JPH01261511A - Automatic surveillange device and surveillance method for thrust bearing unit - Google Patents
Automatic surveillange device and surveillance method for thrust bearing unitInfo
- Publication number
- JPH01261511A JPH01261511A JP18346988A JP18346988A JPH01261511A JP H01261511 A JPH01261511 A JP H01261511A JP 18346988 A JP18346988 A JP 18346988A JP 18346988 A JP18346988 A JP 18346988A JP H01261511 A JPH01261511 A JP H01261511A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- lubricating fluid
- alarm
- temperature
- abnormality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 11
- 230000005856 abnormality Effects 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 230000001050 lubricating effect Effects 0.000 claims abstract description 39
- 239000012530 fluid Substances 0.000 claims abstract description 38
- 230000002159 abnormal effect Effects 0.000 claims description 31
- 238000012544 monitoring process Methods 0.000 claims description 15
- 238000012806 monitoring device Methods 0.000 claims description 10
- 239000003921 oil Substances 0.000 description 62
- 239000000498 cooling water Substances 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000897 Babbitt (metal) Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Landscapes
- Sliding-Contact Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は光軸回転機械の回転軸を支承するだめのスラス
ト軸受装置において、特に回転板と各静止板の潤滑流体
膜の形成状態を把握して静止板の異常を初期段階で検出
し得るようにしたスラスト軸受装置の自動監視装置とス
ラスト軸受装置の監視方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a thrust bearing device for supporting a rotating shaft of an optical axis rotating machine. The present invention relates to an automatic monitoring device for a thrust bearing device and a method for monitoring a thrust bearing device, which are capable of detecting abnormalities in a stationary plate at an early stage by grasping the formation state of the stationary plate.
(従来の技術)
近年、−i産業のプラントの規模は大形化の一途をたど
っており、これに伴なって回転機械も大形化すると共に
その設inも増大している。従って、このような回転機
械にあっては高い信頼性が要求されるため、その保守点
検を確実に行なって事故を未然に防止する必要がある。(Prior Art) In recent years, the scale of plants in the -i industry has continued to increase in size, and along with this, rotating machines have also become larger and their installations have also increased. Therefore, since high reliability is required for such rotating machines, it is necessary to perform maintenance and inspections reliably to prevent accidents.
特に、回転機械のうちで事故を起こし易いスラスト軸受
の異常は、他へ及ぼす影響が大きいことから、その保守
はより確実に行わなければならない。In particular, abnormalities in thrust bearings that tend to cause accidents in rotating machines have a large effect on other parts, so maintenance must be performed more reliably.
従来使用されている高荷重用スラスト軸受としては、v
1滑油を潤滑流体とするスラスト軸受が最も多く使用さ
れている。そして、この型式の軸受においては、光軸回
転機械の運転中に回転軸のすべり面の油の粘性効果によ
って静止板間に油j模を形成して、回転軸と静止板との
直接的な接触を防止している。Conventionally used high load thrust bearings include v
1 Thrust bearings that use lubricating oil as the lubricating fluid are most commonly used. In this type of bearing, during the operation of the optical axis rotating machine, an oil pattern is formed between the stationary plates due to the viscous effect of the oil on the sliding surface of the rotating shaft, and the direct contact between the rotating shaft and the stationary plate is caused. Contact is prevented.
上記回転代械におけるスラスト軸受は、重要な要素であ
るにもかかわらず、その監視方法ははなはだ不十分なも
のである。すなわち、従来のスラスト軸受の監視方法と
しては、静止板の温度を計測する方法や、軸系の振動を
計測する方法、或いは潤滑油を化学的に分析する方法等
が採用されているが、これらの監視方法はスラスト軸受
が損出してそれがかなり進展しないと検知できないとい
う不都合があり、異常を検知した段階では既に軸受事故
に発展していることが多い。Although the thrust bearing in the above rotating machine is an important element, the method for monitoring it is extremely insufficient. In other words, conventional methods for monitoring thrust bearings include measuring the temperature of the stationary plate, measuring vibrations in the shaft system, and chemically analyzing the lubricating oil. This monitoring method has the disadvantage that damage to the thrust bearing cannot be detected until it has progressed considerably, and by the time an abnormality is detected, it has often already developed into a bearing accident.
この軸受事故が発生した場合、その復旧には長時間を要
しその間当該回転機械は停止状態におかれるため、その
稼動率が低下して生産性向上の障害となっている。特に
、大容量機である水車光電機におけるスラスト軸受の損
傷は、非常に莫大な回転機械の損失となる。従って、か
かるスラスト軸受が箕常状態若しくは初期損傷が発生し
たときには、それが大きな軸受事故に発展する以前に検
出して、必要な措置を謁することが非常に重賞である。When this bearing accident occurs, it takes a long time to recover, and during that time the rotating machine is stopped, which reduces its operating rate and becomes an impediment to improving productivity. In particular, damage to the thrust bearing in a large-capacity water turbine optoelectric machine results in a huge loss to the rotating machine. Therefore, when such a thrust bearing is in a normal state or initial damage occurs, it is very important to detect it and take necessary measures before it develops into a major bearing accident.
(発明が解決しようとする課題)
しかし乍ら、軸系の組立不良や過負荷若しくは異物混入
並びにキャビテーション等によってすべり面が損傷した
ときは、静止板と回転軸間の油膜形成が困難となる。す
なわち油膜が非常に薄くなって、ついには油膜が破断し
て軸受車故に発展することがある。このように油膜が破
断する以前においては、上記した軸受の静止板の温度計
測法等によって軸受を監視する方法では、油膜変化に対
する応答性が非常に悪く、軸受の異常状態に到る前兆を
早期に検出できない。(Problem to be Solved by the Invention) However, when the sliding surface is damaged due to poor assembly of the shaft system, overload, foreign matter, cavitation, etc., it becomes difficult to form an oil film between the stationary plate and the rotating shaft. In other words, the oil film becomes so thin that it may eventually break and develop into a bearing wheel. Before the oil film ruptures, the above-mentioned method of monitoring the bearing, such as by measuring the temperature of the stationary plate of the bearing, has very poor responsiveness to changes in the oil film, making it difficult to detect signs of bearing abnormality at an early stage. cannot be detected.
