JPS62260127A - Optical switch - Google Patents
Optical switchInfo
- Publication number
- JPS62260127A JPS62260127A JP10346486A JP10346486A JPS62260127A JP S62260127 A JPS62260127 A JP S62260127A JP 10346486 A JP10346486 A JP 10346486A JP 10346486 A JP10346486 A JP 10346486A JP S62260127 A JPS62260127 A JP S62260127A
- Authority
- JP
- Japan
- Prior art keywords
- type
- waveguide
- layer
- coupling part
- optical switch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 32
- 238000010168 coupling process Methods 0.000 claims abstract description 15
- 238000005859 coupling reaction Methods 0.000 claims abstract description 15
- 230000008878 coupling Effects 0.000 claims abstract description 14
- 238000005253 cladding Methods 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 11
- 239000013078 crystal Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 description 8
- 239000000835 fiber Substances 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 101000658638 Arabidopsis thaliana Protein TRANSPARENT TESTA 1 Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光信号の伝送路を電気的に切り換える光スイッ
チに関し、づらに詳しくげプラスチックファイバー伝送
及び光計測等に有用な可視光の切り換えが可能な光スイ
ッチに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an optical switch that electrically switches the transmission path of an optical signal. Concerning possible optical switches.
半導体レーザの普及と光ファイバーの高品質化に情報化
社会に於ける光伝逆の実現ヲ可能とし、長距離通信はも
ちろん、工場、オフィス内、自動車内、機器間に本光情
報処理及び伝送を実=p、 !、つつある。特に短距離
の情報伝送にはプラスチックファイバーが安価である事
から普及しつつあり、その伝送損失が600 nm付近
の可視域にある事、又、光計測等に於てけ視V性の点か
ら可視光半導体レーザの開発がす丁めらn、できた。(
例えば、Appl、 Phys、 Lett、旦(3)
、p207.1986記載)
従来こ1らの光信号を異なる伝送路に切り換えるスイッ
チに、メカニカルなスイッチが代表的であつ几。第四図
にその原理を示す。入力ファイバー■からの光はレンズ
Oにより平行光に変換さn7、可動プリズム[株]によ
り全反射され、レンズ0を経て出力ファイバー[株]に
導入−gt”する。プリズムを下刃に動かす事により出
カフアトバー20へ切り換える事が可能である。The spread of semiconductor lasers and the improvement of the quality of optical fibers have made it possible to realize optical transmission in the information society, making it possible not only for long-distance communication but also for optical information processing and transmission within factories, offices, automobiles, and between devices. Real = p, ! , is coming. In particular, plastic fibers are becoming popular for short-distance information transmission because they are inexpensive, and their transmission loss is in the visible range around 600 nm. The development of an optical semiconductor laser has finally been completed. (
For example, Appl, Phys, Lett, Dan (3)
, p. 207, 1986) Conventionally, mechanical switches have been the typical switch for switching these optical signals to different transmission paths. Figure 4 shows the principle. The light from the input fiber ■ is converted into parallel light by the lens O, is totally reflected by the movable prism [Co., Ltd.], and is introduced into the output fiber [Co., Ltd.] through the lens 0. By moving the prism to the lower blade. It is possible to switch to the output cuff bar 20 by.
一万可動部ケ無くした電気的固体スイッチとしてに、例
えば、Appl、 Phys、 Lett、 36(7
)、 491(1980)記載の、LiNbO5結晶上
導波路に方向性結合器を形成したもの、又、$45回応
用物理学会講演予縞集(昭和59年秋季p115.13
P−L−10〜12)記載の如<、GaAs基板上にG
aAs’Jツジ型導波路を型内波路合型に形成したもの
が知ら几てい友。As an electric solid state switch without moving parts, for example, Appl, Phys, Lett, 36 (7
), 491 (1980), in which a directional coupler is formed in a waveguide on a LiNbO5 crystal, and the 45th Japan Society of Applied Physics Lecture Collection (Autumn 1980 p115.13).
As described in P-L-10 to 12), G on a GaAs substrate
A well-known example is an aAs'J Tsuji-type waveguide formed in an in-mold waveguide type.
しかし前述の従来技術でに次の如き問題点があり改善が
望筐nでい几。However, the above-mentioned conventional technology has the following problems and cannot be improved.
1、 可動プリズム式スイッチに応答が遅く、又組立て
f1f度のバラ付きが大きく、スイッチの形状も大きく
なる。1. The response of the movable prism type switch is slow, there is a large variation in assembly f1f degrees, and the shape of the switch is also large.
2、 単結晶基板を用いるものn 、L t Nb O
s !GaAs等高価で品質のよいものが得にくく、又
研磨が難しい。2. Using a single crystal substrate n, L t Nb O
S! It is difficult to obtain high-quality materials such as GaAs, which are expensive, and difficult to polish.
