JPH0126326B2 - - Google Patents

Info

Publication number
JPH0126326B2
JPH0126326B2 JP56199743A JP19974381A JPH0126326B2 JP H0126326 B2 JPH0126326 B2 JP H0126326B2 JP 56199743 A JP56199743 A JP 56199743A JP 19974381 A JP19974381 A JP 19974381A JP H0126326 B2 JPH0126326 B2 JP H0126326B2
Authority
JP
Japan
Prior art keywords
melting point
mold
epoxy resin
molding
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56199743A
Other languages
Japanese (ja)
Other versions
JPS58101032A (en
Inventor
Seiichi Fukunaga
Hidetoshi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP56199743A priority Critical patent/JPS58101032A/en
Publication of JPS58101032A publication Critical patent/JPS58101032A/en
Publication of JPH0126326B2 publication Critical patent/JPH0126326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0222Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould the curing continuing after removal from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本願はエポキシ系樹脂の新規な成形方法に関す
るものである。従来の成形方法は、エポキシ系樹
脂配合組成物は混練可能な範囲の低い温度で行う
ことによつて混練可塑化中の硬化反応の進行を防
ぎ、注型時の型温はできるだけ高くして硬化を早
めることにより、成形サイクルを短縮する方法が
一般に採用されてきた。 例えば、エポキシ樹脂の射出成型の場合、通常
混練可塑化用シリンダー温度は110℃前後に保つ
て硬化反応の急激な進行を防ぎながら、金型温度
は150℃以上に保持して、注型後は急速に硬化さ
せる方法をとつている。 しかしながら、このような方法では金型温度を
可能な限り高くしたとしても、金型内で成形品の
硬化反応が完了する迄には一般に5〜10分程度の
時間が必要であり、この間成形品は金型内に密閉
保持しておかねばならず、従つて次の成形は脱型
後となり、1回の成形サイクルは5〜10分以上要
することになつてしまう。 従来からも、この成形サイクルの短縮のためエ
ポキシ樹脂配合物の硬化反応完了前に脱型する試
みがなされてきたが、硬化反応完了前に脱型した
場合、エポキシ樹脂の硬化反応が発熱反応である
ため、脱型後に収縮や反りが発生し、特に大型成
形品にあつては、到底実用に供し得ないものとな
つてしまい採用できなかつた。 そのため、優れた機能性を持ちながらエポキシ
樹脂は100g未満の小物成形品か、コストは高く
ても要求性能がエポキシ樹脂でないと満たし得な
い用途にしか用いることができなかつたのであ
る。 本願発明者等は、エポキシ系樹脂の優れた耐熱
性、耐食性、電気特性を活かしながら、熱可塑性
樹脂に匹敵する成形サイクル性を持たせる方法に
つき鋭意研究の結果、以下に述べる方法をとるこ
とによつて、その目的を達成することに成功した
ものである。 即ち、加熱可塑化したエポキシ系樹脂配合組成
物を、該配合組成物の融点以上の温度に加熱して
配合成分の混合分散を行つた後、エポキシ系樹脂
配合組成物の融点以下の温度に調整した型内に移
すことによつて一旦急冷しながら成形し、見掛け
上固化状態として、30〜60秒程度の熱可塑性樹脂
成形サイクルに近い短時間サイクルで脱型し、型
を次の成形に用いようとするものである。 尚脱型された成形品は、常温又は加温状態で、
或は放射線、紫外線、或は電子線照射等の手段に
よつて後硬化反応を完結させればよく、後硬化反
応中の成形品は従来法のような反りや収縮或はク
ラツク発生等の現象は認められなかつた。 本願の成形方法をとることによつて、従来困難
だつた成形品重量300〜1000gの中〜大型成形品
でも、ひけやクラツク発生のない成形が可能とな
り、もちろん小型の場合も支障なく高サイクル成
形を行うことができたのである。 これは、エポキシ系樹脂の硬化反応を従来のよ
うな高温金型内で急激に進行させると、成形品に
内部ストレスが残り易いが、本願発明のように、
一旦成形品の温度を下げて硬化反応の進行を緩慢
に行わせることによつて、内部ストレスの残留を
少なくさせた効果によるものと考えられる。 本願で用いられるエポキシ系樹脂としては、通
常エポキシ樹脂と呼ばれているビスフエノール型
エポキシ樹脂、ノボラツク型エポキシ樹脂、ハロ
ゲン化エポキシ樹脂、水添化エポキシ樹脂、脂環
族エポキシ樹脂又はヒダントイン系エポキシ樹脂
の他に、シリコンエポキシ樹脂、エポキシフラン
樹脂、エポキシエステル樹脂、フエノキシ樹脂、
エポキシウレタン樹脂或は液状ゴムの末端基をエ
ポキシ変性したような変性エポキシ樹脂やポリビ
ニールフエノールのようなフエノール類をエポキ
シ樹脂で硬化させるような系の樹脂も用いること
ができる。 これらのエポキシ系樹脂用配合剤として用いら
れるものとしては、公知の補強剤、硬化剤、充填
剤、可塑剤、希釈剤、難燃剤、光重合開始剤、顔
料等が挙げられる。もちろん、上記エポキシ系樹
脂と相溶性のある他の公知の熱可塑性又は熱硬化
性樹脂をブレンドすることもできる。 具体的には、硬化剤としてはアミン類、酸無水
物、イミダゾール類、有機過酸化物等の他、ポリ
マー構造によつてはアルコール類、イソシアネー
ト類等も用いることができる。 補強剤としては、ガラス繊維、炭素繊維、アス
ベスト等の無機繊維やアラミド繊維、ナイロン、
ポリエステル等の有機繊維のような繊維状補強剤
の他に、酸化アルミ炭化珪素、グラフアイトのよ
うなホイスカーも用いることができる。 その他の配合剤としては、ガラスフレーク、ガ
ラス粉、マイカ、カーボンブラツク、タルク、ク
レー、シリカ、炭酸カルシウム、水酸化アルミニ
ウム、チタン白のような充填剤や顔料、或は、ジ
オクチルフタレートやトリクレジルホスフエート
のような可塑剤、ブチルグリシジルエーテル、キ
シレンのような反応性又は非反応性希釈剤、三酸
化アンチモンと塩素化パラフインのような難燃
剤、イソプロピルベンゾインエーテルのような光
重合開始剤等を適宜選択して用いる。 本願発明が対象とする成形手段としては、射出
成形法、トランスフアー成形法、押出成形法、ブ
ロー成形法、常圧注入法等、公知のモールドを用
いて成形する方法にすべて適用が可能である。 本願発明では、融点が50〜350℃のエポキシ系
樹脂組成物を対象としているが、樹脂組成物の融
点が50℃未満の場合は、樹脂組成物はたとえ常温
近辺まで冷却しても、硬化反応が完了するまでは
脱型が困難であり、本願の目的を満足しないから
である。又一方融点が350℃以上になると、混練
可塑化工程でのエネルギー消費が大きく、且つポ
リマー自体の分解温度に近接する上、硬化反応が
著しく早くなり成形作業性を阻害するからであ
る。この点を考慮して、たとえ好ましい融点範囲
のエポキシ系樹脂配合組成物であつても、高融点
系の配合組成物の場合には、設定された可塑化混
練条件下では緩慢な硬化反応速度を示すような硬
化剤、触媒系を選定することが望ましい。 本願発明の目的を達成するためには、金型温度
はエポキシ系樹脂配合組成物の融点以下に保持す
ることが必要であるが、好ましくは融点より20℃
以上低い温度に保持するのが適当である。 尚エポキシ系樹脂自体の融点がたとえ350℃以
上であつたとしても、可塑剤やその他の配合剤を
混練した組成物としての融点が350℃以下であれ
ばよく、又逆にエポキシ系樹脂自体の融点が50℃
未満であつて、充填剤や補強材を混練した組成物
の融点が50℃以上になれば、本願の目的を達成す
ることができるのである。 本願発明で規定するエポキシ系樹脂配合組成物
