JPH0126278B2 - - Google Patents

Info

Publication number
JPH0126278B2
JPH0126278B2 JP54089530A JP8953079A JPH0126278B2 JP H0126278 B2 JPH0126278 B2 JP H0126278B2 JP 54089530 A JP54089530 A JP 54089530A JP 8953079 A JP8953079 A JP 8953079A JP H0126278 B2 JPH0126278 B2 JP H0126278B2
Authority
JP
Japan
Prior art keywords
circuit
motor
capacitor
transistor
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54089530A
Other languages
Japanese (ja)
Other versions
JPS5615182A (en
Inventor
Ryuichiro Iwai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8953079A priority Critical patent/JPS5615182A/en
Priority to US06/164,271 priority patent/US4303874A/en
Priority to DE3025995A priority patent/DE3025995C2/en
Priority to IT49231/80A priority patent/IT1129025B/en
Priority to YU01796/80A priority patent/YU179680A/en
Publication of JPS5615182A publication Critical patent/JPS5615182A/en
Publication of JPH0126278B2 publication Critical patent/JPH0126278B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/292Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC
    • H02P7/293Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using static converters, e.g. AC to DC using phase control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)

Description

【発明の詳細な説明】 本発明は速度設定信号となる電源周波数と同期
した鋸歯状波電圧と、速度制御される直流電動機
の検出された誘起電圧とを比較して速度制御を行
なう電動機の速度制御回路に関するもので、低速
時、高トルク出力の回転安定性を得るとともに、
電源電圧及び周囲温度の変化に対する回転速度の
変動をなくそうとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides speed control for a motor which performs speed control by comparing a sawtooth wave voltage synchronized with the power supply frequency, which is a speed setting signal, and an induced voltage detected in a DC motor to be speed controlled. This is related to the control circuit, which achieves rotational stability with high torque output at low speeds, and
This is intended to eliminate fluctuations in rotational speed due to changes in power supply voltage and ambient temperature.

従来、この種の電動機の速度制御回路において
は、電源周波数と同期した鋸歯状波を作るため、
第1図のような構成により鋸歯状波を得ていた。
第1図において、1は交流電源、2,3,4,5
は交流電源1を全波整流して電動機(図示せず)
の駆動用位相制御電源を構成するダイオード、6
は速度設定のための直流電源、7は抵抗8とによ
り時定数回路を構成するコンデンサ、9は抵抗8
とコンデンサ7との接続点に抵抗10を介してコ
レクタを接続した第1トランジスタ、11はコレ
クタを第1トランジスタ9のベースに接続した第
2トランジスタ、12,13,14は抵抗であ
る。
Conventionally, in the speed control circuit of this type of motor, in order to create a sawtooth wave synchronized with the power supply frequency,
A sawtooth wave was obtained using the configuration shown in Figure 1.
In Figure 1, 1 is an AC power supply, 2, 3, 4, 5
is a motor (not shown) by full-wave rectifying the AC power supply 1.
A diode constituting a phase control power supply for driving the 6
is a DC power supply for speed setting, 7 is a capacitor that forms a time constant circuit with resistor 8, and 9 is resistor 8.
11 is a second transistor whose collector is connected to the base of the first transistor 9, and 12, 13, and 14 are resistors.

以上の構成において、第1トランジスタ9は電
源周波数に同期してオン、オフし、第1トランジ
スタ9がオフ時に抵抗8を通してコンデンサ7に
充電された電荷は、第1トランジスタ9のオンに
より放電され、端子aより鋸歯状波が取り出され
る。ここで、第2トランジスタ11のオンとオフ
のスレシホルド電圧は、第2トランジスタ11の
約0.6Vのベース飽和電圧によつている。しかし、
ベース飽和電圧は温度によつて変化し、また入力
電圧として与えられた交流の全波整流波形の電
圧、すなわち、交流電源1の電圧によつてもオン
とオフの比率が変化する事となり、結果として得
られた鋸歯状波の電圧変化の傾斜に温度特性と電
圧特性を持つことになる。したがつて、この鋸歯
状波を速度設定信号としたのでは温度、電源電圧
の変化に対して直流電動機の回転速度が変動して
しまう事になる。
In the above configuration, the first transistor 9 is turned on and off in synchronization with the power supply frequency, and when the first transistor 9 is off, the charge that is charged in the capacitor 7 through the resistor 8 is discharged when the first transistor 9 is turned on. A sawtooth wave is taken out from terminal a. Here, the on/off threshold voltage of the second transistor 11 depends on the base saturation voltage of the second transistor 11 of about 0.6V. but,
The base saturation voltage changes depending on the temperature, and the on/off ratio also changes depending on the voltage of the AC full-wave rectified waveform given as the input voltage, that is, the voltage of the AC power supply 1. The slope of the voltage change of the sawtooth wave obtained as a result has temperature characteristics and voltage characteristics. Therefore, if this sawtooth wave is used as a speed setting signal, the rotational speed of the DC motor will fluctuate with changes in temperature and power supply voltage.

