JPS62260127A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS62260127A
JPS62260127A JP10346486A JP10346486A JPS62260127A JP S62260127 A JPS62260127 A JP S62260127A JP 10346486 A JP10346486 A JP 10346486A JP 10346486 A JP10346486 A JP 10346486A JP S62260127 A JPS62260127 A JP S62260127A
Authority
JP
Japan
Prior art keywords
type
waveguide
layer
coupling part
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10346486A
Other languages
Japanese (ja)
Other versions
JPH083595B2 (en
Inventor
Norihisa Okamoto
岡本 則久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10346486A priority Critical patent/JPH083595B2/en
Publication of JPS62260127A publication Critical patent/JPS62260127A/en
Publication of JPH083595B2 publication Critical patent/JPH083595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a small-sized inexpensive optical switch by forming a clad layer consisting of an n-type ZnSxSe1-x (0<x<=1) and a coupling waveguide layer consisting of an n-type ZnSySe1-y (0<=y<1 and x>y) on an Si substrate and providing a carrier charging electrode in a coupling part on the waveguide layer to quickly switch visible rays by electric control. CONSTITUTION:A clad layer 3 consisting of an n-type ZnS epitaxial layer is formed with 1mu thickness on a p-type Si single crystal substrate 1, and an n-type ZnS0.5Se0.5 mixed layer 3 is formed with 3mu thickness on it, and ridge parts 4 of two waveguides and the charging electrode of a coupling part 5 are formed by the photo process. The size of the substrate is 15mmX5mm, and a width of the ridge part is 7mu, and two waveguides having 1.5mu height are provided in the coupling part 3mu apart from each other. The length of the electrode in the coupling part is 10mm. If the light having 0.633mu wavelength of an He-Ne laser is made incident on one waveguide 7, an optical output ratio P1/P2 in output terminals 8 and 9 is 1/0.01 when the voltage is zero, but the optical output terminal is switched from the terminal 8 to the terminal 9 when 20V DC voltage is impressed to one electrode 10, thus making switching possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光信号の伝送路を電気的に切り換える光スイッ
チに関し、づらに詳しくげプラスチックファイバー伝送
及び光計測等に有用な可視光の切り換えが可能な光スイ
ッチに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical switch that electrically switches the transmission path of an optical signal. Concerning possible optical switches.

〔従来技術〕[Prior art]

半導体レーザの普及と光ファイバーの高品質化に情報化
社会に於ける光伝逆の実現ヲ可能とし、長距離通信はも
ちろん、工場、オフィス内、自動車内、機器間に本光情
報処理及び伝送を実=p、 !、つつある。特に短距離
の情報伝送にはプラスチックファイバーが安価である事
から普及しつつあり、その伝送損失が600 nm付近
の可視域にある事、又、光計測等に於てけ視V性の点か
ら可視光半導体レーザの開発がす丁めらn、できた。(
例えば、Appl、 Phys、 Lett、旦(3)
、p207.1986記載) 従来こ1らの光信号を異なる伝送路に切り換えるスイッ
チに、メカニカルなスイッチが代表的であつ几。第四図
にその原理を示す。入力ファイバー■からの光はレンズ
Oにより平行光に変換さn7、可動プリズム[株]によ
り全反射され、レンズ0を経て出力ファイバー[株]に
導入−gt”する。プリズムを下刃に動かす事により出
カフアトバー20へ切り換える事が可能である。
The spread of semiconductor lasers and the improvement of the quality of optical fibers have made it possible to realize optical transmission in the information society, making it possible not only for long-distance communication but also for optical information processing and transmission within factories, offices, automobiles, and between devices. Real = p, ! , is coming. In particular, plastic fibers are becoming popular for short-distance information transmission because they are inexpensive, and their transmission loss is in the visible range around 600 nm. The development of an optical semiconductor laser has finally been completed. (
For example, Appl, Phys, Lett, Dan (3)
, p. 207, 1986) Conventionally, mechanical switches have been the typical switch for switching these optical signals to different transmission paths. Figure 4 shows the principle. The light from the input fiber ■ is converted into parallel light by the lens O, is totally reflected by the movable prism [Co., Ltd.], and is introduced into the output fiber [Co., Ltd.] through the lens 0. By moving the prism to the lower blade. It is possible to switch to the output cuff bar 20 by.