一方、最近では、スラスト軸受油膜厚さや、油膜圧力を
直接監視する装置として静止板にそれ等を検出するセン
サを設置する監視装置が提案されている。これ等の監視
装置は軸受温度計測法等の監視方法に比べれば、かなり
早期の段階で異常を検知することが可能である。On the other hand, recently, a monitoring device for directly monitoring the thrust bearing oil film thickness and oil film pressure has been proposed, in which a sensor is installed on a stationary plate to detect them. These monitoring devices can detect abnormalities at a much earlier stage than monitoring methods such as bearing temperature measurement.
しかし、上記した監視装置はいずれも油膜厚さや油膜圧
力の単独項目検出であるため、例えば軸受本体に異常が
なくてもセンサ自体の誤動作の場合や、実際に軸受異常
が発生して極めて短時間に正常に戻った場合には、その
異常が発生した時点で、軸受の異常と検出することがあ
り、明確なスラスト軸受の異常を判定する手段としては
正確さを欠くことが考えられる。さらに、上記油膜厚さ
や油膜圧力の単独検出項目で異常を検出しても軸受仝体
の異常としかつかむことができないので、スラスト軸受
本体又は冷却系統の異常が生じたかを判別することは困
難であり、軸受事故復旧に要する時間を多く必要とする
。However, since all of the above-mentioned monitoring devices detect individual items such as oil film thickness and oil film pressure, for example, even if there is no abnormality in the bearing body, the sensor itself may malfunction, or if a bearing abnormality actually occurs, it will take a very short period of time. If the bearing returns to normal, it may be detected as a bearing abnormality at the time the abnormality occurs, and it is considered to lack accuracy as a means of determining a clear thrust bearing abnormality. Furthermore, even if an abnormality is detected using the individual detection items such as oil film thickness or oil film pressure, it can only be determined as an abnormality in the bearing body, so it is difficult to determine whether an abnormality has occurred in the thrust bearing body or the cooling system. Yes, it takes a lot of time to recover from a bearing accident.
そこで、本発明の目的は、スラスト軸受装置の異常に到
る前兆を早期に検出でき、スラスト軸受本体又は冷却系
統の異常の判I!Iiまで行なうことが可能であり、こ
れによりスラスト軸受装置の損(5を極力少なくでき、
重大事故への拡大予防を行うことができるスラスト軸受
装置の自動監視装置とスラスト軸受装置の監視方法を提
U(することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to be able to detect signs of abnormalities in the thrust bearing device at an early stage, and to detect abnormalities in the thrust bearing body or the cooling system. It is possible to carry out up to Ii, thereby reducing the loss of the thrust bearing device (5) as much as possible,
Our objective is to provide an automatic monitoring device for thrust bearing devices and a method for monitoring thrust bearing devices that can prevent the spread of accidents into serious accidents.
し発明の構成]
(課題を解決するための手段)
本発明は上記目的を達成するため、軸受装置内に配置し
た軸受温度を検出する軸受温度センサと、軸受装置内に
配置した軸受潤滑流体膜圧力を検出する軸受潤滑流体膜
圧力センサと、軸受装置内に配置した軸受潤滑流体1摸
厚さを検出する軸受潤滑流体膜IVさセンサと、軸受潤
滑流体槽内に配置した潤滑流体温度を検出する槽内潤滑
流体温度センサと、これらのセンサからの検出信号から
平均値、絶対値、時間変化率および振幅の検出要素を演
算する演算手段と、この演算手段からの検出要素と予め
定めた設定値との比較を行ない、検出要素が該設定値を
越えたとき、各種の異常信号を出力する比較手段と、こ
の比較手段からの各種の異常信号の組合せで論理判断を
行なう警報手段と、比較手段からの各種の異常信号を入
力して警報を出力する警報器と、警報手l没から出力さ
れる警報信号を表示する表示器とを具備したスラスト軸
受装置の自動監視装置である。また、本発明は、軸受装
置の軸受温度、軸受潤滑流体膜圧力、軸受潤滑流体膜厚
さ、槽内潤滑流体温度を検出手段により検出し、この検
出値に基いて平均値、絶対値、時間変化率および振幅の
検出要素を演算し、この演算結果が予め定めた設定値を
越えたとき、各種の検出要素の異常状態の判断を行なう
とともに、この判断結果の組合せで論理条件の満足を判
断してスラスト軸受装置の異常を監視する監視方法であ
る。[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a bearing temperature sensor arranged in a bearing device to detect the bearing temperature, and a bearing lubricating fluid film arranged in the bearing device. A bearing lubricating fluid film pressure sensor that detects pressure, a bearing lubricating fluid film IV sensor placed inside the bearing device that detects the thickness of the bearing lubricating fluid, and a bearing lubricating fluid film sensor placed inside the bearing lubricating fluid tank that detects the temperature of the lubricating fluid. an in-tank lubricating fluid temperature sensor, a calculation means for calculating detection elements such as an average value, an absolute value, a time rate of change, and an amplitude from detection signals from these sensors, and detection elements from this calculation means and predetermined settings. a comparison means that compares the value with the set value and outputs various abnormal signals when the detection element exceeds the set value; an alarm means that makes a logical judgment based on a combination of the various abnormal signals from the comparison means; This is an automatic monitoring device for a thrust bearing device, which is equipped with an alarm device that inputs various abnormal signals from the means and outputs an alarm, and a display device that displays the alarm signal output from the alarm failure. Further, the present invention detects the bearing temperature of the bearing device, the bearing lubricating fluid film pressure, the bearing lubricating fluid film thickness, and the lubricating fluid temperature in the tank by a detection means, and based on the detected values, calculates the average value, absolute value, and time. The detection elements of rate of change and amplitude are calculated, and when the calculation result exceeds a predetermined set value, it is determined whether the various detection elements are in an abnormal state, and the combination of these judgment results determines whether the logical conditions are satisfied. This is a monitoring method for monitoring abnormalities in thrust bearing devices.