の融点は、株式会社柳本製作所製の熱媒式融点測
定器を用い、1分間に1℃ずつ昇温させて、スラ
イドガラス上の1〜3mgの配合組成物の小片がそ
の容積の半分以上熔融した時の温度をもつて表わ
したものである。又成形品の硬化反応終了の判定
は、成形品の表面をアセトン溶剤で濡らせた時、
指にべとつきが感じられなくなつた状態をもつて
硬化反応終了とした。 実施例 1 三井石油化学エポキシ製エポキシ樹脂R304(融
点80℃)100重量部に無水フタル酸8重量部及び
無水珪酸250重量部を加え、180℃にて加熱混合
し、一旦室温(20℃)に冷却した後、ペレツト状
に粉砕した。 このペレツト状粉砕物の融点は140℃であつた。
この粉砕物100gを秤取し、予備加熱温度180℃、
圧力50Kg/cm2、金型温度60℃の条件に設定した市
販のトランスフアー成形機を用いて、10mm厚みの
平板状成形体を成形した。成形品は30秒後に脱型
し、100℃で8時間加温した後更に150℃に昇温し
て2時間ポストキユアーを行つた。このものは、
アセトンで濡らせても全くべたつきがなく、従つ
て硬化反応は完了したと判定された。成形品は、
反りやひけが認められず、良好な外観を示した。 尚本実施例で特筆すべきことは、金型のパーテ
イングラインからのバリのはみ出しがほとんど認
められなかつたことである。 比較例 実施例1と同様にして、金型温度のみを160℃
に変えてトランスフアー成形を行つた所、成形後
10分経過して脱型しようとしたが、硬化が不完全
のため変形なしに脱型することは困難であつた。
脱型可能になつたのは、160℃の金型温度で1時
間経過後であつた。又成形品は金型のパーテイン
グライン部には全周にわたつて薄いバリが形成さ
れていた。 実施例 2 150メツシユに粉砕した油化シエルエポキシ(株)
製エポキシ樹脂エピコート1009(融点114℃)100
重量部にヘキサヒドロフタル酸5重量部及び無水
珪酸粉末250重量部を粉末状のまま混合し、更に
油化シエルエポキシ(株)製エピコート1004(融点80
℃)粉末を10重量部加えた後、120℃で混合した
後、室温(21℃)に冷却しペレツト状に粉砕し
た。 このペレツト状粉砕物を市販の熱可塑性樹脂用
射出成形機を用いシリンダーのゲート近辺部220
℃、中央部210℃、ホツパー部200℃、金型温度60
℃、射出圧1000Kg/cm2の条件にて平板状成形体を
成形した。成形体は60秒後に脱型し、170℃にて
1時間ポストキユアーを行つた。成形体の平均板
厚15mm、縦150mm、横200mmの大きさで、重量は
720gで、ひけ、反り等の不具合は全くなく、又
本実施例のような大型の成形体を射出成形した場
合においても金型のパーテイングライン部からの
バリの生成は極めて僅かであつた。 尚、射出成形機に投入するペレツト状組成物
は、成形前に硬化反応の進行を防ぐため、120℃
のような低温で混合しているので、完全な熔融混
合状態ではないので、配合組成物の融点測定に際
し一旦250℃に加熱して熔融混合状態となし、こ
れを室温迄冷却した後に融点測定を行つた結果、
融点は200℃であつた。 実施例 3 150メツシユに粉砕した平均分子量10000、融点
165℃のビスフエノールA型エポキシ樹脂100重量
部に、ガラス繊維(チヨツプドストランド)40重
量部及びテトラヒドロフタル酸3重量部と、ジア
ミノジフエニルメタン0.7重量部を粉末状又は繊
維状のまま混合し、更に油化シエルエポキシ(株)製
エピコート1009(融点114℃)の粉末50重量部を加
え、220℃で混合し、ペレツト化した。得られた
配合組成物の融点は205℃であつた。この組成物
を市販の熱可塑性樹脂用射出成形機にてシリンダ
ーのゲート近辺部を250℃、中央部230℃、ホツパ
ー部210℃、射出圧1000Kg/cm2、金型温度80℃の
条件で引張り強さ試験用ダルベル(JIS1号形厚み
2mm)2ケ及び幅25mm、長さ150mm、厚み2mmの
平板2ケの計4ケ取りのキヤビテイーをもつ金型
に射出成形した。1回の射出量は60gであつた。 この実施例においても金型のパーテイングライ
ン部からのバリの発生は、ほとんど認められなか
つた。 尚成形品は60秒後脱型し、150℃で3時間、200
℃で2時間の計5時間ポストキユアーを行つた。
この成形品の物性を測定した結果を第1表に示し
た。
This application relates to a novel method for molding epoxy resin. In conventional molding methods, the epoxy resin compounded composition is kept at a temperature as low as possible for kneading to prevent the curing reaction from progressing during kneading and plasticization, and the mold temperature during casting is kept as high as possible to cure the composition. Methods have generally been adopted to shorten the molding cycle by accelerating the process. For example, in the case of injection molding of epoxy resin, the cylinder temperature for kneading and plasticization is usually kept at around 110℃ to prevent the rapid progress of the curing reaction, while the mold temperature is kept at 150℃ or higher, and after casting, A method is used to harden it rapidly. However, in this method, even if the mold temperature is set as high as possible, it generally takes about 5 to 10 minutes for the curing reaction of the molded product to complete within the mold, and during this time the molded product must be kept hermetically sealed in the mold, and therefore the next molding will take place after demolding, and one molding cycle will take 5 to 10 minutes or more. Conventionally, attempts have been made to remove the epoxy resin compound from the mold before the curing reaction is completed in order to shorten the molding cycle, but if the mold is removed before the curing reaction is completed, the curing reaction of the epoxy resin may be an exothermic reaction. As a result, shrinkage and warping occur after demolding, making it completely impractical, especially for large molded products, and thus could not be adopted. Therefore, despite its excellent functionality, epoxy resins could only be used for small molded products weighing less than 100 g, or for applications where the required performance could only be met using epoxy