次に誘起電圧の検出方式としては従来では第2
図のような構成により目的を果たしていた。
Next, the conventional method for detecting induced voltage is the second one.
The configuration shown in the figure served its purpose.

第2図において、Eiは位相制御された直流電動
機15の駆動用電源、16,17はダイオード、
18,19,20,21,22は抵抗、23はコ
ンデンサ、24はトランジスタで、コンデンサ2
3に直流電動機15の検出誘起電圧を記憶させる
ものである。
In FIG. 2, Ei is a power supply for driving the phase-controlled DC motor 15, 16 and 17 are diodes,
18, 19, 20, 21, 22 are resistors, 23 is a capacitor, 24 is a transistor, and capacitor 2
3 stores the detected induced voltage of the DC motor 15.

ここで特に低速で安定した回転を得るために
は、コンデンサ23の充電時定数を短く、放電時
定数を長くとる必要がある。
In order to obtain stable rotation especially at low speeds, it is necessary to set the charging time constant of the capacitor 23 short and the discharging time constant long.

充電時定数は抵抗20と21とコンデンサ2
3、放電時定数は抵抗22とコンデンサ23によ
り決定され、充電時定数を決める上でコンデンサ
23の容量は放電時定数を長くとる関係からあま
り小さくする事ができず、抵抗20,21を小さ
くする方向になるが、これも発熱の点でむやみに
小さくする事はできない。
Charging time constant is resistor 20 and 21 and capacitor 2
3. The discharge time constant is determined by the resistor 22 and the capacitor 23, and in determining the charge time constant, the capacitor 23's capacity cannot be made too small because it takes a long discharge time constant, so the resistors 20 and 21 are made small. However, in terms of heat generation, this cannot be reduced unnecessarily.

したがつて従来の回路では、相反する条件の元
で回路定数を選定しており、特に低速時の回転安
定性に問題があつた。
Therefore, in conventional circuits, circuit constants are selected based on contradictory conditions, and there is a problem with rotational stability, especially at low speeds.

本発明は上記従来の欠点に鑑みてなされたもの
で、以下本考案の一実施例を第3図〜第7図を参
照して説明する。第3図において、25は直流電
動機15の駆動用の全波整流された位相制御電
源、26は電動機15の回転に伴う誘起電圧を検
出する誘起電圧検出回路、27は電源周波数と同
期した速度設定信号となる鋸歯状波を発生する鋸
歯状波発生回路、28は鋸歯状波発生回路27か
らの速度信号と誘起電圧検出回路26からの検出
信号を比較する比較回路(コンパレータ)、29
はコンパレータ28からの出力信号によりパルス
を発生するパルス発生回路、30はパルス発生回
路29からのパルスによりトリガされるサイリス
タを含む制御回路である。
The present invention has been made in view of the above-mentioned conventional drawbacks, and one embodiment of the present invention will be described below with reference to FIGS. 3 to 7. In FIG. 3, 25 is a full-wave rectified phase-controlled power supply for driving the DC motor 15, 26 is an induced voltage detection circuit that detects the induced voltage accompanying the rotation of the motor 15, and 27 is a speed setting synchronized with the power supply frequency. A sawtooth wave generation circuit that generates a sawtooth wave as a signal; 28 a comparison circuit (comparator) that compares the speed signal from the sawtooth wave generation circuit 27 and the detection signal from the induced voltage detection circuit 26; 29;
30 is a control circuit including a thyristor that is triggered by a pulse from the pulse generation circuit 29;