一万可動部ケ無くした電気的固体スイッチとしてに、例
えば、Appl、 Phys、 Lett、 36(7
)、 491(1980)記載の、LiNbO5結晶上
導波路に方向性結合器を形成したもの、又、$45回応
用物理学会講演予縞集(昭和59年秋季p115.13
P−L−10〜12)記載の如<、GaAs基板上にG
aAs’Jツジ型導波路を型内波路合型に形成したもの
が知ら几てい友。
As an electric solid state switch without moving parts, for example, Appl, Phys, Lett, 36 (7
), 491 (1980), in which a directional coupler is formed in a waveguide on a LiNbO5 crystal, and the 45th Japan Society of Applied Physics Lecture Collection (Autumn 1980 p115.13).
As described in P-L-10 to 12), G on a GaAs substrate
A well-known example is an aAs'J Tsuji-type waveguide formed in an in-mold waveguide type.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし前述の従来技術でに次の如き問題点があり改善が
望筐nでい几。
However, the above-mentioned conventional technology has the following problems and cannot be improved.

1、 可動プリズム式スイッチに応答が遅く、又組立て
f1f度のバラ付きが大きく、スイッチの形状も大きく
なる。
1. The response of the movable prism type switch is slow, there is a large variation in assembly f1f degrees, and the shape of the switch is also large.

2、 単結晶基板を用いるものn 、L t Nb O
s !GaAs等高価で品質のよいものが得にくく、又
研磨が難しい。
2. Using a single crystal substrate n, L t Nb O
S! It is difficult to obtain high-quality materials such as GaAs, which are expensive, and difficult to polish.

3、  GaAs系化合物半導体を導波層に用いるもの
は、小型で集積化も可能である反面、基礎吸収端に相当
する波長が長く、可視光では吸収損失が大きすぎて導波
路としては不適、 そこで本発明に、かかる問題点を除去する4ので、その
目的に電気制御で可視光を高速に切り換え、且つ安価で
小型な光スイッチを提供する点にある。
3. Those using GaAs-based compound semiconductors for the waveguide layer are compact and can be integrated, but the wavelength corresponding to the fundamental absorption edge is long and the absorption loss for visible light is too large, making them unsuitable as waveguides. Therefore, in order to eliminate such problems, the present invention provides an optical switch that can switch visible light at high speed by electrical control and is inexpensive and compact.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光スイッチiq、S、基板上にn型ZnSxS
e1−x (但し0くXく1)よりなるクラッド層及び
n型ZnS7Ses−y(但し0≦y<1且ツx > 
y )よりなる結合型導波層、及び該導波層上結合部に
キャリヤ注入電[?設置した事′!r−特徴とする。
Optical switch iq,S of the present invention, n-type ZnSxS on the substrate
A cladding layer consisting of e1-x (however, 0 x x 1) and an n-type ZnS7Ses-y (however, 0≦y<1 and x>
y ), and the carrier-injected electric current [? I installed it! r-Characterized.

以下実施例に基づき本発明″f説明する。The present invention will be explained below based on examples.

〔実施例1〕 第1図は本発明に基づくりツジ型導波路を用い之方向性
結合型光スイッチの上面図、第2図に断面図ケ示す。
[Embodiment 1] FIG. 1 is a top view of a directional coupling type optical switch using a twisted waveguide according to the present invention, and FIG. 2 is a cross-sectional view.

