JPH04315016A - Device for monitoring vibration abnormality for rotary machine - Google Patents
Device for monitoring vibration abnormality for rotary machineInfo
- Publication number
- JPH04315016A JPH04315016A JP3079069A JP7906991A JPH04315016A JP H04315016 A JPH04315016 A JP H04315016A JP 3079069 A JP3079069 A JP 3079069A JP 7906991 A JP7906991 A JP 7906991A JP H04315016 A JPH04315016 A JP H04315016A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- reference value
- shaft
- abnormality
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005856 abnormality Effects 0.000 title claims abstract description 44
- 238000012544 monitoring process Methods 0.000 title description 7
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 4
- 238000001514 detection method Methods 0.000 abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000006073 displacement reaction Methods 0.000 abstract description 6
- 239000000523 sample Substances 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 11
- 238000007689 inspection Methods 0.000 description 7
- 238000010248 power generation Methods 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Emergency Alarm Devices (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、水力発電所等で電力を
発生させる発電設備として使用される水車やポンプ水車
等の水力機械や、これに結合されて運転する発電機の異
常振動を監視して、重大事故を未然に防止するための回
転機械用振動異常監視装置に関するものである。[Industrial Application Field] The present invention monitors abnormal vibrations of hydraulic machines such as water turbines and pump water turbines used as power generating equipment for generating electric power in hydroelectric power plants, etc., and of generators connected to these machines and operated. The present invention relates to a vibration abnormality monitoring device for rotating machinery for preventing serious accidents.
【0002】0002
【従来の技術】近年、水力発電設備は、一般に高速、大
容量化の一途をたどり、ここで使用されるポンプ水車や
水車等の水力機械や発電機は、高速、高圧及び高荷重下
での苛酷な運転にさらされるに至っている。しかも、電
力需要の要求に応じて、素早い起動停止と種々の負荷条
件の下で運転される状況下にあり、安定した電力供給の
ために高い信頼性が要求されている。[Prior Art] In recent years, hydroelectric power generation equipment has generally become faster and larger in capacity, and the hydraulic machines and generators used here, such as pump turbines and water turbines, are capable of operating at high speeds, high pressures, and under high loads. They are now exposed to harsh driving conditions. Moreover, in response to power demand, these devices are operated under various load conditions, with quick startup and shutdown, and high reliability is required for stable power supply.
【0003】従って、保守点検を確実に行って事故を未
然に防止する必要があり、この要求に答えるため、定期
的に機械を停止して外観検査や非破壊検査、分解点検等
が一般に行われているが、異常の種類によっては点検か
ら次回の点検までの合間に損傷を起こし、重大事故に結
びつく危険性を含んでいるものもあるのが現状である。[0003]Therefore, it is necessary to perform maintenance inspections reliably to prevent accidents, and in order to meet this requirement, it is common practice to periodically stop the machine and perform external inspections, non-destructive inspections, disassembly inspections, etc. However, depending on the type of abnormality, the current situation is that there is a risk that damage may occur between inspections and the next inspection, leading to serious accidents.
【0004】このため、上記の保守点検に加えて運転時
の軸振動等を測定し、この大きさを監視してある大きさ
以上の軸振動になった時に警報を発生させる等の対策が
一般に採用されている。For this reason, in addition to the above-mentioned maintenance inspections, measures such as measuring shaft vibration during operation, monitoring the magnitude, and generating an alarm when the shaft vibration exceeds a certain level are generally taken. It has been adopted.
【0005】図9は、このような従来装置に係る立軸形
回転機械の概略構成図であり、水車運転時又はポンプ運
転時の双方の場合に用いられるランナ7と発電機ロータ
6とが回転軸1によって結合されている。この回転軸1
は、合計3個のガイド軸受すなわち上部ガイド軸受2、
下部ガイド軸受3、水車ガイド軸受4によって回転自在
に支持されている。なお、5はスラスト軸受である。FIG. 9 is a schematic configuration diagram of a vertical shaft rotating machine according to such a conventional device, in which a runner 7 and a generator rotor 6, which are used both when operating a water turbine or when operating a pump, are connected to the rotating shaft. 1. This rotating shaft 1
has a total of three guide bearings, namely the upper guide bearing 2,
It is rotatably supported by a lower guide bearing 3 and a water turbine guide bearing 4. Note that 5 is a thrust bearing.