3、 GaAs系化合物半導体を導波層に用いるもの
は、小型で集積化も可能である反面、基礎吸収端に相当
する波長が長く、可視光では吸収損失が大きすぎて導波
路としては不適、
そこで本発明に、かかる問題点を除去する4ので、その
目的に電気制御で可視光を高速に切り換え、且つ安価で
小型な光スイッチを提供する点にある。3. Those using GaAs-based compound semiconductors for the waveguide layer are compact and can be integrated, but the wavelength corresponding to the fundamental absorption edge is long and the absorption loss for visible light is too large, making them unsuitable as waveguides. Therefore, in order to eliminate such problems, the present invention provides an optical switch that can switch visible light at high speed by electrical control and is inexpensive and compact.
本発明の光スイッチiq、S、基板上にn型ZnSxS
e1−x (但し0くXく1)よりなるクラッド層及び
n型ZnS7Ses−y(但し0≦y<1且ツx >
y )よりなる結合型導波層、及び該導波層上結合部に
キャリヤ注入電[?設置した事′!r−特徴とする。Optical switch iq,S of the present invention, n-type ZnSxS on the substrate
A cladding layer consisting of e1-x (however, 0 x x 1) and an n-type ZnS7Ses-y (however, 0≦y<1 and x>
y ), and the carrier-injected electric current [? I installed it! r-Characterized.
以下実施例に基づき本発明″f説明する。The present invention will be explained below based on examples.
〔実施例1〕
第1図は本発明に基づくりツジ型導波路を用い之方向性
結合型光スイッチの上面図、第2図に断面図ケ示す。[Embodiment 1] FIG. 1 is a top view of a directional coupling type optical switch using a twisted waveguide according to the present invention, and FIG. 2 is a cross-sectional view.
p型St単結晶基板Φ上に、n型ZnSエピタキシャル
層からなるクラッド層■?1μ、さらにn型Zn5o、
5Seo、s混晶層■を3μ形成した後、フォト工程に
より2本の導波路のりツジ部■及び結合部■の注入電極
を形成してなる。基板の大きざに15NL×5朋、リッ
ジ部の幅■は7μ、高さ1.5μからなる2本の導波路
を結合部に於ては3μの距離隔てて設置してなる。又結
合部の電極の長さHlommである。−万の導波路■に
He−Neレーザの0.653μの光?入射すると、電
圧0でに出力端■、■に於ける各々の光出力比P 1/
P zが110、olであつtのが、−万の電極Oに
20Vの直流電圧を印加する事により、光出力は■から
■へ移行し、スイッチングが可能である。導波路の損失
は曲りも含めて全体で約4 dB、スイッチング速度に
約1 n8eeであった。A cladding layer consisting of an n-type ZnS epitaxial layer is formed on a p-type St single crystal substrate Φ? 1μ, further n-type Zn5o,
After forming a 5Seo, s mixed crystal layer (3) to a thickness of 3 μm, injection electrodes for the two waveguide joint portions (2) and coupling portion (2) are formed by a photo process. The substrate size is 15NL x 5mm, the width of the ridge part is 7μ, and the two waveguides each having a height of 1.5μ are installed at a distance of 3μ at the coupling part. Also, the length of the electrode at the coupling portion is Hlomm. -0.653μ light of He-Ne laser in 10,000 waveguide ■? When the light is incident, the respective optical output ratios at the output terminals ■ and ■ at voltage 0 are P 1/
By applying a DC voltage of 20 V to the electrode O where Pz is 110, ol is -0,000 and t is -10,000, the optical output shifts from ■ to ■, and switching is possible. The waveguide loss was approximately 4 dB in total including bends, and the switching speed was approximately 1 n8ee.
出力端に於ける消光比の向上は、2本の導波路′ の結
合部に於ける伝搬定数?一致きせる事により電圧Ovで
は、結合部長ケ完全結合長の1/2にする事により、全
ての出力全出力端1に集中ぜせる事が可能であり、又、
適当な電圧に於て、完全に出力端2へ移す事が可能であ
る。Is the extinction ratio improvement at the output end due to the propagation constant at the coupling part of the two waveguides? By making them match, at voltage Ov, by making the coupling length 1/2 of the complete coupling length, it is possible to concentrate all outputs on the output terminal 1, and,
At a suitable voltage, it is possible to transfer it completely to the output terminal 2.
〔実施例2〕
第3図は、上側クラッド層として、1.5μ厚の導波層
上にZnSe0?−導波路形状に厚畑1,7μ形成した
積層型導波路を用いt方向4g−結合型光スイッチを示
す。[Example 2] FIG. 3 shows ZnSe0? as the upper cladding layer on a 1.5μ thick waveguide layer. - A 4g-coupling type optical switch in the t-direction is shown using a stacked waveguide with a thickness of 1.7 μm formed in the waveguide shape.
