JPH01263623A - Optical integrated circuit - Google Patents

Optical integrated circuit

Info

Publication number
JPH01263623A
JPH01263623A JP63091422A JP9142288A JPH01263623A JP H01263623 A JPH01263623 A JP H01263623A JP 63091422 A JP63091422 A JP 63091422A JP 9142288 A JP9142288 A JP 9142288A JP H01263623 A JPH01263623 A JP H01263623A
Authority
JP
Japan
Prior art keywords
optical
integrated circuit
optical switch
switch
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63091422A
Other languages
Japanese (ja)
Inventor
Koji Ishida
宏司 石田
Hiroaki Inoue
宏明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63091422A priority Critical patent/JPH01263623A/en
Publication of JPH01263623A publication Critical patent/JPH01263623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To offer a small-sized, inexpensive time-division optical switch which eliminates the need for adjustment and has a low insertion loss by forming a spatial optical switch and an optical storage element (optical memory) of compound semiconductor materials of the same kind and integrating those on a compound semiconductor substrate of the same kind. CONSTITUTION:An incidence-side optical waveguide 3 crosses four optical waveguides 21 to 24 and optical switches 11 to 14 are arranged at the respective points of intersection. The optical waveguides 21 to 24 are linked with optical memories 31 to 34 and cross a projection-side optical waveguide 4, and optical switches 15 to 18 are arranged at the points of intersection. The optical switch parts and optical memories are formed of the compound semiconductor materials of the same kind and integrated on the compound semiconductor substrate of the same kind, and they are all connected by the same optical waveguides, so those elements need not be connected newly with one another and the loss at the connection points in reducible. Further, when the optical switch parts are composed of total reflection type optical switch, etc., the time-division optical switch is realized which has no polarizing direction dependency and is easily connected to optical fibers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信において光信号を光のまま交換処理を行
うための光集積回路に係り、特に時分割光交換に好適な
光集積回路に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical integrated circuit for exchanging optical signals as they are in optical communication, and particularly relates to an optical integrated circuit suitable for time-division optical exchange. .

〔実施例〕〔Example〕

光通信において信号を光のまま交換処理を行う光交換方
式は、将来の超高速、超広帯域交換網の実現に必須の技
術である。なかでも各人カチャネルのディジタル信号を
時間軸上で時分割し、交換すべき信号チャネルを時間軸
上で交互に入れ換えることによって交換を行う時分割交
換方式は将来の光交換の主流となることが期待されてい
る。この時分割光交換方式におけるキーデバイスは1×
nおよびnX1空間光スイッチと光メモリを組み合わせ
た時分割光スイッチである。これらの時分割光スイッチ
は従来、たとえば小林啓部氏等著による[双安定LDメ
モリと導波路型光スイッチを用いた時分割光通話路」、
昭和59年度電子通信学会総合全国大会、講演番号51
7−14において論じられている。これらの従来技術に
おいては光スイッチとしてLiNb0a導波型光スイツ
チを用い、また光メモリとして光フアイバ遅延線、ある
いは双安定半導体レーザを用い、これらを光ファイバに
よって結合して時分割光スイッチを構成している。
Optical switching systems, which exchange and process signals as they are in optical communications, are an essential technology for the realization of future ultra-high-speed, ultra-wideband switching networks. Among these, the time-division exchange method, in which the digital signals of each individual channel are time-divided on the time axis and the signal channels to be exchanged are exchanged alternately on the time axis, is expected to become the mainstream of optical exchange in the future. It is expected. The key device in this time-division optical switching system is 1×
This is a time-division optical switch that combines n and nX1 spatial optical switches and optical memory. These time-division optical switches have conventionally been used, for example, in ``Time-division optical communication channel using bistable LD memory and waveguide type optical switch'' written by Keibe Kobayashi et al.
1988 IEICE General National Conference, Lecture No. 51
7-14. In these conventional technologies, a LiNb0a waveguide optical switch is used as an optical switch, an optical fiber delay line or a bistable semiconductor laser is used as an optical memory, and these are coupled through an optical fiber to form a time-division optical switch. There is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は2個のLiNb0a光スイツチと、これ
とまったく材料の異なる光メモリを光ファイバによって
接続する構成となっているため、■素子全体の寸法が大
きくなる、■LiNb0a光スイッチはその特性に入射
光の偏光方向依存性があるため、他の部品との接続の調
整に多大の労力を要する。
The above conventional technology has a configuration in which two LiNb0a optical switches and an optical memory made of completely different materials are connected by an optical fiber. Due to the dependence of light on the polarization direction, a great deal of effort is required to adjust connections with other components.