resins, even though the cost was high. The inventors of the present application have conducted extensive research on a method to provide molding cycle performance comparable to thermoplastic resins while taking advantage of the excellent heat resistance, corrosion resistance, and electrical properties of epoxy resins, and have decided to adopt the method described below. Therefore, it was successful in achieving its purpose. That is, the heat-plasticized epoxy resin blended composition is heated to a temperature higher than the melting point of the blended composition to mix and disperse the blended components, and then adjusted to a temperature lower than the melting point of the epoxy resin blended composition. The mold is then rapidly cooled and molded by transferring it into a mold, and when it appears solidified, it is removed from the mold in a short cycle of about 30 to 60 seconds, similar to the thermoplastic resin molding cycle, and the mold is used for the next molding. This is what we are trying to do. In addition, the molded product that has been demolded can be stored at room temperature or in a heated state.
Alternatively, the post-curing reaction may be completed by means such as radiation, ultraviolet rays, or electron beam irradiation, and the molded product during the post-curing reaction will not suffer from phenomena such as warping, shrinkage, or cracking, unlike conventional methods. was not recognized. By using the molding method of the present application, it is now possible to mold medium to large molded products with a weight of 300 to 1000 g, which was previously difficult, without sink marks or cracks, and of course, high cycle molding can be performed without problems even in the case of small products. I was able to do this. This is because if the curing reaction of the epoxy resin proceeds rapidly in a conventional high-temperature mold, internal stress tends to remain in the molded product, but as in the present invention,
This is thought to be due to the effect of reducing residual internal stress by lowering the temperature of the molded product and slowing down the progress of the curing reaction. The epoxy resins used in this application include bisphenol type epoxy resins, which are usually called epoxy resins, novolac type epoxy resins, halogenated epoxy resins, hydrogenated epoxy resins, alicyclic epoxy resins, or hydantoin type epoxy resins. In addition, silicon epoxy resin, epoxy furan resin, epoxy ester resin, phenoxy resin,
Modified epoxy resins such as epoxy urethane resins or liquid rubber whose end groups are modified with epoxy, and resins in which phenols such as polyvinyl phenol are cured with epoxy resins can also be used. Examples of compounding agents for these epoxy resins include known reinforcing agents, curing agents, fillers, plasticizers, diluents, flame retardants, photopolymerization initiators, pigments, and the like. Of course, other known thermoplastic or thermosetting resins that are compatible with the above epoxy resin can also be blended. Specifically, as the curing agent, in addition to amines, acid anhydrides, imidazoles, organic peroxides, etc., alcohols, isocyanates, etc. can be used depending on the polymer structure. As reinforcing agents, inorganic fibers such as glass fiber, carbon fiber, asbestos, aramid fiber, nylon,
In addition to fibrous reinforcing agents such as organic fibers such as polyester, whiskers such as aluminum oxide silicon carbide and graphite can also be used. Other additives include fillers and pigments such as glass flakes, glass powder, mica, carbon black, talc, clay, silica, calcium carbonate, aluminum hydroxide, titanium white, or dioctyl phthalate and tricresyl. plasticizers such as phosphates, reactive or non-reactive diluents such as butyl glycidyl ether, xylene, flame retardants such as antimony trioxide and chlorinated paraffins, photoinitiators such as isopropyl benzoin ether, etc. Select and use as appropriate. The present invention is applicable to all known molding methods such as injection molding, transfer molding, extrusion molding, blow molding, and normal pressure injection. . The present invention targets epoxy resin compositions with a melting point of 50 to 350°C, but if the melting point of the resin composition is less than 50°C, the resin composition will not undergo a curing reaction even if it is cooled to around room temperature. This is because demolding is difficult until this is completed, and the purpose of the present application is not satisfied. On the other hand, if the melting point is 350° C. or higher, the energy consumption in the kneading and plasticizing step is large and approaches the decomposition temperature of the polymer itself, and the curing reaction becomes extremely rapid, impeding molding workability. Considering this point, even if the epoxy resin compound composition has a preferable melting point range, in the case of a high melting point compound composition, the curing reaction rate will be slow under the set plasticizing and kneading conditions. It is desirable to select a curing agent and catalyst system as shown below. In order to achieve the object of the present invention, it is necessary to maintain the mold temperature below the melting point of the epoxy resin composition, preferably 20°C below the melting point.
It is appropriate to maintain the temperature at a temperature lower than that. Even if the melting point of the epoxy resin itself is 350°C or higher, it is sufficient that the melting point of the composition obtained by kneading plasticizers and other compounding agents is 350°C or lower. Melting point is 50℃
If the melting point of the composition kneaded with the filler and reinforcing material is 50°C or higher, the object of the present application can be achieved. The melting point of the epoxy resin blended composition defined in the present invention is determined by measuring 1 to 3 mg of the blended composition on a slide glass by increasing the temperature by 1°C per minute using a heat transfer melting point meter manufactured by Yanagimoto Seisakusho Co., Ltd. It is expressed as the temperature at which more than half of the volume of a small piece of the composition melts. In addition, the completion of the curing reaction of a molded product can be determined by moistening the surface of the molded product with acetone solvent.
The curing reaction was considered complete when no stickiness was felt on the fingers. Example 1 8 parts by weight of phthalic anhydride and 250 parts by weight of silicic anhydride were added to 100 parts by weight of epoxy resin R304 manufactured by Mitsui Petrochemical Epoxy (melting point 80°C), heated and mixed at 180°C, and then cooled to room temperature (20°C). After cooling, it was ground into pellets. The melting point of this pellet-like pulverized product was 140°C.
Weigh out 100g of this pulverized material, preheat at 180℃,
A commercially available transfer molding machine set at a pressure of 50 Kg/cm 2 and a mold temperature of 60° C. was used to mold a flat plate-shaped molded product with a thickness of 10 mm. The molded product was demolded after 30 seconds, heated at 100°C for 8 hours, then further heated to 150°C, and post-cured for 2 hours. This thing is
There was no stickiness at all when wetted with acetone, so the curing reaction was judged to be complete. The molded product is
