JP2761722B2 - Oxide superconductor and manufacturing method thereof - Google Patents

Oxide superconductor and manufacturing method thereof

Info

Publication number
JP2761722B2
JP2761722B2 JP62333560A JP33356087A JP2761722B2 JP 2761722 B2 JP2761722 B2 JP 2761722B2 JP 62333560 A JP62333560 A JP 62333560A JP 33356087 A JP33356087 A JP 33356087A JP 2761722 B2 JP2761722 B2 JP 2761722B2
Authority
JP
Japan
Prior art keywords
oxide superconductor
sio
temperature
sample
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62333560A
Other languages
Japanese (ja)
Other versions
JPH01176267A (en
Inventor
修也 山田
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62333560A priority Critical patent/JP2761722B2/en
Publication of JPH01176267A publication Critical patent/JPH01176267A/en
Application granted granted Critical
Publication of JP2761722B2 publication Critical patent/JP2761722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車及び粒子加速器等の磁
気コイル部分や電子デバイス及びジョセフソンコンピュ
ータの回路基板等に使用れる酸化物超電導体に関するも
のである。 〔先行技術〕 現在、超電導体はNb3Ge,Nb3Snに代表される金属系超
電導体が実用化されているが、その臨界温度(Tc)はた
かだか23.2K程度までである。 しかし乍ら、近時希土類元素、アルカリ土類元素及び
酸化銅の混合物から成る酸化物系超電導体はその臨界温
度が金属系超電導体と比べ著しく高いものであることが
発表(例えば東京大学工学部グループの米国物理学会で
は90Kを達成したと発表)され、冷媒として高価で極低
温(4.2K=268.8℃)の液体ヘリウムに換え、安価な液
体窒素で充分使用可能となった。その故、この酸化物系
超電導体の各種利用分野における実用化の目度に大きな
前進が見られた。これらの発表に伴い上記利用分野にお
けるバルク状又は薄膜状の酸化物系超電導体において、
その臨界温度(Tc)をさらに常温にまで高めようとする
研究が盛んに行われている。 〔発明が解決しようとする問題点〕 このような酸化物超電導体の需要に応じ、その性能の
向上が要求されている。とりわけ、エレクトロニクス応
用、輸送システムに於いては高臨界温度(Tc)と同時に
高臨界電流密度(Jc)が要求される。しかし乍ら、現在
の酸化物超電導体の電流密度は金属系の超電導に比べ臨
界電流密度が低いためにエレクトロニクス応用、輸送シ
ステムに要求される電流密度のレベルに達していない。
よって酸化物超電導体をエレクトロニクスや輸送システ
ム等に利用するためには酸化物超電導体の臨界電流密度
を向上させなければならないという問題点があった。 〔発明の目的〕 本発明においては、RE1Ba2Cu3O7- δ系酸化物超電導体
の臨界温度を劣化させることなく臨界電流密度(Jc)を
向上させることを目的とする。 〔問題点を解決するための手段〕 本発明によれば、RE1Ba2Cu3O7- δ(RE=希土類元素)
の酸化物超電導体の多結晶体中にBa2SiO4を析出した結
晶組織を有し、臨界電流密度(Jc)が0.15Tの磁場中に
おいて、1.1×103A/cm2以上である酸化物超電導体が提
供される。また本発明によれば、RE:Ba:Cu:Si=1:2(x
+1):y:x(RE=希土類元素)(0.05≦x≦0.80,3≦y
≦3.3)となるようにRE1Ba2(x+1)CuyO7- δ(0.05≦x≦
0.80,3≦y≦3.3)仮焼粉末にSiC、SiO2、Si3N4のうち
の少なくとも1種を混合した粉末を920℃〜980℃で約1
