JPS58101032A - Method of molding epoxy resin - Google Patents

Method of molding epoxy resin

Info

Publication number
JPS58101032A
JPS58101032A JP56199743A JP19974381A JPS58101032A JP S58101032 A JPS58101032 A JP S58101032A JP 56199743 A JP56199743 A JP 56199743A JP 19974381 A JP19974381 A JP 19974381A JP S58101032 A JPS58101032 A JP S58101032A
Authority
JP
Japan
Prior art keywords
epoxy resin
mold
melting point
temperature
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56199743A
Other languages
Japanese (ja)
Other versions
JPH0126326B2 (en
Inventor
Seiichi Fukunaga
精一 福永
Hidetoshi Saito
英俊 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP56199743A priority Critical patent/JPS58101032A/en
Publication of JPS58101032A publication Critical patent/JPS58101032A/en
Publication of JPH0126326B2 publication Critical patent/JPH0126326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0222Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould the curing continuing after removal from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To effect molding in a quick molding cycle without producing any sink or crack even for a large-sized molded item, by melting, kneading and plasticizing an epoxy resin composition at high temperature, casting the composition in a mold having a low temperature, and removing the molded item before it is cured so that it is postcured. CONSTITUTION:An epoxy resin composition having a melting temperature of 50-350 deg.C is kneaded and plasticized at temperature higher than its melting point, and then the composition is cast and molded in a mold having a temperature, preferably 20 deg.C lower or more lower than the melting point of said composition. Before curing of the molded item is completed, it is removed from the mold, and the postcuring is effected.

Description

【発明の詳細な説明】 本願はエポキシ系樹脂の新規な成形方法に関するもので
ある。従来の成形方法は、エポキシ系樹脂配合組成物は
混線可能な範囲の低い温度で行うことによって混練可塑
化中の硬化反応の進行を防ぎ、注型時の型温はできるた
け高くして硬化を早めることにより、成形サイクルを短
縮する方法が一般に採用されてきた。
DETAILED DESCRIPTION OF THE INVENTION The present application relates to a novel method for molding epoxy resins. In conventional molding methods, the epoxy resin compound composition is heated at a low temperature within the range that allows cross-contamination to prevent the curing reaction from proceeding during kneading and plasticization, and the mold temperature during casting is kept as high as possible to ensure curing. Methods have generally been adopted to shorten the molding cycle by speeding up the molding cycle.

例えは、エポキシ樹脂の射出成形の場合、通常混練可塑
化用シリンダ一温度は110°C前後に保って硬化反応
の急激な進行を防ぎながら、金型温度は1so’c以上
に保持して、注型後は急速に硬化させる方法をとってい
る。
For example, in the case of injection molding of epoxy resin, the temperature of the kneading and plasticizing cylinder is usually maintained at around 110°C to prevent rapid progress of the curing reaction, while the mold temperature is maintained at 1 so'c or higher. After casting, a method of rapidly curing is used.

しかしながら、このような方法では金型温度を可能な限
り高くしたとしても、金型内で成形品の硬化反応が完了
する迄には一般に5〜10分程度の時間が必要であり、
この間成形品は金型内に密閉保持しておかねばならず、
従って次の成形は脱型後となり、1回の成形サイクルは
5〜10分以上要することになってしまう。
However, in such a method, even if the mold temperature is set as high as possible, it generally takes about 5 to 10 minutes to complete the curing reaction of the molded product within the mold.
During this time, the molded product must be kept tightly sealed in the mold.
Therefore, the next molding is performed after demolding, and one molding cycle takes 5 to 10 minutes or more.

従来からも、この成形サイクルの短縮のためエポキシ樹
脂配合物の硬化反応完了前に脱型する試みがなされてき
たが、硬化反応完了前に脱型した場合、エポキシ樹脂の
硬化反応が発熱反応であるため、脱型後に収縮や反りが
発生し、特に大型成形品にあっては、側底実用に供し得
ないものとなってしまい採用できなかった。
Conventionally, attempts have been made to remove the epoxy resin compound from the mold before the curing reaction is completed in order to shorten the molding cycle, but if the mold is removed before the curing reaction is completed, the curing reaction of the epoxy resin may be an exothermic reaction. As a result, shrinkage and warping occur after demolding, making it impossible to put it to practical use as a side sole, especially in large molded products.