(作用)
上記のように軸受温度、潤滑流体膜圧力、潤滑流体膜厚
さ、槽内潤滑流体温度を検出し、この検出値に基いて求
めた平均値、絶対値、時間変化率および振幅の検出要素
と、設定値を比較し、その検出要素が設定値を越えたと
き、各種の異常の判断をおこなうとともに、これらの組
合わせで論理判断を行ない、この判断結果に基いてスラ
スト軸受装置の異常を監視するようにしたので、スラス
ト軸受装置の屓常に到る前兆を早期に検出でき、スラス
ト軸受本体又は冷却系統の異常の’t”l断まで行なう
ことができる。(Function) As described above, the bearing temperature, lubricating fluid film pressure, lubricating fluid film thickness, and tank lubricating fluid temperature are detected, and the average value, absolute value, time rate of change, and amplitude calculated based on the detected values are The detection element is compared with the set value, and when the detection element exceeds the set value, various abnormalities are determined, and logical judgments are made based on the combination of these, and based on the results of this judgment, the thrust bearing device is adjusted. Since abnormalities are monitored, signs of failure of the thrust bearing device can be detected at an early stage, and the abnormality of the thrust bearing body or the cooling system can be isolated.
(実施例)
以下、本発明について図面に示す実施例について説明す
る。まず、第1図により大型直軸回転a械のスラスト軸
受装置であって、潤滑流体として潤滑油を使用した例に
ついて説明するが、これに限らず何でらよいことは言う
までもない0例えば水車発電機の回転軸11には、筒状
のスラストカラー12が図示しないシリンダキーにより
取付けられている。スラストカラー12の側面はガイド
軸受13で案内され、その底面には、回転板14が図示
しないボルトにより据付は固定されている。(Examples) Hereinafter, examples of the present invention shown in the drawings will be described. First, with reference to FIG. 1, we will explain an example of a thrust bearing device for a large direct-axis rotary machine in which lubricating oil is used as the lubricating fluid. A cylindrical thrust collar 12 is attached to the rotating shaft 11 by a cylinder key (not shown). The side surface of the thrust collar 12 is guided by a guide bearing 13, and a rotary plate 14 is fixed to the bottom surface thereof with bolts (not shown).
また、回転板14と回転軸11方向に相対的に扇形状の
静止板15が放射状に8個配置されている。これらの静
止板15は図示のように8個のコイルスプリング16を
介して軸受油槽17の底部に設りたスプリング台18に
よって支持されている。そして、回転板14、静止板1
5、コイルスプリング16、スプリング台18は、内部
に潤滑油19を充填した軸受油槽17内に収納されてい
る。潤滑油19は油冷管20で冷却されて回転板14と
静止板15との間に入って潤滑作用を行なう。Further, eight fan-shaped stationary plates 15 are arranged radially relative to the rotating plate 14 in the direction of the rotating shaft 11. These stationary plates 15 are supported by a spring stand 18 provided at the bottom of the bearing oil tank 17 via eight coil springs 16 as shown. Then, the rotating plate 14 and the stationary plate 1
5. The coil spring 16 and the spring stand 18 are housed in a bearing oil tank 17 filled with lubricating oil 19. The lubricating oil 19 is cooled by an oil cooling pipe 20 and enters between the rotary plate 14 and the stationary plate 15 to perform a lubricating action.
しかして、第2図に示すように静止板15に、温度セン
サ21、油膜圧力センサ22および油膜厚さセンサ23
を装着している。これらのセンサ21.22.23は、
1枚の静止板15に装着するのが普通であるが、場合に
よっては全周で複数個の静止板15に分けて配置しても
よく、また軸受油槽17に油槽内油温度センサ24を設
けている。As shown in FIG.
is attached. These sensors 21.22.23 are
Although it is normally installed on one stationary plate 15, in some cases it may be arranged in multiple stationary plates 15 around the entire circumference, and an oil tank oil temperature sensor 24 is provided in the bearing oil tank 17. ing.
さらに、センサ21〜24の検出信号をもとにスラスト
軸受装置の異常を監視する第3図の自動監視回路(第1
図A)を備えている。第3図において温度センサ21に
より検出された温度検出信号a1は、演算回路B−1に
入力する。この演算口i?8Lslは温度検出信号a1
から温度絶対値信号x1と温度時間変化串信月X2とを
演算して出力する。Furthermore, the automatic monitoring circuit (first
Figure A) is provided. In FIG. 3, the temperature detection signal a1 detected by the temperature sensor 21 is input to the arithmetic circuit B-1. This operation mouth i? 8Lsl is temperature detection signal a1
From this, a temperature absolute value signal x1 and a temperature time change signal X2 are calculated and output.
油膜圧力センサ22により検出された油膜圧力検出信号
a2は、演算口FIPtB−2に入力する。The oil film pressure detection signal a2 detected by the oil film pressure sensor 22 is input to the calculation port FIPtB-2.
この演算口i?8B−2は油膜圧力検出信号a2から油
膜圧力振幅値x4を演算して出力する。This operation mouth i? 8B-2 calculates and outputs an oil film pressure amplitude value x4 from the oil film pressure detection signal a2.
油膜厚さセンサ23により検出された油膜厚さ検出信号
a3は演算回路B−3に入力される。The oil film thickness detection signal a3 detected by the oil film thickness sensor 23 is input to the calculation circuit B-3.