実施例1と同様He −N eレーザ光?i圧印加によ
り、スイッチングが可能である。He-Ne laser beam as in Example 1? Switching is possible by applying i pressure.
上記実施例でにクラッド層としてZnS層を又、導波層
としてZ n So、s S eo、s H4?用いて
いるが、基本的な条件に、導波のための光閉じ込めに必
要な屈折率差が導波層側がクラッド側より大青い稟を満
足しておnばよく組成はこの範囲に限らず、クラッド層
として、ZnSxSe1−x (0< z < 1)な
る混晶を用いてもよい0又、導波路及び結合部の数は一
枚の基板上に1組である必要になく、多数の独立した光
回路からなってもよく、又、互いに結合し念多分岐スイ
ッチからなってもよい事は自明である。In the above embodiments, a ZnS layer is used as the cladding layer, and Zn So, s S eo, s H4? as the waveguide layer. However, the basic condition is that the refractive index difference required for optical confinement for waveguide is larger on the waveguide side than on the cladding side, and the composition is not limited to this range. , a mixed crystal of ZnSxSe1-x (0<z<1) may be used as the cladding layer.Also, the number of waveguides and coupling parts need not be one set on one substrate, but many. It is obvious that the optical circuits may be composed of independent optical circuits, or may be composed of multi-branch switches connected to each other.
本素子の製造に於てげ、高品質な結晶のへテロエピタキ
シャ成長技術が基本となり、有機金属気相化学成長法(
MO−CVD)又は、分子ビーム成長法(MBE)等を
用いるのが好ましい。又、リッジ部及び、積層部の構造
にイオンビームエツチング等により加工するのが好まし
い。In manufacturing this device, high-quality crystal heteroepitaxial growth technology was used as the basis, and metal-organic vapor phase chemical growth method (
It is preferable to use MO-CVD) or molecular beam growth (MBE). Further, it is preferable to process the structure of the ridge portion and the laminated portion by ion beam etching or the like.
上記実施例からも明らかな如く、本発明に基づく光スイ
ッチは、安価で高品質な大型基板の得らnるSt上に、
簡単な薄膜形成とエツチング工程により得られる事、又
、導波層に可視域で損失の小きいZn5ySe1−y(
0<y<i )fxルxビタキシャル層を用いている事
等の効果を有する。As is clear from the above embodiments, the optical switch based on the present invention is based on a large-sized substrate that is inexpensive and of high quality.
It can be obtained by a simple thin film formation and etching process, and the waveguide layer is made of Zn5ySe1-y(
It has the advantage of using a bitaxial layer (0<y<i)fxrux.
こnにより、従来プラスチックファイバー等安価な光伝
送媒体と価格的にマツチングしなかつt光スイッチに代
り、本発明に基づくスイッチが普及する事により、オフ
ィス内情報処理、自動車、又は機器間光伝送等短距離で
の情報処理網を構築する上で本発明の果す役割はげかり
知j、ないものと確信する。As a result, the switch based on the present invention will become widespread in place of the conventional optical switch, which cannot be matched in price with inexpensive optical transmission media such as plastic fibers, and will be used in information processing in offices, automobiles, optical transmission between devices, etc. I am convinced that the role of the present invention in constructing a short-distance information processing network is unknown.
第1図に、本発明の結合型光スイッチの構成上面図。
第2図げ、本発明の結合型光スイッチの構成断面図。
I Si基板 2 ZnSクラッド層5
Zn5o、5Seo、s W 4’I ツタM5
今に電極 6 リッジ傾
7 入力端導波路 8,9 出力側導波路10、1
1 電極パッド 12 裏面常極第3図に、本発
明の積層型導波路の光スイッチの構成断面図。
13 ZnSクラッド層
第4図げ従来の可動式光スイッチのttl1図。
14 人力ファイバー 15集光レンズ16
可動プリズム 17 集光レンズ18 出力
ファイバー1 19 出力ファイバー2以上
出願人 セイコーエプソン株式会社
代理人弁理士 最 上 務他1名
/ρ
第1図
第2図
〉
ツタ
第4図FIG. 1 is a top view of the structure of the combined optical switch of the present invention. FIG. 2 is a cross-sectional view of the structure of the combined optical switch of the present invention. I Si substrate 2 ZnS cladding layer 5
Zn5o, 5Seo, s W 4'I ivy M5
Current electrode 6 Ridge tilt 7 Input end waveguide 8, 9 Output side waveguide 10, 1
1 Electrode pad 12 Backside ordinary pole FIG. 3 is a cross-sectional view of the structure of the optical switch of the laminated waveguide of the present invention. 13 ZnS cladding layer 4th figure TTL1 diagram of a conventional movable optical switch. 14 Human power fiber 15 Condensing lens 16
Movable prism 17 Condensing lens 18 Output fiber 1 19 Output fiber 2 or more Applicant Seiko Epson Co., Ltd. Representative Patent Attorney Tsutomu Mogami and 1 other person/ρ Figure 1 Figure 2> Ivy Figure 4
Claims (1)
但し0<x≦1)よりなるクラッド層、及びn型ZnS
_ySe_1_−_y(但し0≦y<1且つx>y)よ
りなる結合型導波層及び該導波層上結合部にキャリヤー
注入電極を設置した事を特徴とする光スイッチ。 2、導波層がリッジ型導波路よりなる事を特徴とした特
許請求の範囲第1項記載の光スイッチ。 3、導波層が、該n型ZnS_ySe_1_−_y層上
にn型ZnS_zSe_1_−_z(但し0<z≦1、