そのため、優れた機能性を持ちなからエポキシ樹脂は1
002未満の小物成形品か、コストは高くても要求性能
がエポキシ樹脂でないと満たし得ない用途にしか用いる
ことができなかったのである。
Therefore, epoxy resin has excellent functionality.
It could only be used for small molded products of less than 0.002 or for applications where the required performance could only be met by epoxy resin, even though the cost was high.

本願発明者等は、エポキシ系樹脂の優れた耐熱性、−耐
食性、電気特性を活かしながら、熱可塑性樹脂に匹敵す
る成形サイクル性を持たせる方法につき鋭意研究の結果
、以下に述べる方法をとることによって、その目的を達
成することに成功したものである。
The inventors of the present application have conducted extensive research on a method to provide molding cycleability comparable to thermoplastic resins while taking advantage of the excellent heat resistance, corrosion resistance, and electrical properties of epoxy resins, and have adopted the method described below. It has succeeded in achieving its purpose.

即ち、加熱可塑化したエポキシ系樹脂配合組成物を、該
配合組成物の融点以上の温度に加熱して配合成分の混合
分散を行った後、エポキシ系樹脂配合組成物の融点以下
の温度に調整した型内に移すことによって一旦急冷しな
がら成形し、見掛は上置化状態として、3o〜60秒程
度の熱可塑性樹脂成形サイクルに近い短時間サイクルで
脱型し、型を次の成形に用いようとするものである。
That is, the heat-plasticized epoxy resin blended composition is heated to a temperature higher than the melting point of the blended composition to mix and disperse the blended components, and then adjusted to a temperature lower than the melting point of the epoxy resin blended composition. The mold is molded while being rapidly cooled by transferring it into a mold, and the mold is removed in a short cycle of about 3 to 60 seconds, which is similar to the thermoplastic resin molding cycle, and the mold is used for the next molding. This is what I intend to use.

尚4型された成形品は、常温又は加i状態で、或は放射
線、紫外線、或は電子線照射等の手段にょつて後硬化反
応を完結させればよく、後硬化反応中の成形品は従来法
のような反りや収縮或はクラック発生等の現象は認めら
れなかった。
In addition, for the molded product, the post-curing reaction may be completed at room temperature or in a heated state, or by means such as radiation, ultraviolet rays, or electron beam irradiation.For the molded product during the post-curing reaction, Phenomena such as warping, shrinkage, or cracking, which were observed in the conventional method, were not observed.

本願の成形方法をとることによって、従来困難だった成
形品重量300〜10009の中〜大型成形品でも、ひ
けやクラック発生のない成形が可能となり、もちろん小
型の場合も支障なく高サイクル成形を行うことができた
のである。
By using the molding method of the present application, it is possible to mold medium to large molded products with a weight of 300 to 10,009, which was previously difficult, without sink marks or cracks, and of course high cycle molding can be performed without problems even in the case of small products. I was able to do that.

これは、エポキシ系樹脂の硬化反応を従来のような高温
金型内で急激に進行させると、成形品に内部ストレスが
残り易いが、本願発明のように、一旦成形品の温度を下
げて硬化反応の進行を緩慢に行わせることによって、内
部ストレスの残留を少なくさせた効果によるものと考え
られる。
This is because if the curing reaction of epoxy resin progresses rapidly in a conventional high-temperature mold, internal stress tends to remain in the molded product. This is thought to be due to the effect of reducing residual internal stress by making the reaction proceed slowly.

本願で用いられるエポキシ系樹脂としては、通常エポキ
シ樹脂と呼ばれているビスフェノール型エポキシ樹脂、
ノボラック型エポキシ樹脂、ハロゲン化エポキシ樹脂、
水添化エポキシ樹脂、脂環族エポキシ樹脂又はヒダント
イン系エポキシ樹脂の他に、シリコンエポキシ樹脂、エ
ポキシフラン樹脂、エポキシエステル樹脂、フェノキシ
樹脂、エポキシウレタン樹脂或は液状ゴムの末端基をエ
ポキシ変性したような変性エポキシ樹脂やポリビニール
フェノールのようなフェノール類ヲエポキシ樹脂で硬化
させるような系の樹脂も用いることかできる。
The epoxy resins used in this application include bisphenol-type epoxy resins, which are usually called epoxy resins;
Novolac type epoxy resin, halogenated epoxy resin,
In addition to hydrogenated epoxy resins, alicyclic epoxy resins, and hydantoin epoxy resins, silicone epoxy resins, epoxy furan resins, epoxy ester resins, phenoxy resins, epoxy urethane resins, and liquid rubbers whose terminal groups are modified with epoxy It is also possible to use resins that are cured with modified epoxy resins or phenolic epoxy resins such as polyvinyl phenol.