〜5時間焼成した後冷却することを特徴とする酸化物超
電導体の製法が提供される。また本発明によれば、RE1B
a2Cu3O7- δ・nBa2SiO4組成でnが0.05≦n≦0.80にな
り得る混合粉末を920℃〜980℃で約1〜5時間焼成した
後、冷却することを特徴とする酸化物超電導体の製法が
提供される。 即ち、RE1Ba2Cu3O7- δ(RE=希土類元素)の酸化物超
電導体の多結晶体中にBa2SiO4を析出させることによ
り、一般のY1Ba2Cu3O7- δ酸化物超電導体の粒界層よ
り、電流の流れに対し障壁とならない粒界層を生成する
事が可能となり、一般のY1Ba2Cu3O7- δ酸化物超電導体
(バルク)の電流密度よりも大きい電流密度が得られ
る。 通常のY1Ba2Cu3O7- δの粒界では、焼成における冷却
過程、特に低温側で、Y1Ba2Cu3O7- δの酸素欠陥のある
結晶と完全な結晶との固溶体が相分離する現象が起こ
り、この相分離が電流の流れに対しての障壁となってい
る。しかし、RE1Ba2Cu3O7- δ(RE=希土類元素)の酸化
物超電導体の多結晶体中にBa2SiO4を析出させると、粒
界での酸素欠陥のある結晶と完全な結晶との固溶体が相
分離する現象が起きにくくなる。よって本発明の超電導
体では一般のY1Ba2Cu3O7- δの粒界より電流の流れやす
い粒界がBa2SiO4の析出によって生成されるのである。 この様な超電導体(バルク)を得るための製法は、例
えば原料粉末としてRE2O3,BaCO3,CuOを用い、RE1Ba
2(x+1)CuyO7- δ(0.05≦x≦0.80、3≦y≦3.3)とな
る組成で混合し、850℃〜950℃で仮焼を行う。その後R
E:Ba:Cu:Si=1:2(x+1):y:x(0.05≦x≦0.80,3≦
y≦3.3)となるようにRE1Ba2(x+1)CuyO7- δの酸化物超
電導体仮焼粉末にSiO2もしくはSiCもしくはSi3N4を調
合、混合し成形する。この成形体を酸素ガス気流中920
℃〜980℃で比較的短時間、即ち約1〜5時間焼成した
後、冷却する。このような操作によってBa2SiO4の析出
した臨界電流密度が1.1×103A/cm2以上の酸化物超電導
体が生成する。 なお、仮焼温度が850℃より低いとRE1Ba2(x≠1)CuyO
7- δ組成物ができず、仮焼粉末が超電導体にならない。
950℃より高くなると固溶が進み原料が溶出し、RE1Ba
2(x+1)CuyO7- δ組成混合物のみの結晶構造にならない。 酸素気流中での本焼成で本焼成温度が920℃より低い
とY1Ba2Cu3O7- δの結晶が酸素欠陥を起こし、臨界温度
が高くならない。980℃より高いと完全に溶液の状態と
なり溶出してしまいRE1Ba2Cu3O7- δ組成物ができず、臨
界温度が95K以上である超電導体とならない。さらに、
本焼成後冷却することにより超電導体相を安定化するこ
とができる。 また、この超電導体を得るための別の製法は、例え
ば、原料粉末としてRE2O3,BaCO3,CuOをRE1Ba2CuyO7- δ
になるように調合、混合し、850℃〜950℃で仮焼を行い
RE1Ba2CuyO7- δの仮焼物を得、その後、RE1Ba2Cu3O7- δ
・nBa2SiO4組成で0.05≦n≦0.80になるようにRE1Ba2C
u3O7- δの酸化物超電導体仮焼粉末にBa2SiO4を調合、混
合し成形する。この成形体を酸素ガス気流中920℃〜980
℃で比較的短時間、即ち1〜5時間焼成した後、冷却す
る。このような操作によってBa2SiO4の析出した臨界電
流密度が、1.1×103A/cm2以上の酸化物超電導体が生成
する。 本発明を次の例で説明する。 〔実施例1〕 Y2O3 8.475mol%とBaCO3 40.678mol%とCuO 50.847mo
l%とからY1Ba2.4Cu3O7- δの比率で調合、混合した後
に、空気中で880℃5時間仮焼を行った。この仮焼体を
粉砕し、Y:Ba:Cu:Si=1:2.4:3:0.2の比率になるようにS
i3N4を仮焼粉体に混合した。この混合粉体を12mmφのペ
レット状に成型し、この成型体を酸素気流中で920℃〜9
80℃、1〜5時間、焼成した後、冷却し試料を得た。 この試料を四端子法により温度に対する抵抗変化を調
べた結果、オンセット温度(Tco)が94K、オフセット温
度(Tce)が92Kであった。また、密度(アルキメデス
法)は、6.0g/cm2であった。 また、振動試料型磁力計より前記試料のM−Hヒステ
リシスカーブを求めた。これらの結果を第1図に示す。 第1図においてM−Hヒステリシスカーブにおいて昇
降カーブ1と減磁カーブ2との磁化の差(ΔM)は式;