演算回路B−3は油膜厚さ検出信号a3から油膜厚さ平
均値信号x6及び油膜rg、さ時間変化率信号x8を演
算して出力する。The calculation circuit B-3 calculates and outputs an oil film thickness average value signal x6 and an oil film rg, time change rate signal x8 from the oil film thickness detection signal a3.
油槽内油温度センサ24により検出された油槽内油温度
検出信号a4は、演算回路B−4に入力される。この演
算回路B−4は油槽内油温度検出18号a4を入力し、
油槽内油温度絶対値信号x12を演算して出力する。The oil tank oil temperature detection signal a4 detected by the oil tank oil temperature sensor 24 is input to the arithmetic circuit B-4. This calculation circuit B-4 inputs the oil temperature detection No. 18 a4 in the oil tank,
An absolute value signal x12 of the oil temperature in the oil tank is calculated and output.
演算口flB−1から出力された信号x1およびX2は
、比較器C−1,比較器C−100およびC−2にそれ
ぞれ入力され、また演算回路11−2から出力された信
号X4は比較器C−11に入力され、さらに演算回路R
、−3から出力された信号x6.x8は比較器C−6,
C−8にそれぞれ入力され、さらに演算回路[3−4か
ら出力された信号x12は比較器C−12に入力される
。そして、比較器C−1に入力される信づxlが設定値
以上の場合に、温度絶対値異常信号X100を出力する
0次に、比較器C−1の設定値よりさらに高いレベルに
設定された比?′+2器C−100に入力される信号x
1が、その設定値を越えると温度絶対値異常信号x11
0を出力する。Signals x1 and X2 output from the calculation port flB-1 are input to the comparator C-1, comparator C-100 and C-2, respectively, and the signal X4 output from the calculation circuit 11-2 is input to the comparator C-1 and the comparator C-100 and C-2, respectively. C-11, and further arithmetic circuit R
, -3, the signal x6. x8 is comparator C-6,
A signal x12 which is input to C-8 and further output from the arithmetic circuit [3-4] is input to comparator C-12. Then, when the signal xl input to the comparator C-1 is equal to or higher than the set value, the temperature absolute value abnormal signal X100 is output. The ratio? '+2 Signal x input to C-100
1 exceeds the set value, temperature absolute value abnormal signal x11
Outputs 0.
また、比較器C−2に入力される信号X2か、その設定
値以上の場合に温度時間変化率異常信号x200を出力
する0次に比I!器C−2よりさらに高い設定値に設定
された比較器C−200に入力される信号X2が、その
設定値を越えると、温度時間変化率異常信号x210を
出力する。比較器C−4に入力される信号x4が、この
設定値以上の場合に油膜圧力振幅値異常信号x40を出
力する。Also, if the signal X2 input to the comparator C-2 is greater than the set value, the zero-order ratio I! outputs the temperature time change rate abnormality signal x200! When the signal X2 input to the comparator C-200, which is set to a higher set value than the comparator C-2, exceeds the set value, it outputs a temperature time rate of change abnormal signal x210. When the signal x4 input to the comparator C-4 is greater than or equal to this set value, an oil film pressure amplitude value abnormality signal x40 is output.
比較器C−6に入力される入力信号×6が、この設定値
以上の場合に油膜J!7さ゛ト均値異倍旧号x60を出
力する。比較器C−8に入力される信号X8が、この設
定値以上の場合に油膜厚さ時間変化率)°4常倍旧x8
0を出力する。If the input signal x6 input to comparator C-6 is greater than this set value, oil slick J! Output the 7th average value different times old number x60. When the signal X8 input to the comparator C-8 is greater than or equal to this set value, the oil film thickness time change rate) °4 ordinary double x8
Outputs 0.
比較器C−12に入力される信号x12が、この設定値
以上の場合に油槽内油温度絶対値信号信号x120を出
力し、この異常信号x120は警報器T、記録装置G、
スラスト軸受冷却水系統異常警報口ill D −2に
それぞれ分配して入力される。When the signal x12 input to the comparator C-12 is greater than or equal to this set value, an oil tank oil temperature absolute value signal x120 is output, and this abnormal signal x120 is sent to the alarm T, the recording device G,
These signals are distributed and input to the thrust bearing cooling water system abnormality alarm port ill D-2.
比較器C−1,C−100,C−2゜
C−200,C−4,C−6,C−8からそれぞれ出力
される異常信号xlOO,xllO。Abnormal signals xlOO, xllO output from comparators C-1, C-100, C-2°C-200, C-4, C-6, C-8, respectively.
x200.x210.x40.x60.x80は、スラ
スト軸受本体異常警報回路D−1および記録装置Gとに
それぞれ分配されて入力される。なお、異常信号x10
0およびx200は場合によっては第3図のように記録
装置Gに入力させなくてもよい、 そして、警報回路
D−1の出力信号である本体異常警報信号Y1は表示器
E・トIおよび警報ITにそれぞれ入力され、かつこれ
により動作するよう構成され、また警報回路D−2の出
力信号である冷却水系統異常警報信号Y2は表示器E・
トIおよび警報器Tにそれぞれ入力され、かつこれによ
り動作するよう構成されている。x200. x210. x40. x60. x80 is distributed and input to the thrust bearing body abnormality alarm circuit D-1 and the recording device G, respectively. In addition, abnormal signal x10
0 and x200 may not need to be input to the recording device G as shown in Fig. 3 depending on the case.Then, the main body abnormality alarm signal Y1, which is the output signal of the alarm circuit D-1, is input to the display E. The cooling water system abnormality alarm signal Y2, which is input to the IT and is configured to operate accordingly, and is the output signal of the alarm circuit D-2, is displayed on the display E.
It is configured to be input to the alarm I and the alarm T, respectively, and to be operated accordingly.
警報回路D−1は、第4図に示すように第3図の比較1
c−1,C−100,C−2゜C−200,C−4,C
−6,C−8のそれぞれの異常信号xlOO,xllO
,,x200゜x210.x40.x60.x80およ
びx210を入力し、このうち異常信号xllO。The alarm circuit D-1 is as shown in FIG.
c-1, C-100, C-2゜C-200, C-4, C
-6, C-8 respective abnormal signals xlOO, xllO
,,x200°x210. x40. x60. Input x80 and x210, of which the abnormal signal xllO.
x210はそのままOR回路40cに入力され、又異常
信号xlOO,x60はAND回路41aを介してOR
回路40cに入力され、さらに異常信号x200.x8
0はAND回l¥84Jbを介してOR回路40cに入
力され、又異常信号x200.x40はAND回路41
cを介してOR回I?840 cに入力され、その論理
条件が成立したら本体異常警報信号Y1を発するよう構
成されている。またv報回路D−2は、比較器C−12
からの異常信号X120を出力した場合に冷却水系統異
常警報信号Y2を発するよう構成されている。x210 is input as is to the OR circuit 40c, and the abnormal signals xlOO and x60 are ORed via the AND circuit 41a.
The abnormal signal x200. x8
0 is input to the OR circuit 40c via the AND circuit 1\84Jb, and the abnormal signal x200. x40 is AND circuit 41
OR times I through c? 840c, and when the logical condition is satisfied, a main body abnormality alarm signal Y1 is generated. Further, the v-report circuit D-2 includes a comparator C-12.
The system is configured to issue a cooling water system abnormality alarm signal Y2 when an abnormality signal X120 is output from the system.
次に、このように構成された本発明によるスラスト軸受
装置の自!IIJ監視装置の作動について説明する。い
ま第1図において水車発電機の運転を開始すると、その
回転軸11に設りられなスラストカラー12および回転
板14が一体になって回転する。これにより回転板14
と相対的に設けられた静止板15のバビットメタルのす
べり面上に油膜が形成される。そして、軸受温度、油膜
圧力、油膜厚さ、油槽内油温度は、各々センサ21〜2
4で検出され、この検出されたアナログの検出信号は、
演算回路B−1〜B−4に入力され、ここで演算される
ディジタルの信号x1゜x2.x4.x6.x8.x1
2は比較器C−1゜C−100,C−2,C−200,
C−4゜C−6,C−8,C−12に入力され、ここで
予め設定された設定値と比較される。Next, a description of the thrust bearing device according to the present invention configured as described above will be explained. The operation of the IIJ monitoring device will be explained. When the water turbine generator starts operating in FIG. 1, the thrust collar 12 and the rotating plate 14, which are provided on the rotating shaft 11, rotate together. As a result, the rotating plate 14
An oil film is formed on the sliding surface of the Babbitt metal of the stationary plate 15, which is provided relative to the stationary plate 15. The bearing temperature, oil film pressure, oil film thickness, and oil tank oil temperature are measured by sensors 21 to 2, respectively.
4, and this detected analog detection signal is
Digital signals x1, x2, . x4. x6. x8. x1
2 is a comparator C-1°C-100, C-2, C-200,
C-4° is input to C-6, C-8, and C-12, where it is compared with a preset value.
この比較器C−1,C−100,C−2゜C−200,
C−4,C−6,C−8,C−12に於ける比!l12
粂件の設定値は、運転モード(水力発電所に於ける発電
、揚水、調相)負荷及び冷却水温度によって変更するこ
とかできるようにしておく。This comparator C-1, C-100, C-2゜C-200,
Ratio in C-4, C-6, C-8, C-12! l12
The set values of the parameters can be changed depending on the operating mode (power generation, pumping, and phase adjustment in a hydroelectric power plant) load and cooling water temperature.
いずれにしても、スラスト軸受の異常を検出する項目と
しては、温度、油膜圧力、油膜厚さおよび油槽内油温度
の4項目であり、軸受本体の温度の検出項目については
絶対値及び時間変化率を検出要素とし、また軸受本体の
油膜圧力の検出項目については、振幅値を検出要素とし
、さらに軸受本体の油膜厚さの検出項目については平均
値および時間変化率を検出要素とし、冷却水系統の油槽
内の温度検出項目は絶対値を検出項目として、各演算回
路B−1〜B−4で演算された各検出要素が、各々の比
較器C−1,C−100,C−2゜C−200,C−4
,C−6,C−8,C−12で、各々の検出要素に対し
て予め設定された設定値と比較判定される。In any case, there are four items to detect an abnormality in a thrust bearing: temperature, oil film pressure, oil film thickness, and oil tank oil temperature, and the detection item for the temperature of the bearing body is an absolute value and a rate of change over time. For the detection item of the oil film pressure on the bearing body, the amplitude value is used as the detection element, and for the detection item of the oil film thickness on the bearing body, the average value and time rate of change are used as the detection element, and the cooling water system The temperature detection item in the oil tank is an absolute value, and each detection element calculated by each calculation circuit B-1 to B-4 is connected to each comparator C-1, C-100, and C-2°. C-200, C-4
, C-6, C-8, and C-12, the detection elements are compared with preset values for each detection element.
比較器C−1,C−100,C−2゜
C−200,C−4,C−6,C−8およびC−12に
おいてそれぞれ設定値を越えたとき出力される異常信号
xlOO,xllO,x200゜X210.x40.x
60.x80およびX120は、警報回路D−1および
D−2にそれぞれ入力される。Abnormal signals xlOO, xllO, which are output when the set values are exceeded in comparators C-1, C-100, C-2°C-200, C-4, C-6, C-8 and C-12, respectively. x200°X210. x40. x
60. x80 and X120 are input to alarm circuits D-1 and D-2, respectively.
次に、警報回路D−1の作用について説明する。比較′
$1c−4,C−6,C−8,C−12から出力される
各種異常信号は次の通りである。Next, the operation of the alarm circuit D-1 will be explained. comparison′
Various abnormal signals output from $1c-4, C-6, C-8, and C-12 are as follows.
xlOO,xllO・・・温度絶対値異常f言号
X200.X210・・・温度時間変化率異常信号
x40・・・油膜圧力振幅値異常信号
x60・・・油膜厚さ平均値異常信号
x80・・・油膜厚さ時間変化率異常信号第4図の警報
回路D−1から出力される本体異常警報信号Y1が成立
する条件としては、AND回路41aにおいてこの入力
である異常信号x100、x60のアンド条件が成立し
た場合、またAND回1?f141bにおいてこの入力
である異常信号x200.x80のアンド条件が成立し
た場合、さらにAND回路41cにおいてこの入力であ
る異常信号x200.x40のアンド条11が成立した
場合、又は異常信号X110又はX210が単独で入力
された場合のいずれかである。第3図のそれぞれの警報
回路D−1、D−2の各検出要素のいずれかが設定値を
越えた場合には、それぞれの警報信号Yl、Y2が表示
器E・Hおよび警報器Tに入力され、それぞれの警報回
路D−1、D−2の各種検出項目ごとに表示器E・Hに
表示するとともに警報器Tから発することになる。xlOO, xllO...Temperature absolute value abnormal f word X200. X210...Temperature time change rate abnormal signal x40...Oil film pressure amplitude value abnormal signal x60...Oil film thickness average value abnormal signal x80...Oil film thickness time change rate abnormal signal Alarm circuit D in Fig. 4 The conditions for the main body abnormality alarm signal Y1 outputted from -1 to hold true are when the AND condition of the abnormal signals x100 and x60, which are the inputs, is satisfied in the AND circuit 41a, and the AND time 1? The abnormal signal x200.f141b is this input. When the AND condition of x80 is satisfied, the AND circuit 41c further outputs the abnormal signal x200. This is either a case where the AND clause 11 of x40 is established, or a case where the abnormal signal X110 or X210 is input alone. If any of the detection elements of the respective alarm circuits D-1 and D-2 in Fig. 3 exceeds the set value, the respective alarm signals Yl and Y2 are sent to the indicators E and H and the alarm T. The signals are input and displayed on the displays E and H for each detection item of each of the alarm circuits D-1 and D-2, and also emitted from the alarm T.
これと同時に各々のセンサ21〜24の検出信号a1〜
a4、演算回路B−1〜B−4の検出信号xi、x2.
x4.x6.x8.x12および比較器C−100,C
−200,C−4゜C−6,C−8,C−12の異常信
号xllO。At the same time, the detection signals a1~ of each sensor 21~24
a4, detection signals xi of arithmetic circuits B-1 to B-4, x2.
x4. x6. x8. x12 and comparator C-100,C
-200, C-4° C-6, C-8, C-12 abnormal signal xllO.
X210.x40.x60.x80゜X120の正常、
異常を問わずに、各信号と同期させて記録装置Gに記録
させているため、検出要素の一つが異常表示した場合に
は、記録層pGにより正常な他の検出要素の覆歴を調べ
ることにより、軸受の異常状態に到る前兆を事前に早期
に検出することが可能となる。X210. x40. x60. Normal x80° x120,
Regardless of the abnormality, it is recorded in the recording device G in synchronization with each signal, so if one of the detection elements displays an abnormality, it is necessary to check the history of other normal detection elements using the recording layer pG. This makes it possible to early detect signs of bearing abnormality in advance.
従って、スラスト軸受の静止板15の異常を油膜が破損
する以前の初期段階で早期に検出することができると共
に、その異常の原因ならびに異常の箇所をも容易に判別
して、従来のスラスト軸受で発生あるいは発生する可能
性のある事故を未然に防止することが可能となる。Therefore, an abnormality in the stationary plate 15 of the thrust bearing can be detected at an early stage before the oil film is damaged, and the cause of the abnormality and the location of the abnormality can be easily determined. It becomes possible to prevent accidents that have occurred or are likely to occur.
上記実施例において、各センサ21〜24からの検出信
号a1〜a4を処理する演算回路B−1〜B−4、比較
器C−1,C−2,C−4゜C−6,C−8,C−12
、警報回路D−1゜D−2はコンピュータのソフトウェ
アにより実現しても同様の効果をあげることができる。In the above embodiment, arithmetic circuits B-1 to B-4 that process detection signals a1 to a4 from each sensor 21 to 24, comparators C-1, C-2, C-4, C-6, C- 8, C-12
, alarm circuits D-1 and D-2 can be realized by computer software to achieve the same effect.
また、上記した記録装置Gは、記録媒体の節約のため常
時記録ではなく、ある一定周期で、ある一定時間記録す
るにしてもその記録層Jtllと時間の設定が適切であ
れば、実用上支障はない。In addition, even if the recording device G described above records not all the time but at a certain period for a certain period of time in order to save on the recording medium, as long as the recording layer Jtll and time are set appropriately, there is no problem in practical use. There isn't.
[発明の効果1
以上述べた本発明によれば、軸受温度、潤滑流体j膜圧
力、潤滑流体膜厚さ、槽内潤滑流体温度を検出し、この
検出値に基いて求めた平均値、絶対値、時間変化率およ
び振幅の検出要素と、設定値を比較し、その検出要素が
設定値を越えたとき、各種の異常の判断をおこなうとと
らに、これらの組合わせで論理判断を行ない、この判断
結果に基いてスラスト軸受装置の異常を監視するように
したので、スラスト軸受装置の異常に到る前兆を早期に
検出でき、スラスト軸受本体又は冷却系統の異常の判…
iまで行なうことが可能であり、これによりスラスト軸
受装置の損傷を極力少なくでき、重大事故への拡大予防
を行うことができるスラスト軸受装置の自動監視装置と
スラスト軸受装置の監視方法を提供することができる。[Effect of the invention 1] According to the present invention described above, the bearing temperature, lubricating fluid film pressure, lubricating fluid film thickness, and tank lubricating fluid temperature are detected, and the average value and absolute value determined based on these detected values are The detection elements of value, time rate of change, and amplitude are compared with the set value, and when the detected element exceeds the set value, various abnormalities are determined. Since abnormalities in the thrust bearing device are monitored based on this judgment result, signs of abnormalities in the thrust bearing device can be detected early, and abnormalities in the thrust bearing body or cooling system can be detected.
To provide an automatic monitoring device for a thrust bearing device and a method for monitoring the thrust bearing device, which can perform up to i, thereby minimizing damage to the thrust bearing device, and preventing escalation to a serious accident. I can do it.
第1図は本発明によるスラスト軸受装置の自動監視装置
の一実施例を示す概略構成図、第2図は第1図の各種セ
ンサの配置状態を示す静止板の平面図、第3図は第1図
の自動監視回路の概略構成を示すブロック図、第4図は
第1図のスラスト軸受本体異常警報回路を示す論理回路
図である。
11・・・回転軸、12・・・スラス1−カラー、13
・・・カイト軸受、14・・・回転板、15・・・静止
板、16・・・コイルスプリング、17・・・軸受油槽
、18・・・スプリング台、1つ・・・潤滑油、20・
・・油冷管、21・・・スラスト軸受温度センサ、22
・・・スラスト軸受油膜圧力センサ、23・・・スラス
ト軸受油illさセンサ、24・・・油槽内油温度セン
サ、B−1〜B −4・−・演算回路、C−1,C−1
00,C−2,C−200,C−4,C−6,C−8,
0−12・・・比較器、D−1・・・スラスト軸受本体
異常警報回路、D−2・・・スラスト軸受冷却水系統異
常警報回路、E−H・・・異常表示器、T・・・警報器
、G・・・記録装置。
Qlllll(1゛浄+E (内’QI:’、’j’J
! Z L〕第1 日FIG. 1 is a schematic configuration diagram showing an embodiment of an automatic monitoring device for a thrust bearing device according to the present invention, FIG. 2 is a plan view of a stationary plate showing the arrangement of various sensors in FIG. 1, and FIG. FIG. 4 is a block diagram showing a schematic configuration of the automatic monitoring circuit shown in FIG. 1, and FIG. 4 is a logic circuit diagram showing the thrust bearing main body abnormality alarm circuit shown in FIG. 11...Rotation axis, 12...Slus 1-Color, 13
... Kite bearing, 14 ... Rotating plate, 15 ... Stationary plate, 16 ... Coil spring, 17 ... Bearing oil tank, 18 ... Spring stand, one ... Lubricating oil, 20・
・・Oil cooled pipe, 21 ・・Thrust bearing temperature sensor, 22
... Thrust bearing oil film pressure sensor, 23... Thrust bearing oil ill sensor, 24... Oil tank internal oil temperature sensor, B-1 to B-4... Arithmetic circuit, C-1, C-1
00, C-2, C-200, C-4, C-6, C-8,
0-12... Comparator, D-1... Thrust bearing body abnormality alarm circuit, D-2... Thrust bearing cooling water system abnormality alarm circuit, E-H... Abnormality indicator, T...・Alarm, G...Recording device. Qlllll(1゛clean+E (within 'QI:', 'j'J
! Z L〕First day
Claims (2)
受潤滑流体槽内にあって、上記回転軸と一体に回転する
回転板と潤滑流体膜を介して対峙する複数個の静止板で
支承するスラスト軸受装置において、この軸受装置内に
配置した軸受温度を検出する軸受温度センサと、上記軸
受装置内に配置した軸受潤滑流体膜圧力を検出する軸受
潤滑流体膜圧力センサと、上記軸受装置内に配置した軸
受潤滑流体膜厚さを検出する軸受潤滑流体膜厚さセンサ
と、上記軸受潤滑流体槽内に配置した潤滑流体温度を検
出する槽内潤滑流体温度センサと、これらのセンサから
の検出信号から平均値、絶対値、時間変化率および振幅
の検出要素を演算する演算手段と、この演算手段からの
検出要素と予め定めた設定値との比較を行ない、上記検
出要素が該設定値を越えたとき、各種の異常信号を出力
する比較手段と、この比較手段からの各種の異常信号の
組合せで論理判断を行なう警報手段と、上記比較手段か
らの各種の異常信号を入力して警報を出力する警報器と
、上記警報手段から出力される警報信号を表示する表示
器とを具備したスラスト軸受装置の自動監視装置。(1) The thrust generated on the rotating shaft of a vertical rotating machine, etc. is supported by a plurality of stationary plates located in a bearing lubricating fluid tank and facing a rotating plate that rotates together with the rotating shaft with a lubricating fluid film interposed therebetween. In a thrust bearing device, a bearing temperature sensor arranged within the bearing device detects the bearing temperature, a bearing lubricating fluid film pressure sensor arranged inside the bearing device detecting the bearing lubricating fluid film pressure, and a bearing lubricating fluid film pressure sensor arranged inside the bearing device detecting the bearing lubricating fluid film pressure. A bearing lubricating fluid film thickness sensor that detects the thickness of the bearing lubricating fluid film arranged in the bearing lubricating fluid tank, an in-tank lubricating fluid temperature sensor that detects the temperature of the lubricating fluid arranged in the bearing lubricating fluid tank, and detection signals from these sensors. a calculation means for calculating the average value, absolute value, time rate of change, and amplitude detection elements from the calculation means, and a comparison between the detection elements from this calculation means and a predetermined set value, and if the detection element exceeds the set value, a comparison means that outputs various abnormal signals when a failure occurs, an alarm means that makes a logical judgment based on a combination of the various abnormal signals from the comparison means, and an alarm that outputs an alarm by inputting the various abnormal signals from the comparison means. 1. An automatic monitoring device for a thrust bearing device, comprising: an alarm device that displays an alarm signal output from the alarm means; and a display device that displays an alarm signal output from the alarm means.