■各々の接続点で結合損失があるため、素子全体の挿入
損失が大となる、■製造コストが大となる、等の問題が
あった。
There were problems such as: (1) coupling loss occurs at each connection point, so the insertion loss of the entire element becomes large; and (2) manufacturing cost increases.

本発明の目的は以上のような問題を解決し、小型で調整
不要な、かつ低挿入損失で安価な時分割光スイッチを提
供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a time division optical switch that is small, does not require adjustment, has low insertion loss, and is inexpensive.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は空間光スイッチと光記憶素子(光メモリ)を
同種の化合物半導体材料で構成し、これらを同種の化合
物半導体基板上に集積することにより達成される。
The above object is achieved by constructing the spatial optical switch and the optical storage element (optical memory) using the same type of compound semiconductor material and integrating them on the same type of compound semiconductor substrate.

以下本発明の概要を第1図を用いて説明する。The outline of the present invention will be explained below using FIG. 1.

ここでは簡単のためにチャンネル数:n=4の場合を例
にとって説明を行う。同図において入射側先導波路3は
4本の光導波路21〜24と交叉しており、各々の交叉
点には光スイッチ11〜14が配置されている。光導波
路21〜24は光メモリ31〜34に連絡しており、さ
らに出射側光導波路4と交叉しており、この交叉点にも
光スイッチ15〜18が配置されている。
Here, for the sake of simplicity, the case where the number of channels: n=4 will be explained as an example. In the figure, the incident side leading waveguide 3 intersects with four optical waveguides 21 to 24, and optical switches 11 to 14 are arranged at each intersection point. The optical waveguides 21 to 24 communicate with the optical memories 31 to 34, and further intersect with the output side optical waveguide 4, and optical switches 15 to 18 are also arranged at the intersection points.

入射側光導波路3に入射した光信号は、光信号と同期し
た光スイツチ駆動信号によって順次光メモリ31〜34
に書き込まれる。書き込まれた光信号は、指定された順
序に従う読み出し信号によって光スイッチ15〜18を
通じて出射側光導波路4に読み出される。このとき読み
出し信号の順序を任意に変えることによって、信号チャ
ネルを時間軸上で交互に入れ換えることができる。
The optical signal incident on the input side optical waveguide 3 is sequentially transferred to the optical memories 31 to 34 by an optical switch drive signal synchronized with the optical signal.
will be written to. The written optical signal is read out to the output side optical waveguide 4 through the optical switches 15 to 18 by a readout signal according to a specified order. At this time, by arbitrarily changing the order of the read signals, the signal channels can be alternated on the time axis.

〔作用〕[Effect]

第1図に示した通り、本発明の構成によれば光スイツチ
部、光メモリがすべて同一の光導波路で結ばれているた
め、これらの素子間を新たに接続する必要がなく、また
接続点における損失も低減できる。さらに光スイツチ部
を全反射型などの偏光方向依存性の無い光スイッチで構
成すれば全体としてまったく偏光方向依存性のない、光
ファイバとの接続が容易な時分割光スイッチを得ること
ができる。
As shown in FIG. 1, according to the configuration of the present invention, the optical switch section and the optical memory are all connected by the same optical waveguide, so there is no need to make new connections between these elements, and there is no need to make new connections at the connection points. Loss can also be reduced. Furthermore, by constructing the optical switch section with an optical switch having no polarization direction dependence, such as a total reflection type, it is possible to obtain a time-division optical switch that has no polarization direction dependence as a whole and can be easily connected to an optical fiber.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例1 n−InP基板1上に第1図に示すような光集積回路を
作製した。光スイツチ部は第2図および第3図に示すよ
うにY型とし、先導波路の1部に第3図の56に示すよ
うにZn拡散によって電流注入部を設け、これによって
光導波路の1部に流れる電流によって屈折率を減少させ
、入射光を全反射によって切り換える方式とした。光メ
モリ部は第4図に示すように中央部に非注入領域を設け
たタンデム電極構造の分布帰還型双安定半導体レーザを
用いた。
Example 1 An optical integrated circuit as shown in FIG. 1 was fabricated on an n-InP substrate 1. The optical switch section is Y-shaped as shown in FIGS. 2 and 3, and a current injection section is provided in one part of the leading waveguide by Zn diffusion as shown at 56 in FIG. The refractive index is reduced by a current flowing through the laser beam, and the incident light is switched by total internal reflection. As shown in FIG. 4, the optical memory section used a distributed feedback bistable semiconductor laser having a tandem electrode structure with a non-injected region in the center.

