JPH01261872A - Manufacture of semiconductor pressure sensor - Google Patents

Manufacture of semiconductor pressure sensor

Info

Publication number
JPH01261872A
JPH01261872A JP9008988A JP9008988A JPH01261872A JP H01261872 A JPH01261872 A JP H01261872A JP 9008988 A JP9008988 A JP 9008988A JP 9008988 A JP9008988 A JP 9008988A JP H01261872 A JPH01261872 A JP H01261872A
Authority
JP
Japan
Prior art keywords
etching
diaphragm
mask
silicon substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9008988A
Other languages
Japanese (ja)
Inventor
Nobuo Miyaji
宣夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP9008988A priority Critical patent/JPH01261872A/en
Publication of JPH01261872A publication Critical patent/JPH01261872A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a diaphragm wherein the boundary between a strain generating part and a fixing part becomes a nearly regular octagon, by performing alkali anisotropic etching by using an etching mask whose aperture is in the form of a cross. CONSTITUTION:In the central part of a diaphragm mask 13, an aperture part 14 opened in the form of a cross is arranged, whose periphery is covered with an SiN film. Each side of the aperture part 14 is arranged and formed so as to coincide with the crystal axis (110) of a silicon substrate 12, and subjected to alkali anisotropic etching. In the course where etching of the crystal face (110) of a bottom 16 progresses, the silicon substrate 12 corresponding with corner parts A is etched, and inclined surfaces 16 appear. On the other hand, a crystal face (111) whose etching rate is low appears as inclined surfaces 17. When the etching is further progressed, the corner parts A vanish, and the boundary surfaces between the bottom surface 15 and the inclined surfaces 16, 17 turn to a regular octagon. Without using a mask with complicated form, an octagon diaphragm with large allowance is accurately formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、シリコンなどの半導体結晶の持つピエゾ抵抗
効果などを利用して圧力を電気信号に変換する圧力セン
サの製造方法に係り、特にそのダイヤフラムの製造方法
を改良した半導体圧力センナの製造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing a pressure sensor that converts pressure into an electrical signal by utilizing the piezoresistance effect of semiconductor crystals such as silicon, and in particular, The present invention relates to a method for manufacturing a semiconductor pressure sensor that is an improved method for manufacturing a diaphragm.

〈従来の技術〉 第5図は従来の半導体圧力センサの構成を示す構成図で
ある。
<Prior Art> FIG. 5 is a block diagram showing the structure of a conventional semiconductor pressure sensor.

第5図(イ)は半導体圧力センサの平面図、(ロ)は半
導体圧力センサの横断面図を示す、1はn形のシリコン
単結晶で作られたダイヤフラムであり、凹部2を有し更
に凹部2の形成により単結晶の厚さの薄くなっな起歪部
3とその周辺の固定部4とを有している。
FIG. 5(A) is a plan view of the semiconductor pressure sensor, and FIG. 5(B) is a cross-sectional view of the semiconductor pressure sensor. It has a strain-generating part 3 in which the thickness of the single crystal is reduced due to the formation of the recessed part 2, and a fixing part 4 around the strain-generating part 3.

固定部4は連通孔5を有する基板6にガラス薄膜7を介
して陽極接合などにより固定されている6起歪部3は単
結晶の結晶面が(100)面とされ、その上にはその中
心を通る結晶軸<001>方向で起歪部3と固定部4と
の境界付近に、例えば剪断形ゲージなどの感圧素子8が
不純物の拡散により伝導形がP形として矩形状に形成さ
れている。
The fixing part 4 is fixed to a substrate 6 having a communication hole 5 through a glass thin film 7 by anodic bonding or the like.The strain-generating part 3 has a single crystal whose crystal plane is the (100) plane. A pressure-sensitive element 8, such as a shear type gauge, is formed in a rectangular shape near the boundary between the strain-generating part 3 and the fixed part 4 in the <001> direction of the crystal axis passing through the center, with the conductivity type being P type due to the diffusion of impurities. ing.