これらのエポキシ系樹脂用配合剤とし°C用いられるも
のとしては、公知の補強剤、硬化剤、充填剤、可塑剤、
希釈剤、難燃剤、光重合開始剤、顔料等が挙げられる。
Compounding agents for these epoxy resins include known reinforcing agents, curing agents, fillers, plasticizers,
Examples include diluents, flame retardants, photopolymerization initiators, and pigments.

もちろん、上記エポキシ系樹脂と相溶性のある他の公知
の熱可塑性又は熱硬化性樹脂をブレンドすることもでき
る。
Of course, other known thermoplastic or thermosetting resins that are compatible with the above epoxy resin can also be blended.

具体的には、硬化剤とし°Cはアミン類、酸無水物、イ
ミダゾール類、有機過酸化物等の他、ポリマー構造によ
ってはアルコール類、インシアネート類等も用いること
ができる。
Specifically, as a curing agent, in addition to amines, acid anhydrides, imidazoles, organic peroxides, etc., alcohols, incyanates, etc. can also be used depending on the polymer structure.

補強剤、!:L’−rは、ガラス繊維、炭素繊維、アス
ベスト等の無機繊維やアラミド繊維、ナイロン、ポリエ
ステル等の有機繊維のような繊維状補強剤の他に、酸化
アルミ、炭化珪素、グラファイトのようなホイスカーも
用いることができる。
Reinforcer,! :L'-r includes fibrous reinforcing agents such as inorganic fibers such as glass fiber, carbon fiber, and asbestos, and organic fibers such as aramid fiber, nylon, and polyester, as well as fibrous reinforcing agents such as aluminum oxide, silicon carbide, and graphite. Whiskers can also be used.

その他の配合剤としては、ガラスフレーク、ガラス粉、
マイカ、カーボンブラック、タルク、クレー、シリカ、
炭酸カルシウム、水酸化アルミニウム、チタン白のよう
な充填剤や顔料、或は、ジオクチルフタレートやトリク
レジルホスフェートのような可塑剤、ブチルグリシジル
エーテル、キシレンのような反応性又は非反応性希釈剤
、二酸化アンチモンと塩素化パラフィンのような難燃剤
、イソプロピルベンゾインエーテルのような光重合開始
剤等を適宜選択して用いる。
Other compounding agents include glass flakes, glass powder,
mica, carbon black, talc, clay, silica,
Fillers and pigments such as calcium carbonate, aluminum hydroxide, titanium white, or plasticizers such as dioctyl phthalate and tricresyl phosphate, reactive or non-reactive diluents such as butyl glycidyl ether, xylene, Flame retardants such as antimony dioxide and chlorinated paraffin, photopolymerization initiators such as isopropyl benzoin ether, and the like are appropriately selected and used.

本願発明が対象とする成形手段としては、射出−+ 成形法、トランファー成形法、押出成形法、ブロー成形
法、常圧注入法等、公知のモールドを用いて成形する方
法にすべて適用が可能である。
The present invention is applicable to all known molding methods such as injection molding, transfer molding, extrusion molding, blow molding, and normal pressure injection. It is.