第4図は鋸歯状波発生回路27の具体構成を示
すもので、以下その構成を図面に基いて説明す
る。なお、上記従来の構成と同一構成部品は同一
番号を使用しその説明を省略する。図において3
1はコンパレータ、32は電流が電源側に逆流す
るのを防止するダイオード、33,34は抵抗器
で、抵抗器13,14と共にブリツジ回路を構成
している。35はコンパレータ31の反転入力電
圧に全波整流電圧を平滑するため抵抗34と並列
接続された第1のコンデンサである。ここで該ブ
リツジ回路の第1の出力となるP点と第2の出力
となるQ点の電位の関係は、P点の電位がQ点よ
りも高くなるように抵抗器13,14,33、3
4の抵抗値を選定すると、第5図のような各部の
波形が得られることになる。
FIG. 4 shows a specific configuration of the sawtooth wave generating circuit 27, and the configuration will be explained below based on the drawing. Note that the same numbers are used for the same components as in the conventional structure described above, and the description thereof will be omitted. In the figure 3
1 is a comparator, 32 is a diode that prevents current from flowing back to the power supply side, and 33 and 34 are resistors, which together with the resistors 13 and 14 constitute a bridge circuit. 35 is a first capacitor connected in parallel with the resistor 34 to smooth the full-wave rectified voltage to the inverted input voltage of the comparator 31. Here, the relationship between the potentials of point P, which is the first output, and point Q, which is the second output, of the bridge circuit is such that the resistors 13, 14, 33, 3
If a resistance value of 4 is selected, waveforms at various parts as shown in FIG. 5 will be obtained.

なお、7は直流電源6によつて充電される第2
のコンデンサである。
Note that 7 is a second battery charged by the DC power supply 6.
It is a capacitor.

以上のような構成により、交流電源が変動した
とき、コンパレータ31の反転及び非反転入力電
位が同じ割合で交流電源圧変動に応じて変化する
ため、コンパレータ31がオンとなつている時間
tが常に一定となり、また温度変化に対しても、
コンパレータ31の入力オフセツト電圧に関係す
るだけで実用上全く無視できるもので、結果とし
て電源電圧変動、温度変化に対して鋸歯状波の電
圧変化率を一定に保つ事ができる。
With the above configuration, when the AC power source fluctuates, the inverting and non-inverting input potentials of the comparator 31 change at the same rate according to the AC power source voltage fluctuation, so the time t during which the comparator 31 is on always remains constant. It remains constant, and even with temperature changes,
It is only related to the input offset voltage of the comparator 31 and can be completely ignored in practice, and as a result, the rate of voltage change of the sawtooth wave can be kept constant against fluctuations in power supply voltage and temperature.

これにより安定した速度設定を行なう事ができ
る。
This allows stable speed settings.

次に誘起電圧検出回路26の具体構成を第6図
を参照して説明する。なお上記従来の構成と同一
構成部品は同一番号を使用し、その説明を省略す
る。
Next, the specific configuration of the induced voltage detection circuit 26 will be explained with reference to FIG. Note that the same numbers are used for the same components as in the conventional configuration described above, and the description thereof will be omitted.

第6図において、36はエミツターフオロワー
の第1トランジスタで、従来のダイオードの機能
はエミツターフオロワーのベース、エミツター間
のPN接合によつている。37はエミツターフオ
ロワーの第1のトランジスタ36のための電源で
ある。
In FIG. 6, 36 is the first transistor of the emitter follower, and the function of a conventional diode is based on the PN junction between the base and emitter of the emitter follower. 37 is a power supply for the first transistor 36 of the emitter follower.

この構成はダイオードをエミツターフオロワー
型トランジスタにかえて出力インピーダンスを小
さくしコンデンサ23の充電時定数を短くしよう
とするもので、これによりコンデンサ23の容量
を大きくする事ができ、充電時定数と放電時定数
の比を従来のダイオードを使用したものに比べて
大きくする事ができる。
This configuration replaces the diode with an emitter follower transistor to reduce the output impedance and shorten the charging time constant of the capacitor 23. This allows the capacitance of the capacitor 23 to be increased, and the charging time constant The ratio of the discharge time constant can be made larger than that using conventional diodes.