この感圧素子8はその長手方向に電源端〈図示せず)が
形成され、ここに電圧或いは電流が印加される。印加圧
力Pがダイヤフラム1に与えられると、これによって生
じた、例えば剪断応力τに対応した電圧が感圧素子8の
長手方向のほぼ中央に形成された出力端(図示せず)に
得られる。
This pressure sensitive element 8 has a power source end (not shown) formed in its longitudinal direction, to which a voltage or current is applied. When the applied pressure P is applied to the diaphragm 1, a resulting voltage corresponding to, for example, shear stress τ is obtained at an output end (not shown) formed approximately in the longitudinal center of the pressure sensitive element 8.

これによって、印加圧力Pに対応した電圧が出力端に得
られる。
As a result, a voltage corresponding to the applied pressure P is obtained at the output end.

ところで、この様なダイヤフラムを製造するには各種の
方法があるが、大別すると(a)等方性のケミカルエツ
チングにより製造するか(b)異方性のケミカルエツチ
ングにより製造するかの方法がとられる。
By the way, there are various methods for manufacturing such a diaphragm, but they can be roughly divided into (a) manufacturing using isotropic chemical etching, and (b) manufacturing using anisotropic chemical etching. Be taken.

前者の等方性エツチングによる円形のダイヤフラムの場
合は起歪部3と固定部の境界にダレが生じ、特にこのダ
レにより印加圧力Pによる感圧素子8の圧力対出力電圧
の直線性のバラツキが大きくなるなどの問題がある。
In the case of the former circular diaphragm formed by isotropic etching, sagging occurs at the boundary between the strain-generating portion 3 and the fixed portion, and this sagging particularly causes variations in the linearity of the pressure versus output voltage of the pressure sensitive element 8 due to the applied pressure P. There are problems such as getting bigger.

そこで、エツチング速度が結晶方向に依存する後者の異
方性エツチングを用いてシャープなエツジを持つ矩形状
のダイヤフラムを形成させる製造方法がとられる。
Therefore, a manufacturing method is used in which a rectangular diaphragm with sharp edges is formed using the latter anisotropic etching in which the etching rate depends on the crystal direction.

しかし、この場合はシャープなエツジにより起歪部と固
定部の境界に応力が集中し、印加圧力Pの許容範囲を大
きくできないという問題が新たに発生する。
However, in this case, a new problem arises in that stress is concentrated at the boundary between the strain-generating part and the fixed part due to the sharp edges, and the permissible range of the applied pressure P cannot be increased.

そこで、この応力集中を緩和するため異方性エツチング
で孔開けして8角形状のダイヤプラムを形成する方法が
特開昭55−24408に開示されている。以下、この
概要について説明する。
In order to alleviate this stress concentration, Japanese Patent Laid-Open No. 55-24408 discloses a method of forming an octagonal diaphragm by making holes by anisotropic etching. An overview of this will be explained below.

第6図はこの開示された従来のダイヤフラムの構成を示
し、(イ)図は°平面図、(ロ)図はそのA−A−断面
を示す部分断面図、(ハ)図はそのB−B−断面を示す
部分断面図である。
FIG. 6 shows the structure of the disclosed conventional diaphragm, (A) is a plan view, (B) is a partial sectional view showing the A-A section, and (C) is the B-- It is a partial sectional view showing a B-section.

9はシリコンの単結晶で出来たダイヤフラムであり、周
囲には厚い固定部10が、その中央は薄い起歪部11が
それぞれ形成されている。この固定部10は周知の図示
しない支持部材に接合されている。
Reference numeral 9 denotes a diaphragm made of single crystal silicon, and a thick fixing part 10 is formed around the periphery, and a thin strain-generating part 11 is formed in the center. This fixing portion 10 is joined to a well-known support member (not shown).

