路5の一端Pに直結している。
P'l and Ql, Q'l and midpoints Ub and Ob, respectively, are connected to the auxiliary thyristor T Pl+ rp Ql+ T
It is connected via o. Also, the midpoints Oa and Ob of the main winding 4a and the auxiliary winding 4b of the phase reactor 4 are directly connected, and the midpoint O'b of the auxiliary winding 4b of the phase reactor 4' is connected directly.
is directly connected to one end P of the DC circuit 5.

該直流回路5は直流フィルタリアクトル5aと直流負荷
5bを直列接続している。
The DC circuit 5 has a DC filter reactor 5a and a DC load 5b connected in series.

本実施例第2図の動作説明を前記2組の3相ブリッジ整
流回路の制御角αか60[deg]程度の場合について
第3図と第4図と第5図に示す動作説明図を用いて説明
する。説明において各サイリスタ’I’ + 〜T’ 
+2. To 、 ’I’p+、 To+は理想スイッ
チとし、3相交流電源3は3相対称正弦波とし、各相聞
リアクトル4,4′の励磁電流、巻線抵抗、漏れリアク
タンスは無視する。また直流フィルタリアクトル5aの
インタフタンスは十分に大きく直流出力電圧Idは一定
平滑としている。また前記2 #Aの相聞リアクトル4
.4′の各巻線Pa QaとP’aQ’aとPlo、と
P + O’−の巻数をそれぞれNa 、N’a、Nb
 、N’bとし、さらにNb/Na  =N’b/N’
a=Am  −−−−−(1)とする。
The operation of FIG. 2 of this embodiment will be explained using the operation explanatory diagrams shown in FIG. I will explain. In the description, each thyristor 'I' + ~T'
+2. To, 'I'p+, and To+ are ideal switches, the three-phase AC power supply 3 is a three-phase symmetrical sine wave, and the excitation current, winding resistance, and leakage reactance of each phase reactor 4, 4' are ignored. Further, the interface of the DC filter reactor 5a is sufficiently large and the DC output voltage Id is kept constant and smooth. Also, the phase reactor 4 of #2 above
.. The number of turns of each winding 4' Pa Qa, P'aQ'a, Plo, and P + O'- is Na, N'a, Nb, respectively.
, N'b, and further Nb/Na = N'b/N'
Let a=Am -----(1).

前記2組の3相ブリッジ整流回路1,2の各サイリスタ
′[1〜′「12の動作期を第3図(b)に示すように
制御すると該2#llIの3相ブリッジ整流回路1゜2
の直流出力電圧edl+e!+12は第3図(a)に示
すように3C(fは3相交流電源3の周波数)の脈12
−一 動分を含む鋸歯状の波形となり、前記2組の相間リアク
トル4.4′の主巻線4a、、4aの中点Oa 、O’
a間の電圧edaは前記電圧eatとQa2の平均値e
 da−(e at + e a2) /2であり、該
電圧edaは第3図(a)に示ず6fの脈動分を含む鋸
歯状の波形となる。一方前記相聞すアクドル4,4゜の
主巻線4a、、4’aに加わる電圧を第2図に示すよう
にそれぞれVma、 V’maとすると、その和である
Vm  (Vm =Vma)−V’ma )は前記電圧
e+++とQa2の差(Vm = e dl  e d
l)となり、該電圧Vmは第3図(d)に示すように6
fの略方形波となる。また2組の補助巻線4b、4bの
各端子間には次式、 で表される電圧か常に誘起しており、転流型なり角を無
視すれば、補助サイリスタT −、T p+ 。
If the operating period of each thyristor '[1-'12 of the two sets of three-phase bridge rectifier circuits 1 and 2 is controlled as shown in FIG. 3(b), the three-phase bridge rectifier circuit 1 of the 2 2
DC output voltage edl+e! +12 is the pulse 12 of 3C (f is the frequency of the three-phase AC power supply 3) as shown in Fig. 3(a).
- It becomes a sawtooth waveform including a single motion, and the midpoints Oa, O' of the main windings 4a, 4a of the two sets of interphase reactors 4,4'
The voltage eda between a is the average value e of the voltage eat and Qa2.
da-(e at + e a2) /2, and the voltage eda has a sawtooth waveform including a 6f pulsation component, not shown in FIG. 3(a). On the other hand, if the voltages applied to the main windings 4a, 4'a of the mutually facing axles 4, 4° are respectively Vma and V'ma as shown in FIG. 2, then the sum is Vm (Vm = Vma) - V'ma) is the difference between the voltage e+++ and Qa2 (Vm = e dl e d
l), and the voltage Vm is 6 as shown in FIG. 3(d).
It becomes a substantially square wave of f. Moreover, a voltage expressed by the following equation is always induced between each terminal of the two sets of auxiliary windings 4b, 4b, and if the commutation type turning angle is ignored, the auxiliary thyristors T − and T p+.