p型St単結晶基板Φ上に、n型ZnSエピタキシャル
層からなるクラッド層■?1μ、さらにn型Zn5o、
5Seo、s混晶層■を3μ形成した後、フォト工程に
より2本の導波路のりツジ部■及び結合部■の注入電極
を形成してなる。基板の大きざに15NL×5朋、リッ
ジ部の幅■は7μ、高さ1.5μからなる2本の導波路
を結合部に於ては3μの距離隔てて設置してなる。又結
合部の電極の長さHlommである。−万の導波路■に
He−Neレーザの0.653μの光?入射すると、電
圧0でに出力端■、■に於ける各々の光出力比P 1/
 P zが110、olであつtのが、−万の電極Oに
20Vの直流電圧を印加する事により、光出力は■から
■へ移行し、スイッチングが可能である。導波路の損失
は曲りも含めて全体で約4 dB、スイッチング速度に
約1 n8eeであった。
A cladding layer consisting of an n-type ZnS epitaxial layer is formed on a p-type St single crystal substrate Φ? 1μ, further n-type Zn5o,
After forming a 5Seo, s mixed crystal layer (3) to a thickness of 3 μm, injection electrodes for the two waveguide joint portions (2) and coupling portion (2) are formed by a photo process. The substrate size is 15NL x 5mm, the width of the ridge part is 7μ, and the two waveguides each having a height of 1.5μ are installed at a distance of 3μ at the coupling part. Also, the length of the electrode at the coupling portion is Hlomm. -0.653μ light of He-Ne laser in 10,000 waveguide ■? When the light is incident, the respective optical output ratios at the output terminals ■ and ■ at voltage 0 are P 1/
By applying a DC voltage of 20 V to the electrode O where Pz is 110, ol is -0,000 and t is -10,000, the optical output shifts from ■ to ■, and switching is possible. The waveguide loss was approximately 4 dB in total including bends, and the switching speed was approximately 1 n8ee.

出力端に於ける消光比の向上は、2本の導波路′ の結
合部に於ける伝搬定数?一致きせる事により電圧Ovで
は、結合部長ケ完全結合長の1/2にする事により、全
ての出力全出力端1に集中ぜせる事が可能であり、又、
適当な電圧に於て、完全に出力端2へ移す事が可能であ
る。
Is the extinction ratio improvement at the output end due to the propagation constant at the coupling part of the two waveguides? By making them match, at voltage Ov, by making the coupling length 1/2 of the complete coupling length, it is possible to concentrate all outputs on the output terminal 1, and,
At a suitable voltage, it is possible to transfer it completely to the output terminal 2.

〔実施例2〕 第3図は、上側クラッド層として、1.5μ厚の導波層
上にZnSe0?−導波路形状に厚畑1,7μ形成した
積層型導波路を用いt方向4g−結合型光スイッチを示
す。
[Example 2] FIG. 3 shows ZnSe0? as the upper cladding layer on a 1.5μ thick waveguide layer. - A 4g-coupling type optical switch in the t-direction is shown using a stacked waveguide with a thickness of 1.7 μm formed in the waveguide shape.

実施例1と同様He −N eレーザ光?i圧印加によ
り、スイッチングが可能である。
He-Ne laser beam as in Example 1? Switching is possible by applying i pressure.

上記実施例でにクラッド層としてZnS層を又、導波層
としてZ n So、s S eo、s H4?用いて
いるが、基本的な条件に、導波のための光閉じ込めに必
要な屈折率差が導波層側がクラッド側より大青い稟を満
足しておnばよく組成はこの範囲に限らず、クラッド層
として、ZnSxSe1−x (0< z < 1)な
る混晶を用いてもよい0又、導波路及び結合部の数は一
枚の基板上に1組である必要になく、多数の独立した光
回路からなってもよく、又、互いに結合し念多分岐スイ
ッチからなってもよい事は自明である。
In the above embodiments, a ZnS layer is used as the cladding layer, and Zn So, s S eo, s H4? as the waveguide layer. However, the basic condition is that the refractive index difference required for optical confinement for waveguide is larger on the waveguide side than on the cladding side, and the composition is not limited to this range. , a mixed crystal of ZnSxSe1-x (0<z<1) may be used as the cladding layer.Also, the number of waveguides and coupling parts need not be one set on one substrate, but many. It is obvious that the optical circuits may be composed of independent optical circuits, or may be composed of multi-branch switches connected to each other.