起歪部11はシリコン基板に対して所定形状のエツチン
グマスクを形成させ、異方性エツチングによって掘起こ
して形成される。
The strain-generating portion 11 is formed by forming an etching mask of a predetermined shape on a silicon substrate and excavating it by anisotropic etching.

この場合に、結晶軸<110>に一致する断面A−/M
 (第5図(ロ))で示す固定部10の結晶面<111
)に対応する側面Xは図示の様に54度の傾斜を有する
面となるが、結晶軸く100〉に一致する断面B−B−
で示す固定部10の結晶面(110)に対応する側面Y
は図示のように45度の傾斜を有する面となる。そして
、これ等の結晶面のエツチング速度はそれぞれ異なる。
In this case, the cross section A-/M that coincides with the crystal axis <110>
(Crystal plane <111 of the fixed part 10 shown in FIG. 5 (b))
) is a plane having an inclination of 54 degrees as shown in the figure, but the cross section B-B- which coincides with the crystal axis 100〉
Side surface Y corresponding to the crystal plane (110) of the fixed part 10 shown by
is a surface having an inclination of 45 degrees as shown in the figure. The etching rates of these crystal planes are different.

そこで、この境界を示す面を完全な8角形状とするため
にはエッチ速度比が結晶面ごとに異なるようなエッチ液
を選定して用いる必要がある。
Therefore, in order to make the plane showing this boundary into a perfect octagonal shape, it is necessary to select and use an etchant whose etch rate ratio is different for each crystal plane.

〈発明が解決しようとする課題〉 しかしながら、この様な従来の半導体圧力センサの製造
方法では、エツチング速度比を考慮してエツチングマス
クの形状を8角形以外の複雑な形状にしなければならず
、またエッチ速度比を各結晶面に対して特定の関係を持
つエツチング液を用いなければならないという面倒な問
題がある。
<Problems to be Solved by the Invention> However, in such a conventional manufacturing method of a semiconductor pressure sensor, the shape of the etching mask must be made into a complicated shape other than an octagon in consideration of the etching speed ratio. There is the complication of having to use an etching solution that has a specific etch rate ratio for each crystal face.

〈課題を解決するための手段〉 この発明は、以上の課題を解決するために、シリコン基
板の結晶面(Zoo)に各辺が互いに直角な結晶軸<1
10>で囲まれて開口部が十文字状に開けられたエツチ
ングマスクを形成し、これに対してアルカリ異方性エツ
チングをすることにより開口部の内側に突出する角部を
エツチングして結晶面(100)に対してそれぞれ45
°と55゛の角度をなす2種類の固定部の側面を形成さ
せ、起歪部と固定部の境界がほぼ正8角形となるときに
アルカリ異方性エツチングを停止するようにしてダイヤ
フラムを形成するようにしたものである。
<Means for Solving the Problems> In order to solve the above problems, the present invention provides crystal planes (Zoo) of a silicon substrate with crystal axes <1, each side of which is perpendicular to each other.
An etching mask with a cross-shaped opening surrounded by 45 each for 100)
The diaphragm is formed by forming two types of side surfaces of the fixing part that make angles of 55° and 55°, and stopping the alkaline anisotropic etching when the boundary between the strain-generating part and the fixing part becomes a nearly regular octagon. It was designed to do so.

く咋 用〉 シリコン基板に結晶軸<110>で囲まれて開口部が十
文字状に開けられたエツチングマスクを形成し、これに
対して、アルカリ異方性エツチングをすることにより、
(100)底面に対して45度の斜面が現れると共にエ
ツチングマスクにはなかったエツチングレートの小さい
結晶面(111)が出現し、8角形状に近ずく。
For Kukui> By forming an etching mask with cross-shaped openings surrounded by crystal axes <110> on a silicon substrate, and performing alkali anisotropic etching on this,
A 45 degree slope with respect to the (100) bottom surface appears, and a crystal plane (111) with a small etching rate, which was not present in the etching mask, appears, approaching an octagonal shape.