以上の説明から明らかなように本発明によれ
ば、電源電圧変動、周囲温度変動に対して直流電
動機の回転変動を基本的になくす事ができる。ま
た低速時の回転安定性を従来のものに比べて高く
できる。
As is clear from the above description, according to the present invention, it is possible to basically eliminate rotational fluctuations of the DC motor in response to power supply voltage fluctuations and ambient temperature fluctuations. Furthermore, rotational stability at low speeds can be improved compared to conventional ones.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電動機の速度制御回路における
鋸歯状波発生回路の結線図、第2図は同誘起電圧
検出回路の結線図、第3図は本発明の実施例にか
かる電動機の速度制御回路のブロツク図、第4図
は同鋸歯状波発生回路の結線図、第5図は同回路
における各部の波形図、第6図は同誘起電圧検出
回路の結線図、第7図は同回路における各部の波
形図である。 15……電動機、25……位相制御電源、26
……誘起電圧検出回路、27……鋸歯状発生回
路、28……比較回路、29……パルス発生回
路、30……制御回路。
Fig. 1 is a wiring diagram of a sawtooth wave generation circuit in a conventional motor speed control circuit, Fig. 2 is a wiring diagram of the same induced voltage detection circuit, and Fig. 3 is a motor speed control circuit according to an embodiment of the present invention. 4 is a wiring diagram of the same sawtooth wave generation circuit, Fig. 5 is a waveform diagram of each part in the same circuit, Fig. 6 is a wiring diagram of the same induced voltage detection circuit, and Fig. 7 is a wiring diagram of the same circuit. It is a waveform diagram of each part. 15...Electric motor, 25...Phase control power supply, 26
... induced voltage detection circuit, 27 ... sawtooth generation circuit, 28 ... comparison circuit, 29 ... pulse generation circuit, 30 ... control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 全波整流された位相制御電源により駆動され
る直流電動機と、前記位相制御電源に接続され、
前記直流電動機への通電を制御するサイリスタを
含む制御回路と、少なくとも前記直流電動機の速
度設定信号となる電源周波数と同期した鋸歯状波
電圧を発生する鋸歯状波発生回路と、前記直流電
動機の回転による誘起電圧を検出する誘起電圧検
出回路と、前記鋸歯状波発生回路からの速度設定
信号と前記誘起電圧検出回路からの検出信号とを
比較する比較回路と、この比較回路の出力信号に
より前記制御回路のサイリスタをトリガするパル
スを発生するパルス発生回路とを備え、前記誘起
電圧検出回路は、位相制御電源と電動機との間に
接続したダイオードと、このダイオードと直流電
動機との接続点に抵抗器を介してベースを接続し
たエミツタフオロワの第1のトランジスタと、こ
の第1のトランジスタのエミツタに接続したコン
デンサと抵抗器よりなる並列回路と、前記第1の
トランジスタのベースにコレクタを接続した第2
のトランジスタと、この第2のトランジスタのベ
ースと前記位相制御電源間に接続した抵抗器を有
し、第1のトランジスタのエミツタより誘起電圧
検出信号を得、前記鋸歯状波発生回路は、交流電
源の全波整流波形電圧を入力とし、かつ第1と第
2の各出力端に該全波整流波形電圧と相似の波形
電圧信号を得る複数の抵抗器からなるブリツジ回
路と、前記ブリツジ回路の第2の出力端に接続さ
れ、かつ第2の出力端の波形電圧信号を平滑する
第1のコンデンサと、前記ブリツジ回路の第1の
出力端と第1のコンデンサと接続され、かつ前記
第1の出力端の波形電圧信号と前記平滑された電
圧信号とを比較するコンパレータと、前記コンパ
レータの出力と接続され、かつ速度設定のための
直流電源と接続された第2のコンデンサを有し、
前記コンパレータのオン、オフ出力にて前記直流
電源より充電された第2のコンデンサの放電を制
御して速度設定信号となる鋸歯状波を発生する電
動機の速度制御回路。
1 A DC motor driven by a full-wave rectified phase-controlled power source, and a DC motor connected to the phase-controlled power source,
a control circuit including a thyristor that controls energization to the DC motor; a sawtooth wave generation circuit that generates a sawtooth wave voltage synchronized with a power supply frequency serving as a speed setting signal for at least the DC motor; and a rotation of the DC motor. an induced voltage detection circuit that detects the induced voltage caused by the electromotive force; a comparison circuit that compares the speed setting signal from the sawtooth wave generation circuit with the detection signal from the induced voltage detection circuit; The induced voltage detection circuit includes a pulse generation circuit that generates a pulse that triggers a thyristor in the circuit, and the induced voltage detection circuit includes a diode connected between the phase control power source and the motor, and a resistor at the connection point between the diode and the DC motor. a parallel circuit consisting of a capacitor and a resistor connected to the emitter of the first transistor; and a second transistor whose collector is connected to the base of the first transistor.
and a resistor connected between the base of the second transistor and the phase control power supply, an induced voltage detection signal is obtained from the emitter of the first transistor, and the sawtooth wave generation circuit is connected to the AC power supply. a bridge circuit comprising a plurality of resistors that receives a full-wave rectified waveform voltage as an input and obtains waveform voltage signals similar to the full-wave rectified waveform voltage at first and second output terminals; a first capacitor connected to the output terminal of the bridge circuit 2 and smoothing the waveform voltage signal at the second output terminal; and a first capacitor connected to the first output terminal of the bridge circuit and the first capacitor a comparator for comparing the waveform voltage signal at the output end with the smoothed voltage signal; and a second capacitor connected to the output of the comparator and to a DC power supply for speed setting;
A speed control circuit for a motor that controls discharging of a second capacitor charged by the DC power source using on/off outputs of the comparator to generate a sawtooth wave serving as a speed setting signal.
JP8953079A 1979-07-13 1979-07-13 Speed control circuit for motor Granted JPS5615182A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8953079A JPS5615182A (en) 1979-07-13 1979-07-13 Speed control circuit for motor
US06/164,271 US4303874A (en) 1979-07-13 1980-06-30 Motor speed control system
DE3025995A DE3025995C2 (en) 1979-07-13 1980-07-09 Motor speed control circuit
IT49231/80A IT1129025B (en) 1979-07-13 1980-07-11 IMPROVEMENT IN THE SPEED CONTROL SYSTEMS OF ELECTRIC MOTORS
YU01796/80A YU179680A (en) 1979-07-13 1980-07-11 Motor speed control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8953079A JPS5615182A (en) 1979-07-13 1979-07-13 Speed control circuit for motor