本願発明では、融点が50〜350°Cのエポキシ系樹
脂組成物を対象としているが、樹脂組成物の融点が50
°C未満の場合は、樹脂組成物はたとえ常温近辺まで冷
却しても、硬化反応が完了するまで−は脱型が困難であ
り、本願の目的を満足しないからである。又一方融点が
350°C以上になると、混練可塑化工程でのエネルギ
ー消費が大きく、且つポリマー自体の分解温度に近接す
る上、硬化反応が著しく早くなり成形作業性を阻害する
からである。この点を考慮して、たとえ好ましい融点範
囲のエポキシ系樹脂配合組成物であっても、高融点系の
配合組成物の場合には、設定された可塑化混線条件下で
は緩慢な硬化反応速度を示すような硬化剤、触1媒系を
選定することが望ましい。
The present invention targets an epoxy resin composition with a melting point of 50 to 350°C;
If the temperature is less than .degree. C., even if the resin composition is cooled to around room temperature, it will be difficult to demold the resin composition until the curing reaction is completed, and the object of the present application will not be achieved. On the other hand, if the melting point is 350°C or higher, the energy consumption in the kneading and plasticizing step is large and approaches the decomposition temperature of the polymer itself, and the curing reaction becomes extremely rapid, impeding molding workability. Considering this point, even if the epoxy resin compound composition has a preferable melting point range, in the case of a high melting point compound composition, the curing reaction rate will be slow under the set plasticizing crosstalk conditions. It is desirable to select the curing agent and catalyst system shown below.

本願発明の目的を達成するためには、金型温度はエポキ
シ系樹脂配合組成物の融点以下に保持すすることが必要
であるが1、好ましくは融点より−4゜゛C以上低い温
度に保持するのが適当である。
In order to achieve the object of the present invention, it is necessary to maintain the mold temperature below the melting point of the epoxy resin compound composition, but preferably at a temperature lower than the melting point by -4°C or more. is appropriate.

尚エポキシ系樹脂自体の融点がたとえ350°C以上で
あったとしても、可塑剤やその他の配合剤を混練した組
成物としての融点が350′C以下であればよく、又逆
にエポキシ系樹脂自体の融点が50°C未満であって、
充填剤や補強材を混練した組成物の融点が50°C以上
になれば、本願の目的を達成することができるのである
Even if the melting point of the epoxy resin itself is 350°C or higher, it is sufficient that the melting point of the composition obtained by kneading plasticizers and other compounding agents is 350°C or lower. Its own melting point is less than 50 ° C,
If the melting point of the composition kneaded with fillers and reinforcing materials is 50°C or higher, the object of the present application can be achieved.

本願発明で規定するエポキシ系樹脂配合組成物の融点は
、株式会社柳本製作所製の熱媒式融点測定器を用い、1
分間に1°Cずつ昇温させて、スライドガラス上の1〜
3 m9  の配合組成物の小片がその容積の半分以上
熔融した時の温度をもって表わしたものである。又成、
4形品の硬化反応終了の判定は、成形品の表面をアセト
ン溶剤で濡らせた時、指にべとつきが感じられなくなっ
た状態をもって硬化反応終了とした。
The melting point of the epoxy resin blended composition defined in the present invention was determined using a heat medium type melting point meter manufactured by Yanagimoto Seisakusho Co., Ltd.
Raise the temperature by 1°C per minute, and
It is expressed as the temperature at which more than half of the volume of a small piece of the blended composition of 3 m9 is melted. Matanari,
The completion of the curing reaction for the 4-shaped product was determined when the surface of the molded product was wetted with acetone solvent and no stickiness was felt on the fingers.

三井石油化学牛塙製エポキシ樹脂R3o4(融点80℃
)100重量部に無水フタル酸8重量部及び無水珪酸2
50重量部を加え、180′Cにて加熱混合し、一旦室
温(20°C)に冷却した後、ペレット状に粉砕した。
Mitsui Petrochemical Ushihana epoxy resin R3o4 (melting point 80℃
) 100 parts by weight, 8 parts by weight of phthalic anhydride and 2 parts by weight of silicic anhydride.
50 parts by weight were added, heated and mixed at 180'C, cooled once to room temperature (20°C), and then ground into pellets.

このペレット状粉砕物の融点は100°Cであった。The melting point of this pellet-like pulverized product was 100°C.