本光集積回路の作製は次のようにして行った。The present optical integrated circuit was manufactured as follows.

まずInP基板の上に分布帰還1j!(DFB)レーザ
用回折格子を干渉露光法により形成した。その上にDF
Bレーザ用多用膜層液相結晶成長法LPE法により成長
した。次いでDFBL;−ザ部を残してスイッチ部領域
の多層膜のエツチングを行った後、光スイツチ用の多層
膜を同様にLDE法で成長した。この後メサエッチング
を行って光導波路3.4.21〜28を形成し、光スイ
ッチの電流注入用およびDFBレーザ電極コンタクト用
Zn拡散56,7aを行い、p側の電極57,83゜8
4を蒸着した。最後に裏面を研磨し、鏡面化エツチング
を行った後n側電極60,82を蒸着した。
First, distributed feedback 1j on the InP substrate! (DFB) A diffraction grating for a laser was formed by an interference exposure method. DF on top of that
B laser multilayer film layer was grown by liquid phase crystal growth (LPE) method. Next, the multilayer film in the switch region was etched, leaving the DFBL; After this, mesa etching is performed to form optical waveguides 3.4.21 to 28, Zn diffusion 56, 7a for current injection of the optical switch and DFB laser electrode contact is performed, and p-side electrodes 57, 83°8 are formed.
4 was deposited. Finally, the back surface was polished and etched to make it mirror-finished, and then the n-side electrodes 60 and 82 were deposited.

本方法によって作製した4チヤネルの時分割光交換用光
集積回路の素子寸法は長さ6mであった。
The device dimension of the 4-channel optical integrated circuit for time-division optical switching produced by this method was 6 m in length.

本光集積回路の入力および出力側に単一モード光ファイ
バを接続し、光信号の伝送特性を測定した。
Single-mode optical fibers were connected to the input and output sides of this optical integrated circuit, and the transmission characteristics of optical signals were measured.

光信号としては8Mb/Sのディジタル信号を4チャネ
ル多重化した32Mb/S、パルス巾15nsのものを
用いた。この入力光信号を第1図21〜24の1×4書
き込み光スイッチによって順次分離した後に各双安定L
Dに送出した。双安定LDはこの光信号に応じ、2値の
光量のいずれかを保持する0次いで4×1読み出しスイ
ッチ】−5〜18を16.15,18.17の順で駆動
する。
The optical signal used was a 32 Mb/S optical signal obtained by multiplexing 8 Mb/S digital signals into four channels and a pulse width of 15 ns. After this input optical signal is sequentially separated by the 1×4 writing optical switches shown in FIGS. 21 to 24, each bistable L
Sent to D. In response to this optical signal, the bistable LD drives 0 then 4×1 readout switches ]-5 to 18 in the order of 16.15 and 18.17, which hold one of the binary light quantities.

この手順を各タイムスロットル毎に順次繰り返した。ま
た双安定I、 Dは各タイムスロットル毎にリセット電
流パルスによって記憶内容をリセットした。このように
して第1図の41に示す入射光パルス列が42に示すよ
うに出射側で時系列的に交換されることを確かめた。ま
たこの時分割光スイツチ用光集積回路の挿入損失は14
dBであった。
This procedure was repeated for each time throttle in turn. In addition, the memory contents of bistable I and D were reset by a reset current pulse for each time throttle. In this way, it was confirmed that the incident light pulse train shown at 41 in FIG. 1 was exchanged in time series on the output side as shown at 42. In addition, the insertion loss of this optical integrated circuit for time division optical switch is 14
It was dB.

以上、本実施例によれば従来、1×n、およびnX1光
スイツチと光メモリを光ファイバによって互いに接続し
て構成していた時分割光スイッチが長さ6++nのチッ
プ上に集積でき、これによって従来22〜25dB程度
であった同光スイッチの挿入損失を約10dB程度低減
できるという効果がある。
As described above, according to this embodiment, the time-division optical switch, which was conventionally constructed by connecting 1×n and n×1 optical switches and optical memories to each other through optical fibers, can be integrated on a chip with a length of 6++n. This has the effect of reducing the insertion loss of the optical switch, which was about 22 to 25 dB, by about 10 dB.

実施例2 実施例1に述べた方法と同様の方法で時分割用光スイツ
チ集積回路を作製した。但し、光スイツチ部の光導波層
(第3図中、2)はノンドープとした。この光集積回路
の光スイツチ部(第1図11〜18)に電圧を印加して
実施例1と同様の特性測定を行ったところ、入射光パル
ス列が時系列的に交換できることが確かめられた。また
入射信号として64Mb/Sの信号4チヤンネルを多重
化した256Mb/Sのディジタル信号を用いても同様
に入射信号パルス列の光交換が可能なことが確かめられ
たう 以上、本実施例によれば電圧印加による屈折率変化を用
いると高速の光交換を行うことのできる時分割光スイッ
チを長さ6mのチップ上に集積でき、これによって各部
品間の接続が不要で低挿入損失の時分割光スイッチが容
易に得られるという効果がある。
Example 2 A time division optical switch integrated circuit was manufactured in the same manner as described in Example 1. However, the optical waveguide layer (2 in FIG. 3) of the optical switch portion was non-doped. When a voltage was applied to the optical switch section (FIGS. 11 to 18) of this optical integrated circuit and the characteristics were measured in the same manner as in Example 1, it was confirmed that the incident optical pulse train could be exchanged in time series. Furthermore, it has been confirmed that even if a 256 Mb/S digital signal multiplexed with 4 channels of 64 Mb/S signals is used as an incident signal, it is possible to optically exchange the input signal pulse train in the same way.According to this example, By using refractive index change due to applied voltage, a time-division optical switch capable of high-speed light exchange can be integrated on a 6 m long chip. This eliminates the need for connections between each component and enables time-division optical switching with low insertion loss. This has the effect that the switch can be easily obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来例々の部品を
光ファイバによって相互に接続している時分割型光スイ
ッチを同一基板上に集積化できるので、小型で高集積化
が可能で、接続点における損失が無く、また接続時の微
細な調整が不要となるという効果がある。
As explained above, according to the present invention, it is possible to integrate time-division type optical switches, in which conventional components are interconnected by optical fibers, on the same substrate, making it possible to achieve small size and high integration. This has the advantage that there is no loss at the connection point, and there is no need for fine adjustments at the time of connection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概観図、第2図は光スイツ
チ部の概観図、第3図は第2図のA−A’の断面図、第
4図は光記憶素子の概観図である。 1・・・基板、2・・・光導波層、3,4.21〜28
・・・光導波路、11〜18・・・光スイッチ、31〜
34・・・光記憶素子、41・・・入射光パルス列、4
2・・・出’s   ノ  r!::1 43  七HLへ−ルスク畷J 第 2−2 第 3 記 f4   Zn邪1−着
FIG. 1 is an overview of an embodiment of the present invention, FIG. 2 is an overview of the optical switch section, FIG. 3 is a sectional view taken along line AA' in FIG. 2, and FIG. 4 is an overview of the optical storage element. It is a diagram. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Optical waveguide layer, 3, 4.21-28
... Optical waveguide, 11-18... Optical switch, 31-
34... Optical storage element, 41... Incident light pulse train, 4
2... De's no r! ::1 43 To 7th HL - Rusk Nawate J No. 2-2 No. 3 f4 Znja 1- Arrival

Claims (1)