【0006】これら各ガイド軸受の近傍には、一対の非
接触式軸振動プローブ(ギャップセンサ)PX ,PY
が、図8に示すように、互いに90°の角度をなす位
置に配設されている。Near each of these guide bearings, a pair of non-contact shaft vibration probes (gap sensors) PX, PY are installed.
are disposed at an angle of 90° with each other, as shown in FIG.
【0007】このプローブPX ,PY からの電気信
号は、図示を省略した変位計により、図9の右側に示す
ような軸振動の電気信号に変換される。そして、これら
の最大振動振幅A1 ,A2 ,A3 が測定され、こ
れらのいずれかが一定値以上となったときには振動異常
の警報が発せられていた。The electrical signals from the probes PX and PY are converted into shaft vibration electrical signals as shown on the right side of FIG. 9 by a displacement meter (not shown). Then, these maximum vibration amplitudes A1, A2, A3 are measured, and when any one of them exceeds a certain value, a vibration abnormality alarm is issued.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、水力発
電用の回転機械は種々の条件下で運転されており、単に
最大振動振幅量の値を監視するだけでは、正確に振動異
常を検出するのは困難であった。[Problem to be Solved by the Invention] However, rotating machinery for hydroelectric power generation is operated under various conditions, and it is difficult to accurately detect vibration abnormalities by simply monitoring the value of the maximum vibration amplitude. It was difficult.
【0009】また、機械が劣化したり損傷を起こした状
態で軸振動が発生するような場合には、一般に劣化等の
進行につれて軸振動も増加する場合が多い。したがって
、機械の異常を監視する場合には、軸振動の大きさに加
えこの増加傾向を監視することによって振動異常を早期
に検出することができると考えられる。[0009] Furthermore, when shaft vibration occurs when a machine is deteriorated or damaged, the shaft vibration generally increases as the deterioration progresses. Therefore, when monitoring abnormalities in a machine, it is considered that vibration abnormalities can be detected early by monitoring not only the magnitude of shaft vibration but also the increasing tendency thereof.
【0010】ところが、前述の如く水力発電の水車やポ
ンプ水車等の水力機械及び発電機は、電力需要に応じて
種々の負荷条件で運転され、これらの水力機械及び発電
機の軸振動は、負荷条件や水の落差、及びポンプ運転、
発電運転、調相運転等の種々の運転状態等の運転条件に
よって正常時の軸振動値が異なっている。However, as mentioned above, hydraulic machines such as water turbines and pump turbines for hydroelectric power generation, and generators are operated under various load conditions depending on the power demand, and the shaft vibrations of these hydraulic machines and generators are affected by the load. conditions, water head, and pump operation,
The normal shaft vibration value differs depending on operating conditions such as power generation operation, phase adjustment operation, etc.
【0011】このため、上記従来例のように、単なる軸
振動値を測定しこの大きさのみを監視する方法では、運
転条件の変化による軸振動の変化と、異常の発生及び劣
化の進行に伴う軸振動の増加とを区別しにくくなってお
り、軸振動の異常の判別が一層困難となっていた。[0011] For this reason, the method of simply measuring the shaft vibration value and monitoring only its magnitude, as in the conventional example described above, cannot detect changes in shaft vibration due to changes in operating conditions, as well as the occurrence of abnormalities and progress of deterioration. It became difficult to distinguish this from an increase in shaft vibration, making it even more difficult to distinguish between shaft vibration abnormalities.
【0012】本発明は上記事情に鑑みてなされたもので
あり、水力発電所の回転機械の各種運転状態の軸系の状
態を正確に把握し、運転状態に異常が発生したときには
、より早く且つ確実にこの状態を発見し、重大事故を未
然に防止することが可能な回転機械用振動異常監視装置
を提供することを目的としている。The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to accurately grasp the state of the shaft system in various operating states of rotating machinery in a hydroelectric power plant, and to quickly and quickly correct the situation when an abnormality occurs in the operating state. The object of the present invention is to provide a vibration abnormality monitoring device for rotating machinery that can reliably detect this condition and prevent serious accidents.
【0013】[0013]
【課題を解決するための手段】本発明は上記課題を解決
するための手段として、ガイド軸受に支持されて回転す
る回転軸に臨んで取付けられ、該回転軸の振動状態を検
出する振動検出手段と、前記振動検出手段からの検出信
号に基いて、前記回転軸の最大振動振幅量、軸偏心量、
及び前記ガイド軸受との間の最小ギャップ量などの振動
状態量を演算する振動状態量演算手段と、前記演算され
た各振動状態量を、それぞれにつき予め設定されている
各判定基準値と比較し、いずれかの振動状態量がその判
定基準値以上となったときに異常信号を出力する振動異
常判定手段と、前記振動異常判定手段からの異常信号に
基いて警報信号を出力する警報信号出力手段と、を備え
た構成としてある。[Means for Solving the Problems] As a means for solving the above-mentioned problems, the present invention provides a vibration detection means that is mounted facing a rotating shaft that is supported by a guide bearing and detects the vibration state of the rotating shaft. and, based on the detection signal from the vibration detection means, the maximum vibration amplitude amount of the rotating shaft, the amount of shaft eccentricity,
and vibration state quantity calculating means for calculating vibration state quantities such as a minimum gap amount between the guide bearing and the guide bearing, and comparing each of the calculated vibration state quantities with respective preset determination reference values. , a vibration abnormality determining means that outputs an abnormal signal when any of the vibration state quantities exceeds its determination reference value, and an alarm signal output means that outputs an alarm signal based on the abnormal signal from the vibration abnormality determining means. It has a configuration that includes the following.
【0014】また、上記構成においては、さらに、振動
異常判定手段が、回転機械の運転条件に応じて判定基準
値を変化させる判定基準値可変手段を有する構成とする
ことができる。[0014] Furthermore, in the above structure, the vibration abnormality determining means may further include a determination reference value variable means for changing the determination reference value in accordance with the operating conditions of the rotating machine.
【0015】[0015]
【作用】上記構成において、振動状態量演算手段は、振
動検出手段からの検出信号に基き、回転軸の最大振動振
幅量の他に、回転軸の軸偏心量、及びガイド軸受との間
の最小ギャップ量を演算する。[Operation] In the above configuration, the vibration state quantity calculation means calculates, based on the detection signal from the vibration detection means, the maximum vibration amplitude of the rotating shaft, the eccentricity of the rotating shaft, and the minimum amount of eccentricity between the rotating shaft and the guide bearing. Calculate the gap amount.
【0016】振動異常判定手段は、これらの各振動状態
量をそれぞれの判定基準値と比較し、いずれかが判定基
準値以上となったときに異常信号を出力する。警報信号
出力手段は、この異常信号に基き警報信号を出力する。The vibration abnormality determining means compares each of these vibration state quantities with its respective determination reference value, and outputs an abnormality signal when any of them exceeds the determination reference value. The alarm signal output means outputs an alarm signal based on this abnormal signal.
【0017】この構成では、従来から用いられていた最
大振動振幅量に加えて、軸偏心量、及び最小ギャップ量
も演算しているので、振動異常の判定要素がそれだけ増
え、振動異常判定の信頼性が高いものとなっている。In this configuration, in addition to the conventionally used maximum vibration amplitude, the shaft eccentricity and minimum gap amount are also calculated, so the number of factors for determining vibration abnormality increases accordingly, and the reliability of vibration abnormality determination increases. It has a high level of quality.
【0018】また、回転機械の振動状態は運転条件によ
って変化するが、この運転条件に応じて判定基準値を変
化させる判定基準値可変手段を、振動異常判定手段が有
する構成とすれば、振動異常判定の信頼性は一層高いも
のとなる。Furthermore, since the vibration state of a rotating machine changes depending on the operating conditions, if the vibration abnormality determining means has a determination reference value variable means that changes the determination reference value according to the operating conditions, vibration abnormality can be detected. The reliability of the judgment becomes even higher.
【0019】[0019]
【実施例】以下、本発明の実施例を図1乃至図7に基き
説明する。図1は本実施例の構成を示すブロック図であ
る。Embodiments Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 7. FIG. 1 is a block diagram showing the configuration of this embodiment.
【0020】この図において、発電機ロータ6とランナ
7とは主軸1を介して結合されており、この主軸1は各
ガイド軸受2,3,4により支持されている。これらの
各ガイド軸受に臨む位置には、一対のプローブPX ,
PYが配設されており、その検出信号は変位計8,9に
よりアナログ電気信号に変換されるようになっている。In this figure, a generator rotor 6 and a runner 7 are connected via a main shaft 1, and this main shaft 1 is supported by guide bearings 2, 3, and 4, respectively. At a position facing each of these guide bearings, a pair of probes PX,
A PY is provided, and its detection signal is converted into an analog electrical signal by displacement meters 8 and 9.
【0021】振動状態量演算手段10は、この信号に基
いて各ガイド軸受の位置における回転軸1の最大振動振
幅量、軸偏心量、及び回転軸1と各ガイド軸受との間の
最小ギャップ量を演算し、その演算結果を振動異常判定
手段11に出力する。Based on this signal, the vibration state quantity calculation means 10 calculates the maximum vibration amplitude of the rotating shaft 1 at the position of each guide bearing, the amount of shaft eccentricity, and the minimum gap amount between the rotating shaft 1 and each guide bearing. is calculated, and the calculation result is output to the vibration abnormality determining means 11.
【0022】この振動異常判定手段11は、比較器12
及び判定基準値可変手段13により構成されている。そ
して、判定基準値可変手段13は、水の落差、水車運転
かポンプ運転か、及び有効電力量(負荷の大きさ)等の
運転条件をパラメータとして、比較器12で用いられる
判定基準値を変化させるようになっている。The vibration abnormality determining means 11 includes a comparator 12
and a judgment reference value variable means 13. Then, the judgment reference value variable means 13 changes the judgment reference value used in the comparator 12 using operating conditions such as the water head, whether the water turbine is operated or the pump is operated, and the amount of active electricity (load size) as parameters. It is designed to let you do so.
【0023】この比較器12から異常信号が入力される
と、警報信号出力手段14は警報指令信号を出力し、警
報器、異常表示灯などを駆動するようになっている。When an abnormality signal is input from the comparator 12, the alarm signal output means 14 outputs an alarm command signal to drive an alarm device, an abnormality indicator light, etc.
【0024】なお、各機器からの各データは記録装置1
5に記録されるようになっており、異常発生前後の機器
の状態を分析して保守管理に資することができるように
なっている。Note that each data from each device is stored in the recording device 1.
5, so that the state of the equipment before and after the occurrence of an abnormality can be analyzed to contribute to maintenance management.
【0025】また、図1においては図示されていないが
、実際は変位計8,9と振動状態量演算手段10との間
には、図2に示すように、フィルタ回路16、直流成分
回路17、交流成分回路18が設けられている。そして
、変位計8,9から送られてくるアナログ電気信号はこ
のフィルタ回路16によって直流成分と交流成分(従来
の軸振動監視において使用されていた信号成分は「軸振
れ」と称するこの交流成分である。)とに分離され、そ
れぞれが直流成分回路17及び交流成分回路18を介し
て振動状態量演算手段10に出力されるようになってい
る。Although not shown in FIG. 1, in reality, as shown in FIG. 2, a filter circuit 16, a DC component circuit 17, An AC component circuit 18 is provided. The analog electrical signals sent from the displacement meters 8 and 9 are filtered by this filter circuit 16 into a DC component and an AC component (the signal component used in conventional shaft vibration monitoring is this AC component called "shaft vibration"). ) and are outputted to the vibration state quantity calculating means 10 via a DC component circuit 17 and an AC component circuit 18, respectively.
【0026】次に、このように構成される本実施例の動
作につき説明する。例えば、ランナ7に生じたアンバラ
ンス力、ランナ7自体の欠損、ガイド軸受2,3,4の
傷、回転軸1の曲がり、回転電機に生じた異常磁気力、
あるいは水力発電設備を構成する建屋全体の動き、建屋
の傾き(実際に、季節の変化に伴なってガイド軸受の軸
芯の移動が測定された例がある。)等により、立軸形回
転機械の軸振動に異常が発生したとする。Next, the operation of this embodiment configured as described above will be explained. For example, unbalanced force generated in the runner 7, damage to the runner 7 itself, damage to the guide bearings 2, 3, and 4, bending of the rotating shaft 1, abnormal magnetic force generated in the rotating electric machine,
Or, due to the movement of the entire building that makes up the hydroelectric power generation equipment, the inclination of the building (in fact, there are cases where the movement of the axis of the guide bearing was measured due to seasonal changes), etc. Suppose that an abnormality occurs in shaft vibration.
【0027】この場合、各ガイド軸受に対応するリサー
ジュ波形は、図7の右側に示すように、完全な円にはな
らず、くずれたノコギリ状の歪んだ円となる。なお、リ
サージュ波形とは軸振動の軌跡を示す波形であるが、こ
れは変位計8,9の軸振動出力信号を合成することによ
り得られ、軸振動検出の技術として一般的に行なわれて
いるものである。In this case, the Lissajous waveform corresponding to each guide bearing is not a perfect circle, but a distorted saw-shaped circle, as shown on the right side of FIG. Note that the Lissajous waveform is a waveform that shows the locus of shaft vibration, and it is obtained by combining the shaft vibration output signals of displacement meters 8 and 9, and is commonly used as a technology for shaft vibration detection. It is something.
【0028】また、前述したように、変位計8,9から
の各アナログ電気信号から、図4に示すような、直流成
分と交流成分とが合成された波形が得られる。そして、
前記のフィルタ回路16により、この波形を図5に示す
ような直流成分波形と、図6に示すような交流成分波形
とに分離することができる。Further, as described above, from each analog electrical signal from the displacement meters 8 and 9, a waveform in which a DC component and an AC component are combined as shown in FIG. 4 is obtained. and,
The filter circuit 16 described above can separate this waveform into a DC component waveform as shown in FIG. 5 and an AC component waveform as shown in FIG.
【0029】図3は、図7に示したようなリサージュ波
形を拡大して示した図である。この図において、軸回転
中心(軸心)の位置を(X0 ,Y0 )とする、この
X0 及びY0 の値は図5の波形より求めることがで
きる。FIG. 3 is an enlarged view of the Lissajous waveform shown in FIG. In this figure, the position of the shaft rotation center (axis center) is (X0, Y0), and the values of X0 and Y0 can be obtained from the waveform of FIG.
【0030】したがって、この軸芯位置の原点からの距
離すなわち軸偏心量をHとすると、このHは[0030] Therefore, if the distance from the origin of this shaft center position, that is, the amount of shaft eccentricity, is H, then this H is
【0031
】0031
]
【数1】
で求めることができる。また、このときの軸心の方向θ
は、It can be obtained by [Equation 1]. Also, the direction θ of the axis at this time
teeth,
【0032】[0032]
【数2】 で求めることができる。[Math 2] It can be found by
【0033】そして、軸心方向における軸振動振幅をW
の値は図6の波形より得られるので、ガイド軸受の直径
をDとすると、最小ギャップ量δmin は[0033] Then, the shaft vibration amplitude in the axial direction is expressed as W
The value of is obtained from the waveform in Fig. 6, so if the diameter of the guide bearing is D, the minimum gap amount δmin is
【0034
】0034
]
【数3】 により求めることができる。[Math 3] It can be found by
【0035】さらに、最大軸振動振幅Aも、軸振動振幅
Wと同様に、図6の波形から求めることができる。Furthermore, the maximum shaft vibration amplitude A can also be determined from the waveform shown in FIG. 6 in the same way as the shaft vibration amplitude W.
【0036】振動状態量演算手段10は、このようにし
て軸偏心量H、軸心方向θ、最小ギャップ量δmin
、最大振動振幅量Aを演算し、その演算結果を振動異常
判定手段11の比較器12に出力する。In this way, the vibration state quantity calculation means 10 calculates the shaft eccentricity H, the axial direction θ, and the minimum gap amount δmin.
, calculates the maximum vibration amplitude amount A, and outputs the calculation result to the comparator 12 of the vibration abnormality determining means 11.
【0037】比較器12は、この演算結果を判定基準値
可変手段13からの判定基準値と比較し、いずれかの振
動状態量が判定基準値以上となったときに警報信号出力
手段14に異常信号を出力する。The comparator 12 compares this calculation result with the judgment reference value from the judgment reference value variable means 13, and when any of the vibration state quantities exceeds the judgment reference value, an abnormality is sent to the alarm signal output means 14. Output a signal.
【0038】このとき、前述したように、判定基準値可
変手段13には水の落差等の運転条件に関する信号が入
力されており、判定基準値可変手段13はこれらの運転
条件に応じて、最も適切な値となるように判定基準値を
変化させている。したがって、振動異常判定手段11は
運転条件の相違にかかわらず、常に正確に軸振動の異常
の判定を行うことができる。At this time, as mentioned above, signals related to operating conditions such as water head are inputted to the judgment reference value variable means 13, and the judgment reference value variable means 13 adjusts the most suitable signal according to these operating conditions. The criterion value is changed to an appropriate value. Therefore, the vibration abnormality determination means 11 can always accurately determine abnormality in shaft vibration regardless of differences in operating conditions.
【0039】このように、図1の装置では、3個所のガ
イド軸受のそれぞれについて3種類の物理量である振動
状態量を演算しているので、最大振動振幅量のみに基い
て異常判定を行なっていた従来装置に比べて信頼性の高
いものとなっている。In this way, in the apparatus shown in FIG. 1, since the vibration state quantities, which are three types of physical quantities, are calculated for each of the three guide bearings, abnormalities are determined based only on the maximum vibration amplitude. It is more reliable than conventional equipment.
【0040】なお、運転中に軸振動の異常が発生した場
合、異常が発生した場所に最も近いガイド軸受に係る振
動状態量に最初に大きな変化を生ずるのが通常であるが
、このような変化は軸系全体に及ぶ場合がほとんどであ
ることから、いずれかの振動状態量が判定基準値以上と
なった時点で異常と判定しても実用上は何ら差し支えな
い。したがって、軸振動の異常をいち早く検出すること
ができる。[0040] Furthermore, when an abnormality in shaft vibration occurs during operation, a large change usually occurs first in the vibration state quantity of the guide bearing closest to the place where the abnormality has occurred; In most cases, this applies to the entire shaft system, so there is no practical problem in determining that there is an abnormality when any vibration state quantity exceeds the determination reference value. Therefore, abnormalities in shaft vibration can be detected quickly.
【0041】上記実施例では、ガイド軸受の個数が3個
の場合を示したが、もちろんこの個数は任意の数に変更
し得るものである。In the above embodiment, the number of guide bearings is three, but of course this number can be changed to any number.
【0042】また、上記実施例では立軸形回転機械の場
合につき説明したが、本発明は横軸形回転機械に対して
も適用可能である。Further, in the above embodiment, the case of a vertical shaft rotating machine has been explained, but the present invention is also applicable to a horizontal shaft rotating machine.
【0043】[0043]
【発明の効果】以上のように、本発明によれば、回転軸
の最大振動振幅量ばかりでなく、その軸偏心量、及びガ
イド軸受との間の最小ギャップ量についても演算し、こ
の演算結果をそれぞれの判定基準値と比較する構成とし
ているので、軸系の振動異常を迅速且つ確実に検出する
ことができる。As described above, according to the present invention, not only the maximum vibration amplitude of the rotating shaft but also the shaft eccentricity and the minimum gap between it and the guide bearing are calculated, and the calculation results Since the configuration is such that the values are compared with respective determination reference values, vibration abnormalities in the shaft system can be detected quickly and reliably.
【0044】また、この判定基準値を、運転条件に応じ
て最も適切な値に変化させる構成とすれば、振動異常の
判定の信頼性をさらに向上させることができる。[0044] Furthermore, if the determination reference value is configured to be changed to the most appropriate value depending on the operating conditions, the reliability of determining vibration abnormality can be further improved.
【図面の簡単な説明】[Brief explanation of drawings]
【図1】本発明の実施例の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention.
【図2】図1の一部についての詳細な構成を示すブロッ
ク図。FIG. 2 is a block diagram showing a detailed configuration of a part of FIG. 1;
【図3】図1の動作の説明図。FIG. 3 is an explanatory diagram of the operation of FIG. 1;
【図4】図1の動作を説明するための波形図。FIG. 4 is a waveform diagram for explaining the operation of FIG. 1;
【図5】図1の動作の説明図。FIG. 5 is an explanatory diagram of the operation of FIG. 1;
【図6】図1の動作の説明図。FIG. 6 is an explanatory diagram of the operation of FIG. 1;
【図7】図1の動作の説明図。FIG. 7 is an explanatory diagram of the operation of FIG. 1;
【図8】従来技術の説明図。FIG. 8 is an explanatory diagram of the prior art.
【図9】従来技術の説明図。FIG. 9 is an explanatory diagram of the prior art.
1 回転軸 2 ガイド軸受 3 ガイド軸受 4 ガイド軸受 10 振動状態量演算手段 11 振動異常判定手段 13 判定基準値可変手段 14 警報信号出力手段 PX 振動検出手段(プローブ) PY 振動検出手段(プローブ) 1 Rotation axis 2 Guide bearing 3 Guide bearing 4 Guide bearing 10 Vibration state quantity calculation means 11 Vibration abnormality determination means 13 Judgment reference value variable means 14 Alarm signal output means PX Vibration detection means (probe) PY Vibration detection means (probe)
Claims (2)
臨んで取付けられ、該回転軸の振動状態を検出する振動
検出手段と、前記振動検出手段からの検出信号に基いて
、前記回転軸の最大振動振幅量、軸偏心量、及び前記ガ
イド軸受との間の最小ギャップ量などの振動状態量を演
算する振動状態量演算手段と、前記演算された各振動状
態量を、それぞれにつき予め設定されている各判定基準
値と比較し、いずれかの振動状態量がその判定基準値以
上となったときに異常信号を出力する振動異常判定手段
と、前記振動異常判定手段からの異常信号に基いて警報
信号を出力する警報信号出力手段と、を備えた回転機械
用振動異常監視装置。1. Vibration detecting means mounted facing a rotating shaft supported by a guide bearing and detecting the vibration state of the rotating shaft; a vibration state quantity calculation means for calculating vibration state quantities such as a maximum vibration amplitude amount, a shaft eccentricity amount, and a minimum gap amount between the guide bearing and the vibration state quantity, and preset each of the calculated vibration state quantities. vibration abnormality determination means for comparing with each determination reference value and outputting an abnormal signal when any vibration state quantity exceeds the determination reference value; A vibration abnormality monitoring device for a rotating machine, comprising: an alarm signal output means for outputting an alarm signal.
に応じて判定基準値を変化させる判定基準値可変手段を
有するものである請求項1記載の回転機械用振動異常監
視装置。2. The vibration abnormality monitoring device for a rotating machine according to claim 1, wherein the vibration abnormality determining means has a judgment reference value variable means for changing the judgment reference value according to the operating conditions of the rotating machine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3079069A JPH04315016A (en) | 1991-04-11 | 1991-04-11 | Device for monitoring vibration abnormality for rotary machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3079069A JPH04315016A (en) | 1991-04-11 | 1991-04-11 | Device for monitoring vibration abnormality for rotary machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04315016A true JPH04315016A (en) | 1992-11-06 |
Family
ID=13679598
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3079069A Pending JPH04315016A (en) | 1991-04-11 | 1991-04-11 | Device for monitoring vibration abnormality for rotary machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04315016A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010026772A (en) * | 1999-09-08 | 2001-04-06 | 이구택 | Monitoring and diagnosis method for facility with variable operating condition |
CZ303892B6 (en) * | 2011-09-21 | 2013-06-12 | Doosan Skoda Power S.R.O. | Method of determining current eccentricity of rotating rotor and rotating rotor eccentricity diagnostics |
JP2017122635A (en) * | 2016-01-07 | 2017-07-13 | Jfeプラントエンジ株式会社 | Abnormality diagnosis device of wind power generation facility |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6170218A (en) * | 1985-09-04 | 1986-04-11 | Hitachi Ltd | Bearing diagnosing device |
JPH01270623A (en) * | 1988-04-22 | 1989-10-27 | Toshiba Corp | Apparatus for diagnosing vibration of rotary machine |
-
1991
- 1991-04-11 JP JP3079069A patent/JPH04315016A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6170218A (en) * | 1985-09-04 | 1986-04-11 | Hitachi Ltd | Bearing diagnosing device |
JPH01270623A (en) * | 1988-04-22 | 1989-10-27 | Toshiba Corp | Apparatus for diagnosing vibration of rotary machine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010026772A (en) * | 1999-09-08 | 2001-04-06 | 이구택 | Monitoring and diagnosis method for facility with variable operating condition |
CZ303892B6 (en) * | 2011-09-21 | 2013-06-12 | Doosan Skoda Power S.R.O. | Method of determining current eccentricity of rotating rotor and rotating rotor eccentricity diagnostics |
EP3055661B1 (en) * | 2011-09-21 | 2017-07-26 | Doosan Skoda Power S.r.o. | A method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor |
JP2017122635A (en) * | 2016-01-07 | 2017-07-13 | Jfeプラントエンジ株式会社 | Abnormality diagnosis device of wind power generation facility |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5875734B2 (en) | Diagnostic device and switching device for electric motor | |
Thomson et al. | Motor Current Signature Analysis To Detect Faults In Induction Motor Drives-Fundamentals, Data Interpretation, And Industrial Case Histories. | |
Kliman et al. | Sensorless, online motor diagnostics | |
EP3480610B1 (en) | Diagnosing a winding set of a stator | |
US10184985B2 (en) | Systems and methods for crack detection in doubly-fed induction generators | |
CN104655977B (en) | Generator excitation Winding Short Fault Diagnosis method based on torque comparison principle | |
Culbert et al. | Signature analysis for online motor diagnostics: Early detection of rotating machine problems prior to failure | |
KR102676587B1 (en) | On-line fault diagnosis method for motor of machine tool | |
EP3339638B1 (en) | Systems for crack detection in doubly-fed induction generators | |
JPH0312246B2 (en) | ||
JPH04315016A (en) | Device for monitoring vibration abnormality for rotary machine | |
JPH0543052B2 (en) | ||
Blödt et al. | Mechanical fault detection in induction motor drives through stator current monitoring-theory and application examples | |
JP2731228B2 (en) | Abnormal vibration monitoring method in hydropower facilities | |
JPH01270623A (en) | Apparatus for diagnosing vibration of rotary machine | |
JPH05225474A (en) | Method and device for abnormality diagnosis of plant apparatus | |
JP2547905B2 (en) | Axis system abnormality detection device | |
JPS61206814A (en) | Automatic bearing monitoring device | |
JPS6023622A (en) | Observing device of thrust bearing | |
CN106940249A (en) | A kind of steam turbine main shaft curved detection method | |
JP2909134B2 (en) | Abnormality detector for rotating parts of rotating machinery | |
JP2664816B2 (en) | Device status monitoring method | |
JPS6198928A (en) | Air tank inspector | |
KR20240070590A (en) | Electric motor diagnosis device, electric motor diagnosis method, and electric motor abnormality inference device | |
Gazzana et al. | A system for incipient fault detection and fault diagnosis based on MCSA |