No warping or sink marks were observed, and the product had a good appearance. What should be noted in this example is that almost no burrs were observed protruding from the parting line of the mold. Comparative example Same as Example 1, only mold temperature was 160℃
After performing transfer molding instead of
An attempt was made to remove the mold after 10 minutes had passed, but it was difficult to remove the mold without deformation due to incomplete curing.
It became possible to demold the mold after one hour at a mold temperature of 160°C. Furthermore, the molded product had a thin burr formed all around the parting line of the mold. Example 2 Yuka Ciel Epoxy Co., Ltd. crushed to 150 mesh
Made of epoxy resin Epicoat 1009 (melting point 114℃) 100
5 parts by weight of hexahydrophthalic acid and 250 parts by weight of silicic anhydride powder are mixed in powder form, and Epicoat 1004 manufactured by Yuka Ciel Epoxy Co., Ltd. (melting point 80
After adding 10 parts by weight of powder (10 parts by weight) and mixing at 120°C, the mixture was cooled to room temperature (21°C) and ground into pellets. Using a commercially available injection molding machine for thermoplastic resin, this pellet-like pulverized material was molded into a part near the gate of the cylinder.
°C, center part 210 °C, hopper part 200 °C, mold temperature 60
A flat plate-shaped molded product was molded at a temperature of 1000 kg/cm 2 at an injection pressure of 1000 kg/cm 2 . The molded body was demolded after 60 seconds and post-cured at 170°C for 1 hour. The average thickness of the molded body is 15 mm, the length is 150 mm, the width is 200 mm, and the weight is
At 720 g, there were no problems such as sink marks or warping, and even when a large molded product like this example was injection molded, there was very little burr formation from the parting line of the mold. In addition, the pellet-like composition fed into the injection molding machine should be kept at 120°C to prevent the curing reaction from proceeding before molding.
Since the mixture is carried out at a low temperature such as , the mixture is not completely molten and mixed, so when measuring the melting point of the compounded composition, it is heated to 250°C to obtain a molten mixture, and then the melting point is measured after cooling it to room temperature. As a result,
The melting point was 200°C. Example 3 Grinded into 150 meshes, average molecular weight 10000, melting point
Add 40 parts by weight of glass fiber (chopped strand), 3 parts by weight of tetrahydrophthalic acid, and 0.7 parts by weight of diaminodiphenylmethane to 100 parts by weight of bisphenol A type epoxy resin at 165°C in powder or fibrous form. After mixing, 50 parts by weight of Epicoat 1009 powder (melting point 114°C) manufactured by Yuka Ciel Epoxy Co., Ltd. was added, and the mixture was mixed at 220°C and pelletized. The melting point of the resulting blended composition was 205°C. This composition was stretched using a commercially available injection molding machine for thermoplastic resins at a temperature of 250°C near the cylinder gate, 230°C in the center, 210°C in the hopper, an injection pressure of 1000 kg/cm 2 , and a mold temperature of 80°C. It was injection molded into a mold with a total of four cavities: two dalbells (JIS No. 1 type 2 mm thick) for strength testing and two flat plates with a width of 25 mm, a length of 150 mm, and a thickness of 2 mm. The amount of injection per time was 60g. In this example as well, almost no burrs were observed from the parting line of the mold. The molded product was demolded after 60 seconds and heated at 150°C for 3 hours at 200°C.
Post-cure was carried out for 2 hours at ℃ for a total of 5 hours.
Table 1 shows the results of measuring the physical properties of this molded article.

【表】 本願発明は、各実施例に示したように、エポキ
シ系樹脂配合組成物の融点より高い温度で混練可
塑化し、組成物の融点よりも低い温度の金型にて
成形することにより、金型に注入されたエポキシ
系樹脂配合組成物の流動性は適度の制約を受ける
ためと考えられるが、いずれの条件においてもバ
リの発生が少なく、従つて半導体封止のための樹
脂成形のように、バリ発生防止のために必要以上
の金型精度向上の労力と経費をかけることも不要
で、且つ成形体の金型内での保持時間を1分以下
に短縮できるので、高価な射出成形用金型1面
で、1日当りの成形数を従来法の5倍以上と飛躍
的に向上させることが可能故、その工業的価値は
極めて高い有用な発明である。
[Table] As shown in each example, the present invention, by kneading and plasticizing the epoxy resin blended composition at a temperature higher than the melting point, and molding in a mold at a temperature lower than the melting point of the composition, This is probably due to the fluidity of the epoxy resin compounded composition injected into the mold being moderately restricted, but under all conditions there is little burr formation, and therefore it is suitable for resin molding for semiconductor encapsulation. In addition, there is no need to spend more effort and money to improve mold accuracy than necessary to prevent burrs, and the time the molded object is held in the mold can be shortened to less than 1 minute, eliminating the need for expensive injection molding. Since it is possible to dramatically increase the number of moldings per day by more than five times that of the conventional method using one die, it is a useful invention with extremely high industrial value.