′F91のうち2つ以上が同時に導通状態にあることは
できす、何れかに逆電圧か加わる。そこで該各補助サイ
リスタT0. ’f’、、、、’I゛。1か導通状態に
あるときをそれぞれモードO,モードP、モードQと呼
ぶ事にする。つき′に各モードにおりる電圧、電流の関
係を説明する。モードPにおいては、2組の相聞リアク
トル4,4′の補助巻線4b。
It is possible for two or more of 'F91 to be conductive at the same time; a reverse voltage is applied to one of them. Therefore, each auxiliary thyristor T0. 'f',,,'I゛. 1 or conductive state will be referred to as mode O, mode P, and mode Q, respectively. Next, we will explain the relationship between voltage and current in each mode. In mode P, the auxiliary winding 4b of the two sets of mutual reactors 4, 4'.

4bの各中点と一端の間の巻線Ob P l、 0bp
)1に直流負荷電流Idか流れており、アンペアターン
相殺の条件から 但しi dl、  i d2.  i di、  i″
d2は第2図に示ず2組の3相ブリッジ整流回路1,2
のそれぞれの直流側出力電流、Idは直流負荷電流であ
る。
Winding Ob P l between each midpoint and one end of 4b, 0bp
)1, and from the condition of ampere-turn cancellation, i dl, i d2. i di, i″
d2 is not shown in Fig. 2 and is connected to two sets of three-phase bridge rectifier circuits 1 and 2.
The respective DC side output currents, Id, are DC load currents.

(3)式より 但し  im = Am1d  −−−−(5)一方第
2図に示す直流回路5の電jJ二e dは、ed=ed
a十edβ= e da」−Am  −Vm −−−−
−(6)但し、edaは第2図に示す2組の相間リアク
トル4.4°の主巻線4a、4’aの各中点Oa 、 
O’a間の電圧であり、edaは該主巻線4 a、の中
点Oaと直流回路5の一端の間に補助回路7によって生
ずる電圧となる。
From equation (3), however, im = Am1d ---- (5) On the other hand, the electric current jJ2e d of the DC circuit 5 shown in Fig. 2 is ed = ed
a0edβ= e da” -Am -Vm -----
-(6) However, eda is the midpoint Oa of the main windings 4a and 4'a of the two sets of interphase reactors 4.4° shown in FIG.
eda is the voltage generated between the midpoint Oa of the main winding 4a and one end of the DC circuit 5 by the auxiliary circuit 7.

他のモードであるモード0.モードQの場合は(4)式
、 (6)式において (1)式による巻数比Al11
をそれぞれO、A mとすれば各モードでの電圧、電流
の関係式か得られる。そしてVm>Oの期間におけるQ
→O−+Pのモードの転移およびVm<0の期間におり
るP→0→Qのモードの転移かそれぞれサイリスタT。
The other mode is mode 0. In the case of mode Q, in equation (4) and equation (6), the turns ratio Al11 according to equation (1) is
If O and Am are respectively set, the relational expressions for voltage and current in each mode can be obtained. And Q in the period when Vm>O
→O−+P mode transition and P→0→Q mode transition in the period of Vm<0, respectively, for the thyristor T.