この状態を進行させて起歪部の底面がほぼ正8角形にな
った状態でアルカリ異方性エツチングを停止する。
When this state progresses and the bottom surface of the strain-generating portion becomes approximately a regular octagon, the alkali anisotropic etching is stopped.

〈実施例〉 第1図は本発明による製造の1過程の構成を示すダイヤ
プラムの平面図、第2図はダイヤフラムを形成するシリ
コン基板の構成を示す平面図、第3図はシリコン基板を
マスクするためのダイヤフラムマスクの構成を示す平面
図である。
<Example> Fig. 1 is a plan view of a diaphragm showing the structure of one manufacturing process according to the present invention, Fig. 2 is a plan view showing the structure of a silicon substrate forming the diaphragm, and Fig. 3 is a plan view of the silicon substrate with a mask. FIG.

12は最終的にはダイヤフラムとなる矩形状のシリコン
基板であり、その各辺は結晶軸く110〉と一致するよ
うに選定されており(第2図)、さらに図示してはいな
いが、このシリコン基板12の底面の所定位置には感圧
素子が形成されている。
12 is a rectangular silicon substrate that will eventually become a diaphragm, each side of which is selected to coincide with the crystal axis 110〉 (Fig. 2); A pressure sensitive element is formed at a predetermined position on the bottom surface of the silicon substrate 12.

13はダイヤフラムマスクであり、シリコン基板12を
マスクするためのものである。このダイヤフラムマスク
13の中央部にはその対向辺の長さがそれぞれLで各切
欠辺の長さがそれぞれSの十文字状に開けられた開口部
14が形成されその周囲はS、Nlで覆われている(第
3図)。
13 is a diaphragm mask for masking the silicon substrate 12. A cross-shaped opening 14 is formed in the center of the diaphragm mask 13, with the length of each opposite side being L and the length of each notch side being S, and the periphery thereof is covered with S and Nl. (Figure 3).

第1図に示すように、開口部14の各辺はシリコン基板
12の結晶軸<110>に一致するように配列・形成さ
れ、この後20%〜50%(wt)のKOHエツチング
液でアルカリ異方性エツチングがなされる。
As shown in FIG. 1, each side of the opening 14 is arranged and formed to match the crystal axis <110> of the silicon substrate 12, and then etched with an alkaline etching solution of 20% to 50% (wt) KOH. Anisotropic etching is performed.

このアルカリ異方性エツチングにより底部15の結晶面
(100)のエツチングが進行する過程でダイヤフラム
マスク13の角部Aに対応するシリコン基板12がエツ
チングされ底部15に対してほぼ45度の結晶面しt 
t o )である斜面16が出現する。
In the process of etching of the crystal plane (100) of the bottom part 15 by this alkali anisotropic etching, the silicon substrate 12 corresponding to the corner A of the diaphragm mask 13 is etched to form a crystal plane at approximately 45 degrees with respect to the bottom part 15. t
A slope 16 with t o ) appears.

一方、エツチング速度の極めて遅い結晶面(111)は
底部15に対して55度の傾きで斜面17として出現す
る。
On the other hand, the crystal plane (111) whose etching rate is extremely slow appears as a slope 17 at an angle of 55 degrees with respect to the bottom 15.

この後、シリコン基板12のエツチングをさらに進める
と、角部Aが消失して底面15と斜面16.17の境界
面が正8角形になるが、この時点でこの異方性エツチン
グを終了する。
After this, when the silicon substrate 12 is further etched, the corner A disappears and the interface between the bottom surface 15 and the slopes 16 and 17 becomes a regular octagon, but at this point, this anisotropic etching is terminated.

以上のようにして作られたダイヤフラム18は第4図に
示すように固定部19と底面15で形成される起歪部2
0の境界が正8角形の形状になっている。
As shown in FIG.
The boundary of 0 is in the shape of a regular octagon.