Publications (2)

Publication Number Publication Date
JPS5615182A JPS5615182A (en) 1981-02-13
JPH0126278B2 true JPH0126278B2 (en) 1989-05-23

Family

ID=13973357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8953079A Granted JPS5615182A (en) 1979-07-13 1979-07-13 Speed control circuit for motor

Country Status (1)

Country Link
JP (1) JPS5615182A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103130U (en) * 1982-12-28 1984-07-11 積水ハウス株式会社 Residential air conditioner
KR20010045462A (en) * 1999-11-05 2001-06-05 송재인 DC motor driving circuit
JP2003529976A (en) * 2000-01-07 2003-10-07 アサナス ルイス Machine-acoustic transducer and multimedia flat film speaker

Also Published As

Publication number Publication date
JPS5615182A (en) 1981-02-13

Similar Documents

Publication Publication Date Title
JP2628642B2 (en) Automatic voltage switching power supply
JPH0124031B2 (en)
JPH0677035B2 (en) AC-DC conversion circuit
JPH0126278B2 (en)
JPH0133665B2 (en)
JP3287062B2 (en) Power circuit
US6075348A (en) Controller for car generator
JPS5936109B2 (en) igniter
JP2789694B2 (en) Vehicle charging control device
JP3754130B2 (en) Motor speed control circuit
JPS6332154B2 (en)
JP3303014B2 (en) Voltage control device for magnet generator
JPS63181694A (en) Motor control circuit for domestic massager
JPH0226191Y2 (en)
JPS59188565A (en) Hit detector
US4015193A (en) Firing circuit
JPS648540B2 (en)
JPS5850458B2 (en) oscillation device
JPS61285031A (en) Charge controlling circuit
JPH0248886Y2 (en)
JPH0336235Y2 (en)
JPS5844404Y2 (en) Stabilized power supply circuit
JPH0124353B2 (en)
JPS62189990A (en) Rotational speed controlling method of dc motor
JPS6226157B2 (en)