、 ’I’ p + + T” o +の自然転流によ
って行われる。
, 'I' p + + T'' o + by natural commutation.

(4)式、(6)式で示した電流imおよび電圧edβ
は第2図に示す補助回路7の適用により生じた電流、電
圧であり、これが交流側入力電流iu。
Current im and voltage edβ shown in equations (4) and (6)
are the current and voltage generated by applying the auxiliary circuit 7 shown in FIG. 2, and this is the AC side input current iu.

iy、iwの高調波低減と直流回路の電圧edの脈動低
減に役立つ。これを第4図及び第5図により説明する。
Helps reduce harmonics of iy and iw and pulsation of voltage ed in the DC circuit. This will be explained with reference to FIGS. 4 and 5.

各動作モードO,P、Qを第2図(C)に示す区間とし
 (1)式における巻数比A+nを約0.3とすると、
前記2組の3相ブリッジ整流凹−15= 路1,2の直流側出力電流idlとi’dlおよびid
2とi’d2は第4図(a)に示すように一定平滑な1
/2Idに振幅Am’Idの脈動分imを重畳した凸凹
のある波形となり、このidlとi’dlおよびid2
とi’d2が前記サイリスタT1〜1゛1□により前記
2組の3相ブリッジ整流回路1.2の交流側入力の各相
に分配される、該3相ブリッジ整流回路1.2の交流側
入力のU相電流1u++  1.u2は第4図(b)に
示すような階段波形となり、前記3相交流回路3のU相
電流iuは前記1 u4と1u2の和(iu=i、++
i、□)であり、第4図(C)に示すように従来技術の
18パルス化と同等の波形となる。同様にV相及びW相
の各部電流波形についても18パルス化された波形か得
られる。
Assuming that each operating mode O, P, and Q is the section shown in Fig. 2 (C), and the turns ratio A+n in equation (1) is approximately 0.3,
Said two sets of three-phase bridge rectifier concave-15 = DC side output currents idl, i'dl and id of paths 1 and 2
2 and i'd2 are constant smooth 1 as shown in Figure 4(a).
/2Id is superimposed with the pulsating portion im of amplitude Am'Id, resulting in an uneven waveform, and these idl, i'dl and id2
and i'd2 are distributed to each phase of the AC side input of the two sets of three-phase bridge rectifier circuits 1.2 by the thyristors T1 to 1゛1□, the AC side of the three-phase bridge rectifier circuit 1.2 Input U-phase current 1u++ 1. u2 has a step waveform as shown in FIG. 4(b), and the U-phase current iu of the three-phase AC circuit 3 is the sum of 1u4 and 1u2 (iu=i,
i, □), and as shown in FIG. 4(C), the waveform is equivalent to that of the 18-pulse method of the prior art. Similarly, 18-pulse waveforms are obtained for each part of the V-phase and W-phase current waveforms.

一方前記2組の相間リアクトル4,4′の主巻線4a、
、4’aの各中点Oa 、 O’a間の電圧edaは第
2図(a)及び第5図(a)で示゛す6fの脈動分を含
む鋸歯状の波形であるか、該電圧edαに前記補助回路
7により生じた第5図(b)に示す電圧edβを加えた
直流回路の電圧e d  (e d = e da+ 
e dl)は第5図(C)で示ず18fの脈動分を含む
鋸歯状の波形となり、脈動低減においても、従来技術の
18パルス化と同等の波形となる。
On the other hand, the main winding 4a of the two sets of interphase reactors 4, 4',
, 4'a, the voltage eda between the midpoints Oa and O'a has a sawtooth waveform including a 6f pulsation component as shown in FIGS. 2(a) and 5(a), or The DC circuit voltage e d (ed = e da+
e dl), which is not shown in FIG. 5(C), has a sawtooth waveform including a pulsation component of 18 f, and even in terms of pulsation reduction, the waveform is equivalent to the 18-pulse waveform of the prior art.

本実施例においては前記2組の補助巻線4b。In this embodiment, the two sets of auxiliary windings 4b.

4bに中間点にタップを1ケ所設けた例であるか、タッ
プ数を増すことによりパルス数を増すことも可能である
。また本実施例の説明は前記各サイリスタT1〜T、2
の制御角αを6o[daqlとしたか他の角度において
も前記効果か得られることは明白である。
This is an example in which one tap is provided at the midpoint of 4b, or it is also possible to increase the number of pulses by increasing the number of taps. In addition, the description of this embodiment is based on each of the thyristors T1 to T, 2.
It is clear that the above effect can be obtained even when the control angle α is set to 6o[daql] or at other angles.

第6図は本発明による電力変換装置を自励式整流装置に
適用し補助巻線の中点にタップを設Gfた実施例を示す
回路図である。第6図において第2図と重複する説明は
省略する。2組の3相ブリッジ変換回路1.2及び切換
回路6を構成する各スイッチング素子にGTOやトラン
ジスタ等の自己消己素子或いは強制転流式サイリスタを
用いており、前記2組の3相ブリッジ変換回路1.2の
名スイッヂンク素子T +〜1゛1□の制御角αを進み
及び遅れのいずれにも設定可能な自励式整流装置として
機能する。
FIG. 6 is a circuit diagram showing an embodiment in which the power converter according to the present invention is applied to a self-excited rectifier and a tap is provided at the midpoint of the auxiliary winding. In FIG. 6, explanations that overlap with those in FIG. 2 will be omitted. A self-extinguishing element such as a GTO or a transistor, or a forced commutation thyristor is used for each switching element constituting the two sets of three-phase bridge conversion circuits 1.2 and the switching circuit 6, and the two sets of three-phase bridge conversion circuits 1. The switching element T of circuit 1.2 functions as a self-excited rectifier that can set the control angle α of T + to 1゛1□ to either lead or lag.

第2図及び第6図の実施例から鑑み、本発明による電力
変換装置は直流回路5において直流負荷を直流電源に置
き換えることにより第7図に示す他励式遅れ無効電力供
給装置や自励式無効電力供給装置に適用可能であるとと
もに、第8図に示ず他励インバータ装置や自励式インバ
ータ装置にも適用が可能であることは明白である。
In view of the embodiments shown in FIGS. 2 and 6, the power conversion device according to the present invention replaces the DC load in the DC circuit 5 with a DC power supply, thereby producing a separately excited delayed reactive power supply device and a self-excited reactive power supply device shown in FIG. It is obvious that the present invention is applicable not only to a supply device but also to a separately excited inverter device or a self-excited inverter device (not shown in FIG. 8).

1発明の効果」 以上実施例とともに具体的に示したように、本発明によ
れは、変圧器を用いず、かつ少数のスイッチング素子に
より従来の多パルス化と同等の交流側電流の高調波およ
び直流側電圧の脈動低減効果のある電力変換装置か得ら
れ、電力変換装置自体の小形・4量化、低コス1〜化は
もとより、高調波低減のために支流側に設置する交流フ
ィルタおよび直流側電流の脈動低減のための直流フィル
タかいずれも小形・小容量化もしくは不要とすることが
できる。また、直流フィルタの小容量化により電力変換
A置の連応性も改善される。
1. Effects of the Invention As specifically shown above with the embodiments, the present invention enables harmonics and harmonics of the AC side current equivalent to conventional multi-pulse generation without using a transformer and with a small number of switching elements. A power converter that has the effect of reducing DC side voltage pulsations can be obtained, and the power converter itself can be made smaller, 4-quantized, and lower in cost, as well as AC filters installed on the tributary side and DC side to reduce harmonics. Any DC filter for reducing current ripples can be made smaller and smaller in capacity, or can be made unnecessary. Further, by reducing the capacity of the DC filter, the coordination of the power conversion A position is also improved.