本素子の製造に於てげ、高品質な結晶のへテロエピタキ
シャ成長技術が基本となり、有機金属気相化学成長法(
MO−CVD)又は、分子ビーム成長法(MBE)等を
用いるのが好ましい。又、リッジ部及び、積層部の構造
にイオンビームエツチング等により加工するのが好まし
い。
In manufacturing this device, high-quality crystal heteroepitaxial growth technology was used as the basis, and metal-organic vapor phase chemical growth method (
It is preferable to use MO-CVD) or molecular beam growth (MBE). Further, it is preferable to process the structure of the ridge portion and the laminated portion by ion beam etching or the like.

〔発明の効果〕〔Effect of the invention〕

上記実施例からも明らかな如く、本発明に基づく光スイ
ッチは、安価で高品質な大型基板の得らnるSt上に、
簡単な薄膜形成とエツチング工程により得られる事、又
、導波層に可視域で損失の小きいZn5ySe1−y(
0<y<i )fxルxビタキシャル層を用いている事
等の効果を有する。
As is clear from the above embodiments, the optical switch based on the present invention is based on a large-sized substrate that is inexpensive and of high quality.
It can be obtained by a simple thin film formation and etching process, and the waveguide layer is made of Zn5ySe1-y(
It has the advantage of using a bitaxial layer (0<y<i)fxrux.

こnにより、従来プラスチックファイバー等安価な光伝
送媒体と価格的にマツチングしなかつt光スイッチに代
り、本発明に基づくスイッチが普及する事により、オフ
ィス内情報処理、自動車、又は機器間光伝送等短距離で
の情報処理網を構築する上で本発明の果す役割はげかり
知j、ないものと確信する。
As a result, the switch based on the present invention will become widespread in place of the conventional optical switch, which cannot be matched in price with inexpensive optical transmission media such as plastic fibers, and will be used in information processing in offices, automobiles, optical transmission between devices, etc. I am convinced that the role of the present invention in constructing a short-distance information processing network is unknown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に、本発明の結合型光スイッチの構成上面図。 第2図げ、本発明の結合型光スイッチの構成断面図。 I  Si基板    2  ZnSクラッド層5  
Zn5o、5Seo、s W   4’I ツタM5 
今に電極     6 リッジ傾 7 入力端導波路  8,9  出力側導波路10、1
1  電極パッド  12  裏面常極第3図に、本発
明の積層型導波路の光スイッチの構成断面図。 13  ZnSクラッド層 第4図げ従来の可動式光スイッチのttl1図。 14  人力ファイバー   15集光レンズ16  
可動プリズム    17  集光レンズ18  出力
ファイバー1 19 出力ファイバー2以上 出願人 セイコーエプソン株式会社 代理人弁理士 最 上  務他1名 /ρ 第1図 第2図 〉 ツタ 第4図
FIG. 1 is a top view of the structure of the combined optical switch of the present invention. FIG. 2 is a cross-sectional view of the structure of the combined optical switch of the present invention. I Si substrate 2 ZnS cladding layer 5
Zn5o, 5Seo, s W 4'I ivy M5
Current electrode 6 Ridge tilt 7 Input end waveguide 8, 9 Output side waveguide 10, 1
1 Electrode pad 12 Backside ordinary pole FIG. 3 is a cross-sectional view of the structure of the optical switch of the laminated waveguide of the present invention. 13 ZnS cladding layer 4th figure TTL1 diagram of a conventional movable optical switch. 14 Human power fiber 15 Condensing lens 16
Movable prism 17 Condensing lens 18 Output fiber 1 19 Output fiber 2 or more Applicant Seiko Epson Co., Ltd. Representative Patent Attorney Tsutomu Mogami and 1 other person/ρ Figure 1 Figure 2> Ivy Figure 4

Claims (1)