この粉砕物100fを秤取し、予備加熱温度180°C
1圧力50Kg/cd1金型温度60″cの条件に設定
した市販のトランファー成形機を用いて、10■厚みの
平板状成形体を成形した。成形品は50秒後に脱型し、
100°Cて日時間加温した後頁に150℃に昇温しで
2時間ポストキュナーを行った。このものは、アセトン
で濡らせても全くべたつきがなく、従って硬化反応は完
了したと判定された。成形品は、反りやひけが認められ
ず、良好な外観を示した。
Weigh out 100 f of this pulverized material and preheat it to 180°C.
Using a commercially available transfer molding machine set to the following conditions: 1 pressure 50 kg/cd 1 mold temperature 60''c, a flat plate-shaped molded product with a thickness of 10 cm was molded.The molded product was demolded after 50 seconds.
After heating at 100°C for several days, the temperature was raised to 150°C and post-curing was performed for 2 hours. This product was not sticky at all when wetted with acetone, so the curing reaction was judged to be complete. The molded product had a good appearance with no warpage or sink marks observed.

尚本実施例で特筆すべきことは、金型のパーティングラ
インからのパリのはみ出しがほとんど認められなかった
ことである。
What should be noted in this example is that almost no protrusion of the mold beyond the parting line of the mold was observed.

比較例 実施例1と同様にして、金型温度のみを160°Cに変
えてトランスファー成形を行った所、成形後10分経過
して脱型しようとしたが、硬化が不完全のため変形なし
に脱型することは困難であった。脱型可能になったのは
、16o″Cの金型温度て1時間経過後であった。又成
形品は金型のパーティングライン部には全周にわたって
薄いパリか形成されていた。
Comparative Example Transfer molding was carried out in the same manner as in Example 1, only the mold temperature was changed to 160°C. When an attempt was made to remove the mold 10 minutes after molding, there was no deformation due to incomplete curing. It was difficult to demold the mold. It became possible to demold the mold after one hour had passed at the mold temperature of 16o''C.Furthermore, the molded product had a thin barrier formed around the entire circumference at the parting line of the mold.

実施例2 150メツシユに粉砕した油化シェルエポキシ■製エポ
キシ樹脂エピコート+009(融点114°c)ioo
重量部にヘキサヒドロフタル酸5重量部及び無水珪酸粉
末250重量部を粉末状のまま混合し、更に油化シェル
エポキシ■製エピコート1004(融点80°C)粉末
を10重量部加えた後、120°Cて混合した後、室温
(21°C)に冷却しペレット状に粉砕した。
Example 2 Epoxy resin Epicoat +009 (melting point 114°C) made by Oil Shell Epoxy ■ crushed into 150 meshes (melting point 114°C) ioo
5 parts by weight of hexahydrophthalic acid and 250 parts by weight of silicic anhydride powder were mixed in powder form, and 10 parts by weight of Epicoat 1004 (melting point 80°C) powder manufactured by Yuka Shell Epoxy ■ was added. After mixing at °C, the mixture was cooled to room temperature (21 °C) and ground into pellets.

このペレット状粉砕物を市販の熱可塑性樹脂用射出成形
機を用いシリンダーのゲート近辺部220℃、中央部2
10℃、ホッパ一部200℃、金型温度60℃、射出圧
1ooOKg/cdの条件にて平板状成形体を成形した
。成形体は60秒後に脱型し、170℃にて1時間ポス
トキュアーを行った。
Using a commercially available injection molding machine for thermoplastic resin, the pulverized pellets were heated at 220°C near the gate of the cylinder and at 220°C in the center.
A flat plate-shaped molded body was molded under the following conditions: 10°C, hopper part 200°C, mold temperature 60°C, and injection pressure 1ooOKg/cd. The molded body was demolded after 60 seconds and post-cured at 170°C for 1 hour.

成形体の平均板厚151w、縦1501R1横200期
の大きさで、重量は7202で、ひけ、反り等の不具合
は全くなく、又本実施例のような大型の成形体を射出成
形した場合においても金型のパーティングライン部から
のパリの生成は極めて僅か−〇あった。
The average thickness of the molded product is 151w, the length is 1501R1, the width is 200m, and the weight is 7202mm.There are no defects such as sink marks or warping, and when a large molded product like this example is injection molded, There was also very little formation of flakes from the parting line of the mold.