−1,9−一-1,9-1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電力変換装置の原理回路構成図、
第2図は本発明による電力変換装置のサイリスタ整流装
置としての実施例を示す回路図、第3図から第5図は第
2図の動作説明図、第6図は自励式整流装置としての一
実施例を示す回路図、第7図は他励式遅れ無効電力供給
装置としての一実施例を示ず回路図、第8図は他励式イ
ンバータ装置としての一実施例を示す回路図、第9図は
従来の2重3相ザイリスタブリッジ12パルス整流装置
の回路図、第10図は第9図の動作説明図である。 図面中、 1.2は3相ブリッジ変換回路、 3は3相交流回路、 4.4″は相間リアクトル、5は直流回路、6はL7ノ
換回路、7は補助回路 である。
FIG. 1 is a principle circuit diagram of a power conversion device according to the present invention;
FIG. 2 is a circuit diagram showing an embodiment of the power conversion device according to the present invention as a thyristor rectifier, FIGS. 3 to 5 are diagrams explaining the operation of FIG. 2, and FIG. A circuit diagram showing an embodiment, FIG. 7 is a circuit diagram without showing an embodiment as a separately excited delayed reactive power supply device, FIG. 8 is a circuit diagram showing an embodiment as a separately excited inverter device, and FIG. 9 10 is a circuit diagram of a conventional dual-three-phase Zyristor bridge 12-pulse rectifier, and FIG. 10 is an explanatory diagram of the operation of FIG. 9. In the drawings, 1.2 is a three-phase bridge conversion circuit, 3 is a three-phase AC circuit, 4.4'' is an interphase reactor, 5 is a DC circuit, 6 is an L7 conversion circuit, and 7 is an auxiliary circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)2台の3相ブリッジ変換回路の交流側端が並列接
続されかつ直流側正極端および負極端がそれぞれ複数の
タップを有する補助巻線を備えた相間リアクトルの主巻
線を介して接続され前記2台の相間リアクトルの主巻線
の中点間に直流回路を接続する2重3相ブリッジ電力変
換装置において、前記各相間リアクトルの補助巻線と補
助スイッチング素子を用いた切換回路により構成する複
助回路を直流側正極端および負極端のいづれか一方の相
間リアクトルの主巻線の中央点と前記直流回路の間に直
列に挿入することを特徴とする電力変換装置。
(1) The AC side ends of two three-phase bridge conversion circuits are connected in parallel, and the DC side positive and negative ends are each connected via the main winding of an interphase reactor equipped with an auxiliary winding having multiple taps. A double three-phase bridge power converter in which a DC circuit is connected between the midpoints of the main windings of the two interphase reactors, which is configured by a switching circuit using an auxiliary winding of each interphase reactor and an auxiliary switching element. A power conversion device characterized in that a double auxiliary circuit is inserted in series between the center point of the main winding of the interphase reactor at either the positive end or the negative end of the DC side and the DC circuit.
(2)特許請求の範囲第1項において、並列接続された
2台の3相ブリッジ変換回路の交流側端が3相交流電源
に接続され、直流回路が直流リアクトルや直流コンデン
サの少なくとも一方からなる直流フィルタと直流負荷で
構成され、電力変換装置が前記3相交流電源から前記直
流負荷への給電を行うための他励式あるいは自励式のい
づれか一方の整流装置として構成されていることを特徴
とする電力変換装置。
(2) In claim 1, the AC side ends of two 3-phase bridge conversion circuits connected in parallel are connected to a 3-phase AC power supply, and the DC circuit consists of at least one of a DC reactor and a DC capacitor. The power conversion device is composed of a DC filter and a DC load, and is configured as either a separately excited type or a self-excited type rectifier for supplying power from the three-phase AC power source to the DC load. Power converter.
(3)特許請求の範囲第1項において、並列接続された
2台の3相ブリッジ変換回路の交流開端が3相交流電源
に接続され直流回路が直流リアクトルや直流コンンデン
サのうち少なくとも一方からなる直流フィルタと整流器
あるいは蓄電池のような直流電源により構成されるか、
もしくは前記直流フィルタのみで構成され、電力変換装
置が前記3相交流電源への遅れまたは進みの少なくとも
一方の無効電力を供給するための他励式あるいは自励式
のいづれか一方の無効電力供給装置として構成されるこ
とを特徴とする電力変換装置。
(3) In claim 1, the AC open ends of two three-phase bridge conversion circuits connected in parallel are connected to a three-phase AC power supply, and the DC circuit is a DC circuit consisting of at least one of a DC reactor and a DC capacitor. Is it composed of a DC power source such as a filter and rectifier or storage battery?
Alternatively, the power conversion device is configured only with the DC filter, and is configured as either a separately excited type or a self-excited type reactive power supply device for supplying at least one of lagging or leading reactive power to the three-phase AC power source. A power conversion device characterized by:
(4)特許請求の範囲第1項において、並列接続された
2台の3相ブリッジ交換回路の交流側端が3相交流負荷
または3相交流電源のうちいづれか一方に接続され、直
流回路が直流リアクトルや直流コンデンサのうち少なく
とも一方からなる直流フィルタと整流器や蓄電池のよう
な直流電源によって構成され、電力変換装置が前記直流
電源から前記3相交流負荷または3相交流電源のうちい
づれか一方への給電を行うための他励式あるいは自励式
のうちいづれか一方のインバータ装置として構成されて
いることを特徴とする電力変換装置。
(4) In claim 1, the AC side ends of two 3-phase bridge exchange circuits connected in parallel are connected to either a 3-phase AC load or a 3-phase AC power supply, and the DC circuit is connected to a DC The power conversion device is configured with a DC filter consisting of at least one of a reactor and a DC capacitor, and a DC power source such as a rectifier and a storage battery, and the power conversion device supplies power from the DC power source to either the three-phase AC load or the three-phase AC power source. A power conversion device characterized in that it is configured as either a separately excited type or a self-excited type inverter device for performing.
JP8724588A 1988-04-11 1988-04-11 Power converter Pending JPH01264569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8724588A JPH01264569A (en) 1988-04-11 1988-04-11 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8724588A JPH01264569A (en) 1988-04-11 1988-04-11 Power converter