【特許請求の範囲】 1、1つのチャネルに入力された光信号をn個のチャネ
ルに分配する機能を持つ1×n光スイッチと、n相のチ
ャネルに入力された光信号を1つのチャネルに多重化す
る機能を持つn×1光スイッチがn個の光記憶素子を介
して互いに接続され、かつこれらの素子がすべて同種の
化合物半導体結晶によつて構成され、かつ同種の化合物
半導体基板上に一体となつて集積されていることを特徴
とする光集積回路。 2、前記光記憶素子が双安定半導体レーザによつて構成
されていることを特徴とする特許請求の範囲第1項記載
の光集積回路。 3、前記光スイッチのスイッチ特性が入射光の偏光方向
に依存しないことを特徴とする特許請求の範囲第1項記
載の光集積回路。 4、前記光スイッチは注入される電流によつて生じる屈
折率変化を利用して光路の切り換えを行うことを特徴と
する特許請求の範囲第1項記載の光集積回路。 5、前記光スイッチは印加される電圧によつて生じる屈
折率変化を利用して光路の切り換えを行うことを特徴と
する特許請求の範囲第1項記載の光集積回路。 6、前記光スイッチおよび前記光記憶素子のいずれかが
、あるいは両者共に多重量子井戸構造を有することを特
徴とする特許請求の範囲第1項記載の光集積回路。
[Claims] 1. A 1×n optical switch having a function of distributing an optical signal input into one channel to n channels, and an optical signal input into n-phase channels into one channel. n × 1 optical switches having a multiplexing function are connected to each other via n optical storage elements, and all of these elements are composed of the same type of compound semiconductor crystal and are placed on the same type of compound semiconductor substrate. An optical integrated circuit characterized by being integrally integrated. 2. The optical integrated circuit according to claim 1, wherein the optical storage element is constituted by a bistable semiconductor laser. 3. The optical integrated circuit according to claim 1, wherein the switching characteristics of the optical switch do not depend on the polarization direction of incident light. 4. The optical integrated circuit according to claim 1, wherein the optical switch switches the optical path using a change in refractive index caused by an injected current. 5. The optical integrated circuit according to claim 1, wherein the optical switch switches the optical path using a change in refractive index caused by an applied voltage. 6. The optical integrated circuit according to claim 1, wherein either or both of the optical switch and the optical storage element have a multiple quantum well structure.
JP63091422A 1988-04-15 1988-04-15 Optical integrated circuit Pending JPH01263623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091422A JPH01263623A (en) 1988-04-15 1988-04-15 Optical integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091422A JPH01263623A (en) 1988-04-15 1988-04-15 Optical integrated circuit

Publications (1)

Publication Number Publication Date
JPH01263623A true JPH01263623A (en) 1989-10-20

Family

ID=14025937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091422A Pending JPH01263623A (en) 1988-04-15 1988-04-15 Optical integrated circuit

Country Status (1)

Country Link
JP (1) JPH01263623A (en)

Similar Documents

Publication Publication Date Title
US5581643A (en) Optical waveguide cross-point switch
US4737003A (en) Optical switching device utilizing multiple quantum well structures between intersecting waveguides
Renaud et al. Semiconductor optical space switches
US4813757A (en) Optical switch including bypass waveguide
JPH09218316A (en) Optical add/drop multiplex element
US5146513A (en) Semiconductor optical device and array of the same
CA2367828C (en) An optical crosspoint switch using vertically coupled waveguide structure
JPH07507157A (en) optical switching device
US20060023993A1 (en) Directional optical coupler
WO1999017140A1 (en) Tightly curved digital optical switches
JPH01263623A (en) Optical integrated circuit
US5321782A (en) Directional coupler type optical function element
US5394491A (en) Semiconductor optical switch and array of the same
JPS60254991A (en) Time-division optical exchange
JP2858744B2 (en) Multi-channel optical switch and driving method thereof
US5247592A (en) Semiconductor optical device and array of the same
US6498885B1 (en) Semiconductor nonlinear waveguide and optical switch
EP0494751B1 (en) Directional coupler type optical function element
JPH1078521A (en) Semiconductor polarization rotating element
JPH07106548A (en) Semiconductor light source device and driving method therefor
JP2901321B2 (en) Optical demultiplexer
JPH01197724A (en) Optical waveguide switch
JP2994078B2 (en) Directional coupler type optical functional device and driving method thereof
JPS62260127A (en) Optical switch
JPH0638539B2 (en) Optical bistable integrated device