尚、射出成形機に投入するペレット状組成物は、成形前
に硬化反応の進行を防ぐため、120°Cのような低温
で混合しているので、完全な熔融混合状態ではないので
、配合組成物の融点測定に際し旦250°Cに加熱して
熔融混合状態となし、これを室温迄冷却した後に融点測
定を行った結果、融点は200°Cであった。
In addition, the pellet-like composition fed into the injection molding machine is mixed at a low temperature such as 120°C to prevent the progress of the curing reaction before molding, so the composition is not completely melted and mixed. When measuring the melting point of the product, it was first heated to 250°C to form a molten mixture state, and after cooling to room temperature, the melting point was measured, and the result was that the melting point was 200°C.

実施例3 150メツシユに粉砕した平均分子量i o、 o 。Example 3 Average molecular weight i o, o crushed to 150 mesh.

O1融点165℃のビスフェノールA型エポキシ樹脂1
00重量部に、ガラス繊維(チョツプドストランド)4
0重量部及びテトラヒドロフタル酸3重量部と、ジアミ
ノジフェニルメタンα7重量部を粉末状又は繊維状のま
ま混合し、更に油化シェルエポキシ■製エピコート10
09(融点114”C)の粉末50重量部を加え、22
0°Cで混合し、ペレット化した。得られた配合組成物
の融点は205°Cであった。この組成物を市販の熱可
塑性樹脂用射出成形機にてシリンダーのゲート近辺部を
250°C1中央部230°C,ホッパ一部210℃、
射出圧1.000 Kl/ ct/i 、金型温度80
℃の条件で引張り強さ試験用ダルベル(JI81号形厚
み2 IIm ) 2ケ及び幅251g、長さ150顛
、厚み2藺の平板2ケの計4ヶ取りのキャビティーをも
つ金型に射出成形した。1回の射出量は60fであった
O1 Bisphenol A type epoxy resin 1 with melting point 165℃
00 parts by weight, glass fiber (chopped strand) 4
0 parts by weight, 3 parts by weight of tetrahydrophthalic acid, and 7 parts by weight of diaminodiphenylmethane α are mixed in powder or fibrous form, and then Epicoat 10 made from Yuka Shell Epoxy ■ is mixed.
Add 50 parts by weight of powder of 09 (melting point 114"C),
Mixed and pelletized at 0°C. The melting point of the resulting blended composition was 205°C. This composition was heated in a commercially available injection molding machine for thermoplastic resin at 250°C in the vicinity of the cylinder gate, 230°C in the center, and 210°C in the hopper.
Injection pressure 1.000 Kl/ct/i, mold temperature 80
Injected into a mold with a total of 4 cavities, including 2 dalbells (JI No. 81 type, thickness 2 IIm) for tensile strength testing at ℃, and 2 flat plates with a width of 251g, a length of 150g, and a thickness of 2mm. Molded. The amount of injection per shot was 60f.

この実施例においても金型のパーティングライン部から
のパリの発生は、はとんど認められなかった。
In this example as well, the occurrence of flaking from the parting line portion of the mold was hardly observed.

尚成形品は60秒後説型し、150°Cて3時間、20
0℃で2時間の計5時間ポストキュアーを行った。この
成形品の物性を測定した結果を第1表に示した。
The molded product was molded for 60 seconds and kept at 150°C for 3 hours, 20
Post-curing was performed for 2 hours at 0°C for a total of 5 hours. Table 1 shows the results of measuring the physical properties of this molded article.

第  1  表 本願発明は、各実施例に示したように、エポキシ系樹脂
配合組成物の融点より高い温度で混練可塑化し、組成物
の融点よりも低い温度の金型にて成形することにより、
金型に注入されたエポキシ系樹脂配合組成物の流動性は
適度の制約を受けるためと考えられるか、いずれの条件
においてもノくりの発生か少なく、従って半導体封止の
ための樹脂成形のように、パリ発生防止のために必要以
上の金型精度向上の労力と経費をかけることも不要で、
且つ成形体の金型内での保持時間を1分以下に短縮でき
るので、高価な射出成形用金型1面で、111当りの成
形数を従来法の5倍以上と飛躍約6こ向上させることが
可能数、その工業的価値は極めて高い有用な発明である
Table 1 As shown in each example, the present invention is made by kneading and plasticizing the epoxy resin blended composition at a temperature higher than the melting point, and molding it in a mold at a temperature lower than the melting point of the composition.
Possibly because the fluidity of the epoxy resin compounded composition injected into the mold is moderately constrained, under all conditions, there is little occurrence of gouges, and therefore it is difficult to use for resin molding for semiconductor encapsulation. In addition, there is no need to spend more effort and expense on improving mold accuracy than necessary to prevent the occurrence of paris.
In addition, since the holding time of the molded object in the mold can be shortened to less than 1 minute, the number of molds per 111 molds per expensive injection mold is more than 5 times that of conventional methods, which is a dramatic improvement of about 6 times. This is a useful invention with extremely high industrial value.