Publications (1)

Publication Number Publication Date
JPH01264569A true JPH01264569A (en) 1989-10-20

Family

ID=13909418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8724588A Pending JPH01264569A (en) 1988-04-11 1988-04-11 Power converter

Country Status (1)

Country Link
JP (1) JPH01264569A (en)

Similar Documents

Publication Publication Date Title
JP6181132B2 (en) Power converter
EP1192625B1 (en) Charge transfer apparatus and method therefor
US5886888A (en) Voltage source type power converting apparatus
Wheeler et al. Matrix converters: A technology review
US6236580B1 (en) Modular multi-level adjustable supply with series connected active inputs
EP3837759B1 (en) Electrical power converter
US10218285B2 (en) Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
WO1993023913A1 (en) Optimized high power voltage sourced inverter system
US11387730B2 (en) Electrical power converter
Lin Analysis and implementation of a three-level PWM rectifier/inverter
Liu et al. Multi-level voltage sourced conversion by voltage reinjection at six times the fundamental frequency
JP2012222999A (en) Power conversion device and power conversion device group system
JPH10337087A (en) Single phase-multiphase power converting circuit
KR101661567B1 (en) Boost matrix converter and motor driving system using thereof
JPS6353788B2 (en)
JPWO2019156192A1 (en) Power converter, power generation system, motor drive system and power interconnection system
EP0982843A2 (en) Power converter
JP4178331B2 (en) Serial multiple pulse width modulation cycloconverter device and control method thereof
JP2019176708A (en) Power converter, heat generation system, load system, and electricity distribution-sending system
JPH01264569A (en) Power converter
CN107947621B (en) High-power PWM grid-connected inverter circuit with multi-channel 96-pulse instantaneous value feedback
Baumann et al. Part II: experimental analysis of the very sparse matrix converter
JPH10323052A (en) Voltage dividing transformer and power converter the same
JP2510116B2 (en) 3-phase rectifier circuit
JP2566579B2 (en) Power converter