受潤滑流体槽内にあって、上記回転軸と一体に回転する
回転板と潤滑流体膜を介して対峙する複数個の静止板で
支承するスラスト軸受装置において、この軸受装置の軸
受温度、軸受潤滑流体膜圧力、軸受潤滑流体膜厚さ、槽
内潤滑流体温度を検出手段により検出し、この検出値に
基いて平均値、絶対値、時間変化率および振幅の検出要
素を演算し、この演算結果が予め定めた設定値を越えた
とき、各種の検出要素の異常状態の判断を行なうととも
に、この判断結果の組合せで論理条件の満足を判断して
上記スラスト軸受装置の異常を監視する監視方法。(2) The thrust generated on the rotating shaft of a vertical rotating machine, etc. is supported by a plurality of stationary plates located in a bearing lubricating fluid tank and facing a rotating plate that rotates together with the rotating shaft with a lubricating fluid film interposed therebetween. In a thrust bearing device, the bearing temperature, bearing lubricating fluid film pressure, bearing lubricating fluid film thickness, and tank lubricating fluid temperature of this bearing device are detected by a detection means, and based on these detected values, the average value, absolute value, and time are determined. The detection elements of rate of change and amplitude are calculated, and when the calculation result exceeds a predetermined set value, it is determined whether the various detection elements are in an abnormal state, and the combination of these judgment results determines whether the logical conditions are satisfied. A monitoring method for monitoring abnormalities in the above-mentioned thrust bearing device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18346988A JPH01261511A (en) | 1987-08-10 | 1988-07-25 | Automatic surveillange device and surveillance method for thrust bearing unit |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19809887 | 1987-08-10 | ||
JP62-198098 | 1987-08-10 | ||
JP18346988A JPH01261511A (en) | 1987-08-10 | 1988-07-25 | Automatic surveillange device and surveillance method for thrust bearing unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01261511A true JPH01261511A (en) | 1989-10-18 |
Family
ID=26501892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18346988A Pending JPH01261511A (en) | 1987-08-10 | 1988-07-25 | Automatic surveillange device and surveillance method for thrust bearing unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01261511A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0496617U (en) * | 1991-01-29 | 1992-08-21 | ||
JP2009216477A (en) * | 2008-03-10 | 2009-09-24 | Ihi Corp | Method and apparatus for measuring film thickness and contact state |
CN109852451A (en) * | 2018-12-21 | 2019-06-07 | 中国神华能源股份有限公司 | The control method and control device of desulphurization system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58615A (en) * | 1981-06-24 | 1983-01-05 | Hitachi Ltd | Method of monitoring bearing |
JPS61157821A (en) * | 1984-12-28 | 1986-07-17 | Toshiba Corp | Automatic supervising device of thrust bearing device |
-
1988
- 1988-07-25 JP JP18346988A patent/JPH01261511A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58615A (en) * | 1981-06-24 | 1983-01-05 | Hitachi Ltd | Method of monitoring bearing |
JPS61157821A (en) * | 1984-12-28 | 1986-07-17 | Toshiba Corp | Automatic supervising device of thrust bearing device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0496617U (en) * | 1991-01-29 | 1992-08-21 | ||
JP2009216477A (en) * | 2008-03-10 | 2009-09-24 | Ihi Corp | Method and apparatus for measuring film thickness and contact state |
CN109852451A (en) * | 2018-12-21 | 2019-06-07 | 中国神华能源股份有限公司 | The control method and control device of desulphurization system |
CN109852451B (en) * | 2018-12-21 | 2021-08-10 | 中国神华能源股份有限公司 | Control method and control device for desulfurization system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107313816B (en) | A kind of T Steam Turbine SI measuring device and measuring method | |
JPH10197404A (en) | Apparatus for monitoring abnormality of diesel generator | |
JPH01261511A (en) | Automatic surveillange device and surveillance method for thrust bearing unit | |
JPS58143222A (en) | Method and apparatus for diagnosing rotary machine | |
JPS61206814A (en) | Automatic bearing monitoring device | |
CN104828516B (en) | The safe emergency flight control system of conveyer | |
JPS61157821A (en) | Automatic supervising device of thrust bearing device | |
CN102261890A (en) | Rotation angle measuring equipment | |
CN202057297U (en) | Rotation angle measuring device | |
JP3379304B2 (en) | Plant abnormality monitoring method and abnormality monitoring device | |
JPS588823A (en) | Diagnosis method for abnormality in bearing | |
JPS6243538A (en) | Abnormality monitor for rotating part of rotary machine | |
JPS61157822A (en) | Automatic supervising device of guide bearing device for revolving electrical equipment | |
US20020066306A1 (en) | Monitoring of bearing performance | |
JPH05263607A (en) | Steam turbine abnormality detector | |
JPH02232529A (en) | Method and apparatus for diagnosing vibration of rotary machine | |
JPH05225474A (en) | Method and device for abnormality diagnosis of plant apparatus | |
JPH05118298A (en) | Vertical shaft submergible motor type pump | |
JPS6023622A (en) | Observing device of thrust bearing | |
JP3457413B2 (en) | Diagnostic equipment for rotating machinery | |
JP2019148474A (en) | State diagnosis apparatus, state diagnosis method and state diagnosis program | |
JPS5963530A (en) | Diagnosing device for rotary machine | |
JPH0464034A (en) | Monitoring device of abnormality of bearing of hydraulic machine | |
JP2547905B2 (en) | Axis system abnormality detection device | |
JPH04315016A (en) | Device for monitoring vibration abnormality for rotary machine |