Claims (1)

【特許請求の範囲】[Claims] 1 融点が50〜350℃のエポキシ系樹脂配合組成
物を、その融点よりも高い温度で混練可塑化した
後、該エポキシ系樹脂配合組成物の融点よりも低
い型温に注型して成形し、エポキシ系樹脂成形物
の硬化反応完了前に脱型して、後硬化を行わせる
ことを特徴とするエポキシ系樹脂の成形方法。
1. An epoxy resin compound composition with a melting point of 50 to 350°C is kneaded and plasticized at a temperature higher than its melting point, and then cast and molded at a mold temperature lower than the melting point of the epoxy resin compound composition. A method for molding an epoxy resin, which comprises demolding the epoxy resin molding before the curing reaction is completed and post-curing the epoxy resin molding.
JP56199743A 1981-12-10 1981-12-10 Method of molding epoxy resin Granted JPS58101032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199743A JPS58101032A (en) 1981-12-10 1981-12-10 Method of molding epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199743A JPS58101032A (en) 1981-12-10 1981-12-10 Method of molding epoxy resin

Publications (2)

Publication Number Publication Date
JPS58101032A JPS58101032A (en) 1983-06-16
JPH0126326B2 true JPH0126326B2 (en) 1989-05-23

Family

ID=16412888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199743A Granted JPS58101032A (en) 1981-12-10 1981-12-10 Method of molding epoxy resin

Country Status (1)

Country Link
JP (1) JPS58101032A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4339229A1 (en) * 2021-05-14 2024-03-20 TOYOBO MC Corporation Method for producing solid object

Also Published As

Publication number Publication date
JPS58101032A (en) 1983-06-16

Similar Documents

Publication Publication Date Title
KR930008739B1 (en) Epoxy resin composition and semiconductor sealing material comprising same
EP3471939B1 (en) Process for reclaiming scrap or unused epoxy resin prepreg
AU605234B2 (en) High temperature epoxy resin tooling composition
JPS58218147A (en) Method of packing semiconductor device and semiconductor device packed by same method
CN101575445B (en) Low-temperature fast curing polyester moulding compound and preparation method thereof
EP0810248A2 (en) A method of injection-molding an epoxy resin composition and an injection-moldable epoxy resin composition
US4925886A (en) High temperature epoxy tooling composition of bifunctional epoxy, trifunctional epoxy, anhydride, imidazole and interstitially matched filler
JPS58198525A (en) Epoxy resin composition
CN107353598A (en) Glass epoxy molding plastic and preparation method thereof
JPH0126326B2 (en)
JPS58138729A (en) Thermosetting molding composition
JP3003101B2 (en) Molding method of epoxy resin molded product using mini sprue mold
JP2001106771A (en) Epoxy resin molding material
MXPA04006905A (en) Method for producing and treating epoxide resin moulding materials.
JPH11124442A (en) Production of plastic composite machine part
JPS63264625A (en) Mold-making resinous material for molding
JPH09268222A (en) Epoxy resin composition
JP3176761B2 (en) Phenolic resin molding material
JPH0373578B2 (en)
JPH07113035A (en) Phenolic resin molding material
JP2001189333A (en) Semiconductor device and manufacturing method therefor
JP2024519118A (en) Manufacturing method of pellet-type polypropylene resin, pellet-type polypropylene resin and molded product containing the same
JPS638138B2 (en)
JPH02245018A (en) Epoxy resin composition for resin mold and resin mold made thereform
JPH0316369B2 (en)