このようにして製造されたダイヤプラムの動作について
は第5図に示すダイヤフラムとほぼ同様である。
The operation of the diaphragm thus manufactured is almost the same as that of the diaphragm shown in FIG.

なお、第3図において、ダイヤフラムマスク13の寸法
りを一定として寸法Sを変えることにより8角形の起歪
部20のエツチング深さが変わるので、圧力レンジに対
応して起歪部20の厚さを容易に変えることができる。
In FIG. 3, the etching depth of the octagonal strain-generating portion 20 changes by changing the dimension S while keeping the size of the diaphragm mask 13 constant, so the thickness of the strain-generating portion 20 changes depending on the pressure range. can be easily changed.

また、異方性エツチングを行って8角形の起歪部を形成
後、斜面16.17の面と底面15の境界線の角部を落
とすなめに、等方性のエツチングを行っても良い。
Further, after performing anisotropic etching to form an octagonal strain-generating portion, isotropic etching may be performed in order to remove the corners of the boundaries between the slopes 16 and 17 and the bottom surface 15.

〈発明の効果〉 以上、実施例と共に具体的に説明したように本発明によ
る製造方法によれば、複雑な形状のエッチンクマスクを
使用することなく量産化に適しな高耐圧まで許容度の大
きい8角形のダイヤフラムを正確に形成することができ
る。
<Effects of the Invention> As specifically explained above in conjunction with the examples, the manufacturing method according to the present invention has a large tolerance up to a high breakdown voltage suitable for mass production without using an etching mask with a complicated shape. An octagonal diaphragm can be formed accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造の1過程の構成を示すダイヤフラ
ムの平面図、第2図はダイヤフラムを形成するシリコン
基板の構成を示す平面図、第3図はシリコン基板をマス
クするためのダイヤフラムマスクの構成を示す平面図、
第4図は第1図に示す製造過程を得て製造されたダイヤ
フラムの形状を示す平面図、第5図は従来の半導体圧力
センサの構成を示す構成図、第6図は従来の8角形のダ
イヤフラムを製造する製造方法を説明する説明図である
。 1.9.18・・・ダイヤフラム、3.11.20・・
・起歪部、4.10.19・・・固定部、8・・・感圧
素子、12・・・シリコン基板、13・・・ダイヤフラ
ムマスク、14・・・開口部、15・・・底面、16.
17・・・斜面。 第り図 とイ2
FIG. 1 is a plan view of a diaphragm showing the configuration of one step in the manufacturing process of the present invention, FIG. 2 is a plan view showing the configuration of a silicon substrate forming the diaphragm, and FIG. 3 is a diaphragm mask for masking the silicon substrate. A plan view showing the configuration of
FIG. 4 is a plan view showing the shape of a diaphragm manufactured using the manufacturing process shown in FIG. It is an explanatory view explaining a manufacturing method of manufacturing a diaphragm. 1.9.18...Diaphragm, 3.11.20...
- Strain generating part, 4.10.19... Fixed part, 8... Pressure sensitive element, 12... Silicon substrate, 13... Diaphragm mask, 14... Opening, 15... Bottom surface , 16.
17...Slope. Figure 2 and A2

Claims (1)

【特許請求の範囲】[Claims]  シリコン基板の結晶面(100)に各辺が互いに直角
な結晶軸<110>で囲まれて開口部が十文字状に開け
られたエッチングマスクを形成し、これに対してアルカ
リ異方性エッチングをすることにより前記開口部の内側
に突出する角部をエッチングして結晶面(100)に対
してそれぞれ45゜と55゜の角度をなす2種類の固定
部の側面を形成させ、前記起歪部と前記固定部の境界が
ほぼ正8角形となるときに前記アルカリ異方性エッチン
グを停止するようにしてダイヤフラムを形成することを
特徴とする半導体圧力センサの製造方法。
An etching mask is formed on the crystal plane (100) of the silicon substrate, each side of which is surrounded by crystal axes <110> that are perpendicular to each other, and has openings in a cross shape, and alkali anisotropic etching is performed on this etching mask. By doing so, the corners protruding inward of the opening are etched to form two types of side surfaces of the fixing part that form angles of 45° and 55° with respect to the crystal plane (100), respectively, and the strain-generating part and A method of manufacturing a semiconductor pressure sensor, characterized in that the diaphragm is formed by stopping the alkaline anisotropic etching when the boundary of the fixed part becomes a substantially regular octagon.
JP9008988A 1988-04-12 1988-04-12 Manufacture of semiconductor pressure sensor Pending JPH01261872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008988A JPH01261872A (en) 1988-04-12 1988-04-12 Manufacture of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008988A JPH01261872A (en) 1988-04-12 1988-04-12 Manufacture of semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPH01261872A true JPH01261872A (en) 1989-10-18

Family

ID=13988796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008988A Pending JPH01261872A (en) 1988-04-12 1988-04-12 Manufacture of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPH01261872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702962A (en) * 1994-09-05 1997-12-30 Ngk Insulators Ltd Fabrication process for a static induction transistor
US6887734B2 (en) 2003-03-13 2005-05-03 Denso Corporation Method of manufacturing semiconductor pressure sensor
EP1593949A1 (en) * 2004-05-03 2005-11-09 VTI Technologies Oy Method of manufacturing a capacitive pressure sensor and a capacitive pressure sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5702962A (en) * 1994-09-05 1997-12-30 Ngk Insulators Ltd Fabrication process for a static induction transistor
US6887734B2 (en) 2003-03-13 2005-05-03 Denso Corporation Method of manufacturing semiconductor pressure sensor
EP1593949A1 (en) * 2004-05-03 2005-11-09 VTI Technologies Oy Method of manufacturing a capacitive pressure sensor and a capacitive pressure sensor
US7252007B2 (en) 2004-05-03 2007-08-07 Vti Technologies Oy Method for the manufacturing of a capacitive pressure sensor, and a capacitive pressure sensor
EP1593949B1 (en) * 2004-05-03 2015-01-21 Murata Electronics Oy Method of manufacturing a capacitive pressure sensor and a capacitive pressure sensor

Similar Documents

Publication Publication Date Title
US5283459A (en) Semiconductor sensor including an aperture having a funnel shaped section intersecting a second section
US6629465B1 (en) Miniature gauge pressure sensor using silicon fusion bonding and back etching
US4706374A (en) Method of manufacture for semiconductor accelerometer
US5594172A (en) Semiconductor accelerometer having a cantilevered beam with a triangular or pentagonal cross section
US5725729A (en) Process for micromechanical fabrication
EP0394664B1 (en) Improved semiconductor pressure sensor means and method
US5172205A (en) Piezoresistive semiconductor device suitable for use in a pressure sensor
JPH01261872A (en) Manufacture of semiconductor pressure sensor
JPH01255279A (en) Manufacture of semiconductor pressure sensor
JPH0554709B2 (en)
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
JPS6260270A (en) Formation of diaphragm of pressure sensor
JPH10111203A (en) Capacitive semiconductor sensor and its production
JPH01266769A (en) Manufacture of semiconductor pressure sensor
JPH08248061A (en) Acceleration sensor and manufacture thereof
JPH049770A (en) Semiconductor strain-sensitive sensor and manufacture thereof
JP3021905B2 (en) Manufacturing method of semiconductor acceleration sensor
CN108760100A (en) A kind of preparation method of differential pressure pressure sensor
JPH0618345A (en) Production of pressure sensor
JPH1079519A (en) Method for micromachining semiconductor
KR100438812B1 (en) A micromachining method for fabricating a microdevice
JP2000055758A (en) Manufacture of semiconductor pressure sensor
JPH10111202A (en) Composite mesa structure, its formation, composite mesa type diaphragm and pressure sensor using the same
JPH01170054A (en) Manufacture of semiconductor pressure sensor
JPH05203519A (en) Manufacture of pressure sensor