且つ、z>y)よりなる積層型導波路よりなる事を特徴
とした特許請求の範囲第1項記載の光スイッチ。[Claims] 1. N-type ZnS_xSe_1_-_x(
However, a cladding layer consisting of 0<x≦1) and an n-type ZnS
An optical switch comprising a coupled waveguide layer consisting of _ySe_1_-_y (0≦y<1 and x>y) and a carrier injection electrode provided at a coupling portion on the waveguide layer. 2. The optical switch according to claim 1, wherein the waveguide layer is a ridge-type waveguide. 3. The waveguide layer is formed of n-type ZnS_zSe_1_-_z (however, 0<z≦1,
The optical switch according to claim 1, characterized in that the optical switch is made of a layered waveguide with z>y.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10346486A JPH083595B2 (en) | 1986-05-06 | 1986-05-06 | Light switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10346486A JPH083595B2 (en) | 1986-05-06 | 1986-05-06 | Light switch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62260127A true JPS62260127A (en) | 1987-11-12 |
JPH083595B2 JPH083595B2 (en) | 1996-01-17 |
Family
ID=14354736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10346486A Expired - Lifetime JPH083595B2 (en) | 1986-05-06 | 1986-05-06 | Light switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH083595B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03111825A (en) * | 1989-09-27 | 1991-05-13 | Oki Electric Ind Co Ltd | Distribution coupling type optical switch and its manufacture |
JPH03154031A (en) * | 1989-11-13 | 1991-07-02 | Nippon Telegr & Teleph Corp <Ntt> | Optical switch |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101966804B1 (en) * | 2016-12-30 | 2019-04-08 | 세메스 주식회사 | Apparatus for treating substrate |
-
1986
- 1986-05-06 JP JP10346486A patent/JPH083595B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03111825A (en) * | 1989-09-27 | 1991-05-13 | Oki Electric Ind Co Ltd | Distribution coupling type optical switch and its manufacture |
JPH03154031A (en) * | 1989-11-13 | 1991-07-02 | Nippon Telegr & Teleph Corp <Ntt> | Optical switch |
Also Published As
Publication number | Publication date |
---|---|
JPH083595B2 (en) | 1996-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zucker et al. | Strained quantum wells for polarization-independent electrooptic waveguide switches | |
Carter et al. | Nonlinear optical coupling between radiation and confined modes | |
JPH07500431A (en) | optical switching device | |
US20060023993A1 (en) | Directional optical coupler | |
Chua et al. | Optical switches: materials and design | |
US4940305A (en) | Optical switch based on 1×2 directional coupler | |
US5119449A (en) | Optical directional coupler switch | |
JPS62260127A (en) | Optical switch | |
US5608566A (en) | Multi-directional electro-optic switch | |
US6618179B2 (en) | Mach-Zehnder modulator with individually optimized couplers for optical splitting at the input and optical combining at the output | |
WO1999017140A1 (en) | Tightly curved digital optical switches | |
US5537497A (en) | Optimized electrode geometries for digital optical switches | |
Baba et al. | A novel integrated-twin-guide (ITG) optical switch with a built-in TIR region | |
Granestrand et al. | Polarisation independent switch and polarisation splitter employing Δβand Δ K modulation | |
JP2002510401A (en) | Equipment for modulation and data transmission of optical radiation | |
US6498885B1 (en) | Semiconductor nonlinear waveguide and optical switch | |
JPH06294947A (en) | Optical integrated device constituted of rib-shaped waveguide on substrate | |
JPH0721597B2 (en) | Optical switch | |
JPH1078521A (en) | Semiconductor polarization rotating element | |
JPH0513289B2 (en) | ||
Chi et al. | Nonlinear Y-junction coupler | |
JP2897371B2 (en) | Semiconductor waveguide polarization controller | |
US7336855B1 (en) | Integration of a waveguide self-electrooptic effect device and a vertically coupled interconnect waveguide | |
JP2626208B2 (en) | Semiconductor waveguide polarization controller | |
JP2901321B2 (en) | Optical demultiplexer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |