JPH01261260A - Production of oxide superconductor - Google Patents

Production of oxide superconductor

Info

Publication number
JPH01261260A
JPH01261260A JP63087880A JP8788088A JPH01261260A JP H01261260 A JPH01261260 A JP H01261260A JP 63087880 A JP63087880 A JP 63087880A JP 8788088 A JP8788088 A JP 8788088A JP H01261260 A JPH01261260 A JP H01261260A
Authority
JP
Japan
Prior art keywords
powder
oxide superconductor
liquid phase
phase forming
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63087880A
Other languages
Japanese (ja)
Inventor
Shuya Yamada
山田 修也
Mitsuhiro Matsumoto
充裕 松元
Yoshinori Matsunaga
松永 佳典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63087880A priority Critical patent/JPH01261260A/en
Publication of JPH01261260A publication Critical patent/JPH01261260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain an oxide superconductor having improved Jc without deteriorating Tc, by adding CuO powder, BaCuO2 powder, etc., as a liquid-phase forming component to Re1Ba2Cu3O7-delta, calcining the mixture and reorienting the crystal. CONSTITUTION:Powder of Re1Ba2Cu3O7-delta (Re is rare-earth element) is added with 0.01-0.4mol, especially 0.05-0.2mol of powder of CuO and/or BaCuO2 as a liquid-phase forming component and the mixture is calcined in an oxidizing atmosphere of 900-1,100 deg.C at a temperature to cause the melting of the liquid- phase forming component, concretely at 960-1,050 deg.C in air or 980-1,100 deg.C in oxygen. The calcined product is cooled at a cooling rate of 50-200 deg.C/hr to obtain the objective oxide superconductor composed of crystals densely lami nated in the same direction. The Re1Ba2Cu3O7-delta oxide superconductor has a Tc of >=77K and Jc of >=1,000A/cm<2>.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車及び粒子加速器等の超電
導コイル部分や電子デバイス等に使用される高臨界電流
密度を有する酸化物超電導体の製法に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an oxide superconductor having a high critical current density, which is used, for example, in superconducting coil parts of magnetic levitation trains, particle accelerators, electronic devices, etc. It is related to.

〔先行技術〕[Prior art]

現在、超電導体はNbTi 、 Nb:+Snなどに代
表される金属系超電導体が実用化されているが、その臨
界温度(Tc)はたかだか20に程度までである。
Currently, metal-based superconductors such as NbTi and Nb:+Sn are in practical use, but their critical temperature (Tc) is at most about 20°C.

しかしながら近年、希土類元素、アルカリ土類元素及び
酸化銅の混合物からなる複合酸化物系超電導体はそのT
cが従来の超電導体と比べ著しく高いものであることが
、フィジカル レピューレターズ5B(1978)第9
08頁から第910頁(physical Revie
w Letters 5B(1978)pp90B−9
10)などにおいて′発表され、冷媒として高価で極低
温(4,2K)の1夜体ヘリウムよりも比較的高温(7
7K)の液体窒素で充分使用可能となった。それゆえ、
この酸化物超電導体の各種利用分野における実用化の回
度に大きな前進がみられた。これらの発表に伴い上記利
用分野におけるバルク状又は薄膜状の酸化物超電導体に
おいて、そのTcをさらに常温まで高めようとする研究
と並行して、77Kにおける臨界電流密度(Jc)を向
上させる研究がさかんに行われている。
However, in recent years, composite oxide superconductors made of mixtures of rare earth elements, alkaline earth elements, and copper oxide have been developed.
Physical Review Letters 5B (1978) No. 9 shows that c is significantly higher than that of conventional superconductors.
Pages 08 to 910 (Physical Revie
w Letters 5B (1978) pp90B-9
10), etc., as a refrigerant at a relatively high temperature (7.5 K) than the expensive and extremely low temperature (4.2 K) overnight helium.
7K) liquid nitrogen was sufficient for use. therefore,
Significant progress has been made in the practical application of these oxide superconductors in various fields of application. Along with these announcements, research has been conducted to improve the critical current density (Jc) at 77K in bulk or thin film oxide superconductors in the above application fields, in parallel with research to further increase the Tc to room temperature. It is being actively carried out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この酸化物超電導体の実用化には、その用途に応じ材料
の性能、特に臨界温度(Tc)と臨界電流密度(Jc)
の向上が要求される。
In order to put this oxide superconductor into practical use, it is necessary to consider the performance of the material, especially the critical temperature (Tc) and critical current density (Jc), depending on the application.
improvement is required.

RE+Ba2Cu:+O1−/ (RE:希土類元素)
系組成の酸化物超電導体は、斜方系に属し、その単位の
格子パラメータはほぼa=3.89人、b=3.82人
、c=11.67人であり、物理的な特性も大きな異方
性を有することが明確になっている。その為、5rTi
(h、 MgOなどの単結晶基板上にエピタキシャル成
長させて、C軸配向させた薄膜の場合、そのJcはI 
X 10hA/cm”(磁場がOTの時でかつ77Kに
おいて)に達している。しかし乍ら、これに比べ通常の
粉体固体反応で製造した焼結体においては、I XIO
’^/cm”(磁場がOTの時でかつ11Kにおいて)
程度とかなり小さい。この値は、磁界を印加することに
よりさらに下がり、ITの時I X 102A/cm2
程度となる。
RE+Ba2Cu:+O1-/ (RE: rare earth element)
The oxide superconductor with a system composition belongs to the orthorhombic system, and its unit lattice parameters are approximately a = 3.89, b = 3.82, and c = 11.67, and its physical properties are also It is clear that it has large anisotropy. Therefore, 5rTi
(h, In the case of a thin film epitaxially grown on a single crystal substrate such as MgO and oriented along the C axis, its Jc is I
X 10 hA/cm" (when the magnetic field is OT and at 77 K). However, compared to this, in a sintered body produced by a normal powder-solid reaction,
'^/cm' (when the magnetic field is OT and at 11K)
The extent is quite small. This value is further reduced by applying a magnetic field, and when IT is I
It will be about.

このように、従来の酸化物超電導体の電流密度は金属系
の超電導体に比べ低く、実用的レベルに達していないの
が現状である。
As described above, the current density of conventional oxide superconductors is lower than that of metal-based superconductors, and currently has not reached a practical level.

〔発明の目的〕[Purpose of the invention]

本発明の目的は臨界温度Tcを劣化させることなく、臨
界電流密度Jcを向上し得るRE+BazCu:+O1
−/系の酸化物超電導体の製法を提供するにある。
The purpose of the present invention is to improve the critical current density Jc without deteriorating the critical temperature Tc.
-/ system oxide superconductor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上記問題点に対し、研究を進めた結果、R
E+BazCuiOt−z (RE□希土類元素)粉末
に対し液相形成成分としてBaCuO,粉末および/ま
たはCuO粉末をRE+BazCuzOt−r  1モ
ルに対し、0.01〜0.4モルに相当する量で添加混
合し、これを成形後酸化性雰囲気で液相成形成分が溶出
し得る焼成温度に保持後、冷却することによりRE、B
aCu0z粉末 晶′fFJimが形成され、それにより臨界電流密度J
cが15000eの゛磁場内でI X 10’A/cm
2以上の酸化超電導体が得られることを知見したもので
ある。 以後、化学式中のREの説明を省略する。
As a result of research into the above-mentioned problems, the inventors found that R
Add and mix BaCuO, powder and/or CuO powder as a liquid phase forming component to E+BazCuzOt-z (RE□ rare earth element) powder in an amount equivalent to 0.01 to 0.4 mol per 1 mol of RE+BazCuzOt-r. After molding, this is maintained at a firing temperature at which the liquid phase molding components can be eluted in an oxidizing atmosphere, and then cooled to form RE, B
aCu0z powder crystal ′fFJim is formed, which reduces the critical current density J
I x 10'A/cm in a magnetic field where c is 15000e
It was discovered that two or more oxidized superconductors can be obtained. Hereinafter, explanation of RE in the chemical formula will be omitted.

以下、本発明を詳述する。The present invention will be explained in detail below.

YlBazCu、l0t−/系に代表されるREIBa
zCuz(1+−/ 系酸化物超電導体の製造7には、
YlBazCu:+07−/合成粉をつくり、これを成
形後、酸化雰囲気で焼結することによって多結晶の焼結
超電感体を得る方法が用いられている。この方法によれ
ば結晶組織は等軸的なものとなるが、RE+BazCu
:+Ot−/系結晶はそれ自体、異方性をもち、電気的
特性も結晶軸方向により異なることが知られている。
REIBa represented by YlBazCu, l0t-/ system
zCuz(1+-/ Production 7 of oxide superconductor includes
A method is used in which a polycrystalline sintered superelectric body is obtained by preparing YlBazCu:+07-/synthetic powder, molding it, and sintering it in an oxidizing atmosphere. According to this method, the crystal structure becomes equiaxed, but RE+BazCu
:+Ot-/ system crystal itself has anisotropy, and it is known that its electrical properties also vary depending on the crystal axis direction.

よって、上記のような等軸的な結晶組織の多結晶体にお
いては、各結晶の向きがまちまちであるため、その電気
的特性は最も低い特性の結晶の向きに支配されることに
なる。また、電気的特性に対し粒界が影響することはも
ちろんの事である。
Therefore, in a polycrystalline body having an equiaxed crystal structure as described above, each crystal has a different orientation, so its electrical characteristics are dominated by the orientation of the crystal with the lowest characteristics. Furthermore, it goes without saying that grain boundaries have an influence on electrical properties.

本発明によれば、多結晶の酸化物超電導体において、そ
の板状結晶を同一方向に緻密に積層した組織とすること
により、各結晶粒子の結晶軸による電気的特性の異方性
の影響が低減され、且つ積層構造であることから結晶粒
子相互の粒界相が薄く、粒子が密に接着する。粒界相が
薄くなるとその粒界のポテンシャルが粒界の厚い従来の
RE 、 Ba zCu307−l の粒界ポテンシャ
ルに比べ低くなる。このような理由により、単位面積あ
たりの電流密度は大きく向上することとなる。
According to the present invention, in a polycrystalline oxide superconductor, by creating a structure in which the plate-like crystals are densely laminated in the same direction, the influence of anisotropy on electrical properties due to the crystal axis of each crystal grain is reduced. and because of the laminated structure, the grain boundary phase between the crystal grains is thin and the grains are tightly adhered to each other. As the grain boundary phase becomes thinner, the potential of the grain boundary becomes lower than that of conventional RE, BazCu307-l, which has thick grain boundaries. For these reasons, the current density per unit area is greatly improved.

本発明の製法によれば、RE、Ba2Cu307−メ粉
に対し液相形成成分としてCuOおよび/またはBaC
u0z粉末を添加し、これを成形後、900〜1100
度の酸化性雰囲気で且つ、液相形成成分が溶出する温度
にて保持する。
According to the production method of the present invention, CuO and/or BaC are used as liquid phase forming components for RE, Ba2Cu307-Me powder.
After adding u0z powder and molding it, 900-1100
The temperature is maintained in an oxidizing atmosphere of 100% and at a temperature at which the liquid phase-forming components are eluted.

この時、RE+BazCuxOr−/は下記式2式% ら成る液相成分とに分離し、REJalCu105結晶
を液相成分が取り囲んだ状態となる。
At this time, RE+BazCuxOr-/ is separated into a liquid phase component consisting of the following formula 2, and the liquid phase component surrounds the REJalCu105 crystal.

その後、冷却過程においてREzBalCulOlとB
aCuO□とCuOが包晶反応によって再結合し、RE
+Ba2Cu:1Ot−/が再生成される。この時、R
E1Ba2Cu:+Ot−/結晶はREzBa+Cu+
Osの結晶の向きに従って成長する。よって本発明によ
れば、液相形成成分として添加したCuOあるいはBa
CuO□が液相形成後、この液相成分が系外に溶出(流
動)する過程においてRE2Ba、Cu、05を一方向
に配向させることにより、REIBa2CulOy−/
結晶をその方向に配向させることが可能となり、結果と
して、前述したような板状結晶を同一方向に緻密に積層
した組織の酸化物超電導体を得ることができる。
After that, in the cooling process, REzBalCulOl and B
aCuO□ and CuO are recombined by a peritectic reaction, and RE
+Ba2Cu:1Ot-/ is regenerated. At this time, R
E1Ba2Cu:+Ot-/crystal is REzBa+Cu+
It grows according to the direction of the Os crystal. Therefore, according to the present invention, CuO or Ba added as a liquid phase forming component
After CuO□ forms a liquid phase, by orienting RE2Ba, Cu, and 05 in one direction during the process in which this liquid phase component elutes (flows) out of the system, REIBa2CulOy-/
It becomes possible to orient the crystals in that direction, and as a result, it is possible to obtain an oxide superconductor having a structure in which plate-shaped crystals as described above are laminated densely in the same direction.

本発明において用いられるRE、Ba、Cu、O,/粉
末は固相反応法、共沈法、ゾル−ゲル法、気相合成法等
によって合成された任意のものを用いることができるが
、好ましくは平均粒径0.5〜3.O11mのものを用
いる。
As the RE, Ba, Cu, O, powder used in the present invention, any powder synthesized by solid phase reaction method, coprecipitation method, sol-gel method, gas phase synthesis method, etc. can be used, but preferably is an average particle size of 0.5 to 3. One with O11m is used.

液相形成成分の1つであるBaCuO□は、例えばBa
CO3とCuOを1モルずつ混合し、酸化雰囲気で88
0〜1000℃に加熱することにより合成できるが、微
粉化に際しては900℃程度が好ましい。なお、BaC
u0zの添加に際してはBaCuO□粉末粉末としての
添加の他、BaC0*粉末とCuO粉末との組合わせで
添加することも可能である。
BaCuO□, which is one of the liquid phase forming components, is, for example, BaCuO□.
Mix 1 mole each of CO3 and CuO, and heat it to 88% in an oxidizing atmosphere.
Although it can be synthesized by heating to 0 to 1000°C, about 900°C is preferable for pulverization. In addition, BaC
When adding u0z, it is possible to add it not only as BaCuO□ powder but also as a combination of BaC0* powder and CuO powder.

BaCu0zおよびCuOの液相形成成分は焼成時の液
相生成温度を下げる・ために0.5〜2.0μmの微粉
であることが望ましい。
The liquid phase forming components of BaCuOz and CuO are desirably fine powders of 0.5 to 2.0 μm in order to lower the liquid phase formation temperature during firing.

本発明におけるCub、 BaCuO□の液相形成成分
の添加・量は前述したように焼成−冷却過程においてl
?E。
In the present invention, the addition and amount of liquid phase forming components such as Cub and BaCuO
? E.

Ba + Cu + Os結晶を配向し得る液相成分の
溶出(流動)を生じせしめる量に設定される。よって、
この液相形成成分の量が少なすぎるとREJatCu+
Os結晶の配向がなされず、結果として再生成されるR
E。
The amount is set to cause elution (flow) of the liquid phase component that can orient the Ba + Cu + Os crystal. Therefore,
If the amount of this liquid phase forming component is too small, REJatCu+
The Os crystal is not oriented and as a result, R is regenerated.
E.

BaCu0O7−/  結晶を配向することができず、
臨界電流密度の向上が望めない。一方、液相形成成分の
量が多すぎる゛とREzBa+Cu+Osの配向は生じ
るが最終的にREtBazcusO?−/結晶の粒界に
BaCu0z、CuO。
BaCu0O7-/ Unable to orient crystals,
No improvement in critical current density can be expected. On the other hand, if the amount of the liquid phase forming component is too large, the orientation of REzBa+Cu+Os will occur, but in the end REtBazcusO? -/BaCu0z and CuO at the grain boundaries of the crystal.

Y2Ba+Cu105の結晶が多く析出し、臨界電流密
度の極端な低下を生じる。このような理由がらCub、
BaCub、の液相形成成分の量はREIBazCLI
:+Ot−/粉末1モ粉末1リル当、01〜0.4 モ
アL/、特ニ0.05〜0.2 モルに設定される。
Many Y2Ba+Cu105 crystals precipitate, resulting in an extreme decrease in critical current density. For these reasons, Cub,
The amount of liquid phase forming component of BaCub is REIBazCLI
:+Ot-/1 mole of powder per 1 liter of powder, 01 to 0.4 mole L/, specifically set to 0.05 to 0.2 mole.

このように配合された粉末はミル等により均一混合後、
成形を行う。
After the powder blended in this way is uniformly mixed in a mill etc.,
Perform molding.

成形に際しては公知の成形手段が採用される。For molding, known molding means are employed.

具体的にはドクターブレード法、引上げ法、押出し法、
プレス成形法等が挙げられ、さらに伸線の製造に際し、
へg等の管内に入れ、これを伸線加工することももちろ
ん可能である。
Specifically, the doctor blade method, pulling method, extrusion method,
Examples include press forming methods, and in addition, when manufacturing wire drawings,
Of course, it is also possible to insert the wire into a tube such as a pipe and wire-draw it.

このようにして得られた成形体は酸化雰囲気で焼成され
る。また、この時の温度は前述した液相形成成分が系外
に溶出するような焼成温度、言い換えれば系内で液相が
流動し、REIBa、Cu、01結晶を配向し得る温度
に設定される。具体的には、大気中で960〜1050
℃、酸素中で980〜1100℃に設定する。この焼成
温度を大気中で960℃より低く、あるいは酸素中で9
80℃より低く設定すると液相形成成分の溶出、流動が
生じないため、結晶を配向することができず、臨界電流
密度は向上しない。
The molded body thus obtained is fired in an oxidizing atmosphere. In addition, the temperature at this time is set at a firing temperature at which the liquid phase forming components described above are eluted out of the system, in other words, at a temperature at which the liquid phase flows within the system and allows the REIBa, Cu, and 01 crystals to be oriented. . Specifically, 960 to 1050 in the atmosphere
°C, set at 980-1100 °C in oxygen. The firing temperature is lower than 960°C in air or 960°C in oxygen.
If the temperature is set lower than 80° C., elution and flow of liquid phase forming components will not occur, so crystals cannot be oriented and the critical current density will not improve.

一方、空気中で1050℃より高く、あるいは酸素中で
1100℃より高くするとRE1Ba2Cu30t−/
結晶が再生成されず、REzBa、Cu、05のままで
残存し超電導を示さなくなる。
On the other hand, if the temperature is higher than 1050℃ in air or higher than 1100℃ in oxygen, RE1Ba2Cu30t-/
The crystals are not regenerated, remain as REzBa, Cu, and 05, and do not exhibit superconductivity.

焼成における最高温度での保持時間は試料の形状により
決定されるが、はぼ3〜30分間保持される。
The holding time at the maximum temperature during firing is determined by the shape of the sample, but is held for approximately 3 to 30 minutes.

焼成後の冷却過程は前述したようにRI4BatCu1
05とBaCuO2,CuOとの包晶反応によるRE、
Ba、Cu5O+−/結晶の成長を促進する。この時の
冷却速度はRE+BazCusO,t−/の結晶粒子の
大きさに影響を与えるが、     ・一般には50〜
b このようにして得られた一RE+BazCu+Or−メ
系酸化物超電導体は後述する実施例から゛も明らがな通
り優れた特性を示すもので、臨界温度Tcが77に以上
で、臨界電流密度1000A/cm” (15000e
磁場、77K)以上が達成される。
The cooling process after firing is as described above.
RE by peritectic reaction between 05 and BaCuO2, CuO,
Promotes the growth of Ba, Cu5O+-/crystals. The cooling rate at this time affects the size of the crystal grains of RE+BazCusO,t-/, but generally 50~
b The RE+BazCu+Or-Me system oxide superconductor thus obtained exhibits excellent properties as will be clear from the examples described below, with a critical temperature Tc of 77 or higher and a critical current density of 1000A/cm” (15000e
magnetic field, 77 K) or higher is achieved.

なお、本発明において今まで述べた化学式中の 、RE
は一般的希土類元素であり、具体的にはY、Lu、Yb
In addition, in the chemical formulas described so far in the present invention, RE
is a general rare earth element, specifically Y, Lu, Yb
.

Tm、 Er、 Ho、 Dy、 Gd+ Eu、 S
m、 Ndが挙げられる。
Tm, Er, Ho, Dy, Gd+ Eu, S
Examples include m and Nd.

さらに、本発明によれば、RElBazCuzOl−/
系において、RE、Ba、Cu、Oに対し、RE1Ba
lCu30y−/系の超電導特性の劣化させない範囲に
おいて、他の元素で一部置換されたものに対しても適用
できる。
Furthermore, according to the invention, RElBazCuzOl-/
In the system, for RE, Ba, Cu, O, RE1Ba
It can also be applied to those partially substituted with other elements as long as the superconducting properties of the lCu30y-/ system are not deteriorated.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

〔実施例1〕 ytoi9.09モルχとBaC0z 36.36モル
χと、CuO54,55モルχを混合し、混合粉末を8
80 ’Cで5時間仮焼後、粉砕し、Y+Ba(Cuz
Ov−/の粉末(平均粒径2.0μm)を得た。このY
1Ba2Cu:+Ot−/粉末1モルに対し、0.05
〜0.40モルχのCuO粉末(平均粒径1.0μm)
を混合した。このY+Ba2Cu30□−d粉末とCu
Oの混合粉末を12mmφのペレット状に成形した。こ
の成形体を空気中で960〜1050℃、酸素中で98
0〜1100℃、1〜2時間焼成した後、100’C/
hrの速度で冷却しさらに酸素中600℃で5時間のア
ニールを行い、その後、200℃までゆっくり冷却し、
4 x3 Xo、8mmの大きさに、試料を加工した。
[Example 1] 9.09 mol χ of ytoi, 36.36 mol χ of BaC0z, and 54.55 mol χ of CuO were mixed, and the mixed powder was
After calcining at 80'C for 5 hours, it was crushed and Y+Ba (Cuz
Ov-/ powder (average particle size 2.0 μm) was obtained. This Y
1Ba2Cu: +Ot-/0.05 per 1 mole of powder
~0.40 mol χ CuO powder (average particle size 1.0 μm)
were mixed. This Y+Ba2Cu30□-d powder and Cu
The mixed powder of O was molded into a pellet having a diameter of 12 mm. This molded body was heated at 960 to 1050°C in air and at 98°C in oxygen.
After firing at 0-1100℃ for 1-2 hours, 100'C/
hr rate, and further annealed in oxygen at 600°C for 5 hours, then slowly cooled to 200°C,
The sample was processed into a size of 4 x 3 Xo, 8 mm.

尚、CuOの添加量および焼成条件を第1表に示すよう
に変えて試料1〜8を作成した。
Note that Samples 1 to 8 were created by changing the amount of CuO added and the firing conditions as shown in Table 1.

得られた試料に対し、四端子法により温度に対する抵抗
変化を調べ、オンセy1度(Tco) 、オフセット温
度(Tce)を調べた。
The obtained sample was examined for resistance change with respect to temperature by a four-probe method, and temperature (Tco) and offset temperature (Tce) were examined.

また、振動試料型磁力計により前記試料のM−11ヒス
テリシスにおいて、昇磁カーブと減磁カーブとの磁化の
差△門は 式   △H=μo−d−Jc として表わされる。ここで、μ0は真空の透磁率、dは
板状サンプルの巾1/2 、Jcは臨界電流密度を表わ
す。ヒステリシスカーブから前記式を用いて磁化の差へ
門より臨界電流密度Jcを求めた。 また各試料に対し
、電子顕微鏡により結晶組織を観察し、Y、Ba2Cu
30.−l結晶の配向の有無を確認した。
Further, in the M-11 hysteresis of the sample measured by a vibrating sample type magnetometer, the magnetization difference Δ between the magnetization curve and the demagnetization curve is expressed by the formula ΔH=μod−Jc. Here, μ0 is the vacuum permeability, d is the width 1/2 of the plate-shaped sample, and Jc is the critical current density. The critical current density Jc was determined from the hysteresis curve using the above equation based on the difference in magnetization. In addition, the crystal structure of each sample was observed using an electron microscope, and Y, Ba2Cu
30. -l The presence or absence of crystal orientation was confirmed.

(実施例2) 実施例1のCuO粉末の代わりにBaCu0z粉末(平
均粒径1.0μm)を用いる以外は全く同様にして試験
し、第1表患12〜22の試料を作成した。
(Example 2) Tests were conducted in exactly the same manner as in Example 1 except that BaCu0z powder (average particle size 1.0 μm) was used instead of CuO powder, and samples Nos. 12 to 22 in Table 1 were prepared.

各試料に対し、実施例1と同様にしてY、Ba2Cui
0t−l結晶の配向性、オンセット温度(Tco) 、
オフセット温度(Tco) 、N化の差ΔM(1500
0e) 、臨界電流民度Jc(15000e)を求めた
For each sample, Y, Ba2Cui
0t-l crystal orientation, onset temperature (Tco),
Offset temperature (Tco), difference in N conversion ΔM (1500
0e), the critical current degree Jc (15000e) was determined.

(以下余白) 第1男 章tpt付し°艮tのは不な8胡り鼾、笥コクト3勲N
ヰ→を示イ。
(Left below) 1st male badge TPT attached ° 艮 t no hanana 8 gori snoring, 笥 koto 3 orders N
Show ヰ→.

第1表から明らかなように、焼成温度が所定の範囲より
低い場合(試料番号1,4.12.15)では、結晶の
配向が認められず、し臨界電流密度は低いものであった
。また、焼成温度が高い場合(試料番号3.6,14.
17)では、Y1Ba2Cu30+−〆が生成されず臨
界電流密度は測定できなかった。一方、添加物の添加量
が0.01モルを下回る場合(試料番号7.18)では
、結晶の配向は認められず、本発明の目的は達成されな
かった。また、添加量が0.4モルを越える場合(試料
番号11.22)は、組織の一部に配向した結晶組織が
認められたが、結晶の粒界が残存し臨界電流密度の低い
ものであった。
As is clear from Table 1, when the firing temperature was lower than the predetermined range (sample numbers 1, 4, 12, 15), no crystal orientation was observed and the critical current density was low. In addition, when the firing temperature is high (sample numbers 3.6, 14.
17), Y1Ba2Cu30+- was not generated and the critical current density could not be measured. On the other hand, when the amount of the additive added was less than 0.01 mol (sample number 7.18), no crystal orientation was observed, and the object of the present invention was not achieved. In addition, when the amount added exceeds 0.4 mol (sample number 11.22), an oriented crystal structure was observed in a part of the structure, but the crystal grain boundaries remained and the critical current density was low. there were.

これに対し、その他の本発明の試料はいずれも優れた特
性を示し、オフセソl−’tL度88に以上、臨界電流
密度1000A/cm2以上が達成された。
On the other hand, all the other samples of the present invention exhibited excellent characteristics, achieving an offset l-'tL degree of 88 or more and a critical current density of 1000 A/cm2 or more.

(発明の効果) 以上詳述した通り、本発明によればREIBa2Cu−
107−を結晶が一方向に緻密に積層された結晶組織を
有する超電導体が得られ、それにより臨界温度Tcを劣
化させることなく臨界電流密度Jcを15000eの磁
場下でI X 10’A/ cm”以上に高めることが
できる。
(Effects of the Invention) As detailed above, according to the present invention, REIBa2Cu-
A superconductor having a crystal structure in which 107- crystals are densely stacked in one direction is obtained, and thereby the critical current density Jc can be reduced to I x 10'A/cm under a magnetic field of 15000e without deteriorating the critical temperature Tc. ``It can be made even higher.

Claims (2)

【特許請求の範囲】[Claims] (1)RE_1Ba_2Cu_3O_7_−_δ(RE
:希土類元素)粉末に、液相形成成分として、該RE_
1Ba_2Cu_3O_7_−_δ1モル当たり、0.
01〜0.4モルのCuO粉末および/またはBaCu
O_2粉末を加えた混合粉末を成形後、酸化性雰囲気で
前記液相形成成分が溶出し得る焼成温度で保持後、冷却
して結晶の再配列を生ぜしめることを特徴とする酸化物
超電導体の製法。
(1) RE_1Ba_2Cu_3O_7_-_δ(RE
: rare earth element) powder, as a liquid phase forming component, the RE_
1Ba_2Cu_3O_7_-_δ 1 mole per mole, 0.
01-0.4 mol CuO powder and/or BaCu
An oxide superconductor characterized in that a mixed powder containing O_2 powder is molded, held in an oxidizing atmosphere at a firing temperature at which the liquid phase forming component can be eluted, and then cooled to cause crystal rearrangement. Manufacturing method.
(2)前記液相形成成分が溶出し得る焼成温度が大気中
で960〜1050℃、酸素中で980〜1100℃で
ある特許請求の範囲第1項記載の酸化物超電導体の製法
(2) The method for producing an oxide superconductor according to claim 1, wherein the firing temperature at which the liquid phase forming component can be eluted is 960 to 1050°C in air and 980 to 1100°C in oxygen.
JP63087880A 1988-04-08 1988-04-08 Production of oxide superconductor Pending JPH01261260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63087880A JPH01261260A (en) 1988-04-08 1988-04-08 Production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63087880A JPH01261260A (en) 1988-04-08 1988-04-08 Production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH01261260A true JPH01261260A (en) 1989-10-18

Family

ID=13927180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63087880A Pending JPH01261260A (en) 1988-04-08 1988-04-08 Production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH01261260A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445019A (en) * 1987-08-13 1989-02-17 Univ Tokai Manufacture of superconductive material
JPH01157460A (en) * 1987-09-28 1989-06-20 Arch Dev Corp Superconductive metal oxide and method for its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445019A (en) * 1987-08-13 1989-02-17 Univ Tokai Manufacture of superconductive material
JPH01157460A (en) * 1987-09-28 1989-06-20 Arch Dev Corp Superconductive metal oxide and method for its manufacture

Similar Documents

Publication Publication Date Title
US20130196856A1 (en) Iron based superconducting structures and methods for making the same
WO1991019029A1 (en) Oxide superconductor and production thereof
JP3089294B2 (en) Manufacturing method of superconducting tape material
JP2571789B2 (en) Superconducting material and its manufacturing method
JP2556401B2 (en) Oxide superconductor and method for manufacturing the same
US5591698A (en) Low temperature (T lower than 950° C.) preparation of melt texture YBCO superconductors
JPH1125771A (en) Oxide superconducting tape material and its manufacture
JPH06219736A (en) Superconductor
JPH01261260A (en) Production of oxide superconductor
JP2761727B2 (en) Manufacturing method of oxide superconductor
JP3217905B2 (en) Metal oxide material and method for producing the same
JP3330962B2 (en) Manufacturing method of oxide superconductor
JPH0238311A (en) Oxide superconductor and production thereof
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
JPH02204358A (en) Oxide superconductor and production thereof
JP2817170B2 (en) Manufacturing method of superconducting material
JP3282688B2 (en) Manufacturing method of oxide superconductor
JPH01246173A (en) Oxide superconductor and production thereof
JP2761722B2 (en) Oxide superconductor and manufacturing method thereof
JPH0769626A (en) Metal oxide and production thereof
JP2004203727A (en) Oxide superconductor having high critical current density
JP2590370B2 (en) Superconducting material and manufacturing method thereof
WO2004038816A1 (en) Oxide superconductor thin film element
JP2567967B2 (en) Manufacturing method of oxide superconducting wire
JPH01252569A (en) Production of oxide superconductor