【特許請求の範囲】 1、単結晶基板上にn型ZnS_xSe_1_−_x(
但し0<x≦1)よりなるクラッド層、及びn型ZnS
_ySe_1_−_y(但し0≦y<1且つx>y)よ
りなる結合型導波層及び該導波層上結合部にキャリヤー
注入電極を設置した事を特徴とする光スイッチ。 2、導波層がリッジ型導波路よりなる事を特徴とした特
許請求の範囲第1項記載の光スイッチ。 3、導波層が、該n型ZnS_ySe_1_−_y層上
にn型ZnS_zSe_1_−_z(但し0<z≦1、
且つ、z>y)よりなる積層型導波路よりなる事を特徴
とした特許請求の範囲第1項記載の光スイッチ。
[Claims] 1. N-type ZnS_xSe_1_-_x(
However, a cladding layer consisting of 0<x≦1) and an n-type ZnS
An optical switch comprising a coupled waveguide layer consisting of _ySe_1_-_y (0≦y<1 and x>y) and a carrier injection electrode provided at a coupling portion on the waveguide layer. 2. The optical switch according to claim 1, wherein the waveguide layer is a ridge-type waveguide. 3. The waveguide layer is formed of n-type ZnS_zSe_1_-_z (however, 0<z≦1,
The optical switch according to claim 1, characterized in that the optical switch is made of a layered waveguide with z>y.
JP10346486A 1986-05-06 1986-05-06 Light switch Expired - Lifetime JPH083595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10346486A JPH083595B2 (en) 1986-05-06 1986-05-06 Light switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10346486A JPH083595B2 (en) 1986-05-06 1986-05-06 Light switch

Publications (2)

Publication Number Publication Date
JPS62260127A true JPS62260127A (en) 1987-11-12
JPH083595B2 JPH083595B2 (en) 1996-01-17

Family

ID=14354736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10346486A Expired - Lifetime JPH083595B2 (en) 1986-05-06 1986-05-06 Light switch

Country Status (1)

Country Link
JP (1) JPH083595B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111825A (en) * 1989-09-27 1991-05-13 Oki Electric Ind Co Ltd Distribution coupling type optical switch and its manufacture
JPH03154031A (en) * 1989-11-13 1991-07-02 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101966804B1 (en) * 2016-12-30 2019-04-08 세메스 주식회사 Apparatus for treating substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111825A (en) * 1989-09-27 1991-05-13 Oki Electric Ind Co Ltd Distribution coupling type optical switch and its manufacture
JPH03154031A (en) * 1989-11-13 1991-07-02 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Also Published As

Publication number Publication date
JPH083595B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
Zucker et al. Strained quantum wells for polarization-independent electrooptic waveguide switches
Carter et al. Nonlinear optical coupling between radiation and confined modes
JPH07500431A (en) optical switching device
US20060023993A1 (en) Directional optical coupler
Chua et al. Optical switches: materials and design
US4940305A (en) Optical switch based on 1×2 directional coupler
US5119449A (en) Optical directional coupler switch
JPS62260127A (en) Optical switch
US5608566A (en) Multi-directional electro-optic switch
US6618179B2 (en) Mach-Zehnder modulator with individually optimized couplers for optical splitting at the input and optical combining at the output
WO1999017140A1 (en) Tightly curved digital optical switches
US5537497A (en) Optimized electrode geometries for digital optical switches
Baba et al. A novel integrated-twin-guide (ITG) optical switch with a built-in TIR region
Granestrand et al. Polarisation independent switch and polarisation splitter employing Δβand Δ K modulation
JP2002510401A (en) Equipment for modulation and data transmission of optical radiation
US6498885B1 (en) Semiconductor nonlinear waveguide and optical switch
JPH06294947A (en) Optical integrated device constituted of rib-shaped waveguide on substrate
JPH0721597B2 (en) Optical switch
JPH1078521A (en) Semiconductor polarization rotating element
JPH0513289B2 (en)
Chi et al. Nonlinear Y-junction coupler
JP2897371B2 (en) Semiconductor waveguide polarization controller
US7336855B1 (en) Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide
JP2626208B2 (en) Semiconductor waveguide polarization controller
JP2901321B2 (en) Optical demultiplexer

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term