特許出願人 東洋ゴム工業株式会社patent applicant Toyo Rubber Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 融点が50〜350°Cのエポキシ系樹脂配合組成物を
、その融点よりも高い温度で混練可塑化した後、該エポ
キシ系樹脂配合組成物の融点よりも低い型温に注型して
成形し、エポキシ系樹脂成形物の硬化反応完了前に脱型
して、後硬化を行わせることを特徴とするエポキシ系樹
脂の成形方法。
An epoxy resin blended composition with a melting point of 50 to 350°C is kneaded and plasticized at a temperature higher than its melting point, and then cast and molded at a mold temperature lower than the melting point of the epoxy resin blended composition. A method for molding an epoxy resin, which comprises demolding the epoxy resin molding before the curing reaction is completed and post-curing the epoxy resin molding.
JP56199743A 1981-12-10 1981-12-10 Method of molding epoxy resin Granted JPS58101032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56199743A JPS58101032A (en) 1981-12-10 1981-12-10 Method of molding epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56199743A JPS58101032A (en) 1981-12-10 1981-12-10 Method of molding epoxy resin

Publications (2)

Publication Number Publication Date
JPS58101032A true JPS58101032A (en) 1983-06-16
JPH0126326B2 JPH0126326B2 (en) 1989-05-23

Family

ID=16412888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56199743A Granted JPS58101032A (en) 1981-12-10 1981-12-10 Method of molding epoxy resin

Country Status (1)

Country Link
JP (1) JPS58101032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239224A1 (en) * 2021-05-14 2022-11-17 東洋紡株式会社 Method for producing solid object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239224A1 (en) * 2021-05-14 2022-11-17 東洋紡株式会社 Method for producing solid object

Also Published As

Publication number Publication date
JPH0126326B2 (en) 1989-05-23

Similar Documents

Publication Publication Date Title
EP3471939B1 (en) Process for reclaiming scrap or unused epoxy resin prepreg
CN102337014B (en) Resin-based composite material with controllable linear expansion coefficient and preparation method thereof
AU605234B2 (en) High temperature epoxy resin tooling composition
BRPI0807323A2 (en) "PROCESS FOR FORMING A COMPOSITE"
JPH02276814A (en) Epoxy resin composition and semiconductor sealant produced therefrom
JPS58198525A (en) Epoxy resin composition
KR102140039B1 (en) Composition of modified epoxy vinyl ester acrylate resin and prepreg using the same
EP0810248A2 (en) A method of injection-molding an epoxy resin composition and an injection-moldable epoxy resin composition
JPH02232222A (en) Heat-resistant epoxy resin mold composition
JPS58101032A (en) Method of molding epoxy resin
JPH04144723A (en) Manufacture of fiber-reinforced resin molded form
CN107353598A (en) Glass epoxy molding plastic and preparation method thereof
JPS58138729A (en) Thermosetting molding composition
JP3003101B2 (en) Molding method of epoxy resin molded product using mini sprue mold
JPH11124442A (en) Production of plastic composite machine part
JPH0373578B2 (en)
JP2001106771A (en) Epoxy resin molding material
CA2207782A1 (en) Preparation of mouldings by the automatic pressure gelation technique using a one-component composition
JP3176761B2 (en) Phenolic resin molding material
JP2024519118A (en) Manufacturing method of pellet-type polypropylene resin, pellet-type polypropylene resin and molded product containing the same
JPS638138B2 (en)
JP2002036316A (en) Method for molding epoxy resin molding by high speed injection-filling
JPH02245018A (en) Epoxy resin composition for resin mold and resin mold made thereform
CN106479126A (en) A kind of bicycle structure epoxy resin toughened system and preparation method thereof
JP2001189333A (en) Semiconductor device and manufacturing method therefor