ΔM(Be)=μ・d・Jcとして表わされる。 ここで、μは真空の透磁率、dは板状サンプルの巾
の1/2、Jcは臨界電流密度を表わす。第1図のヒステリ
シスカーブから前記式を用いて磁化の差ΔMより臨界電
流密度Jcを求めた。これらの結果磁化の差ΔM(0.15
T)が3.40(mT)で、臨界電流密度Jc(0.15T)が1.12×
103(A/cm2)であった。 〔実施例2〕 Y2O3 8.475mol%とBaCO3 40.678mol%とCuO 50.847mo
l%とから、Y1Ba2.4Cu3O7- δの比率で調合、混合した後
に、空気中で880℃5時間仮焼を行った。この仮焼体を
粉砕し、Y:Ba:Cu:Si=1:2.4:3:0.2の比率になるよう
に、SiO2を仮焼粉体に混合した。この混合粉体を12mmφ
のペレット状に成型し、この成型体を酸素気流中で920
℃〜980℃、1〜5時間、焼成した後、冷却し試料を得
た。 この試料を四端子法により温度に対する抵抗変化を調
べた結果、オンセット温度(Tco)が93.5K、オフセット
温度(Tce)が91Kであった。また、密度(アルキメデス
法)は、6.0g/cm2であった。 また、振動試料型磁力計より前記試料のM−Hヒステ
リシスカーブを求めた。これらの結果を第2図に示す。 第2図のヒステリシスカーブから前記式を用いて磁化
の差ΔMより臨界電流密度Jcを求めた結果、磁化の差Δ
M(0.15T)が3.40(mT)で、臨界電流密度Jc(0.15T)
が1.15×103(A/cm2)であった。 〔実施例3〕 Y2O3 8.457mol%とBaCO3 40.678mol%とCuO 50.847mo
l%とからY1Ba2.4Cu3O7- δの比率で調合、混合した後
に、空気中で880℃5時間仮焼を行った。この仮焼体を
粉砕し、Y:Ba:Cu:Si=1:2.4:3:0.2の比率になるようにS
iCを仮焼粉体に混合した。この混合粉体を12mmφのペレ
ット状に成型し、この成型体を酸素気流中で920℃〜980
℃、1〜5時間焼成した後、冷却し試料を得た。 この試料を四端子法により温度に対する抵抗変化を調
べた結果、オンセット温度(Tco)が93.0K、オフセット
温度(Tce)が90Kであった。また、密度(アルキメデス
法)は、6.0g/cm2であった。 また、振動試料型磁力計より前記試料のM−Hヒステ
リシスカーブを求めた。これらの結果を第3図に示す。 第3図のヒステリシスカーブから前記式を用いて磁化
の差ΔMより臨界電流密度Jcを求めた結果、磁化の差Δ
M(0.15T)が3.40(mT)で、臨界電流密度Jc(0.15T)
が1.20×103(A/cm2)であった。 〔実施例4〕 Y2O3 9.09mol%とBaCO3 36.36mol%とCuO 54.55mol%
とからY1Ba3Cu3O7- δとなるように調合、混合後空気中
で、880℃、5時間仮焼を行った。仮焼体を粉砕し、Y1B
a2Cu3O7- δ・0.2Ba2SiO4となるように、Ba2SiO4を、仮
焼体に混合した。このBa2SiO4を混合したY1Ba2Cu3O7- δ
を12mmφのペレット状に成型し、これを酸素中で920℃
〜980℃、1〜5時間焼成した後、冷却し試料を得た。 この試料を四端子法により温度に対する抵抗変化を調
べた結果、オンセット温度(Tco)が93.5K、オフセット
温度(Tce)が90Kであった。また、密度(アルキメデス
法)は、6.0g/cm2であった。 また、振動試料型磁力計より前記試料のM−Hヒステ
リシスカーブを求めた。これらの結果を第4図に示す。 第4図のヒステリシスカーブから前記式を用いて磁化
の差ΔMより臨界電流密度Jcを求めた結果、磁化の差Δ
M(0.15T)が3.40(mT)で、臨界電流密度Jc(0.15T)
が1.15×103(A/cm2)であった。 〔比較例〕 前記実施例と同様のモル比のY1Ba2Cu3O7- δ1を粉砕
後、アルミナあるいはムライトボードに入れ前記実施例
と同様の条件で仮焼、粉砕、成型、焼成して11×11×1.
3mmの試料を得た。 この試料を同様に四端子法で温度に対する抵抗変化を
調べた結果、オンセット温度(Tco)が91.5K、オフセッ
ト温度(Tce)が89Kであった。また、密度は4.5g/cm2
あった。さらに、振動試料型磁力計により前記試料のM
−Hヒステリシスカーブを求めた。これらの結果を第5
図に示す。この第5図のヒステリシスカーブから前記実
施例の式を用いて磁化の差ΔMと臨界電流Jcを求めた。
これらの結果、磁化の差ΔM(0.15T)が1.83(mT)
で、臨界電流密度Jc(0.15T)が2.2×102(A/cm2)であ
り、本発明の前記実施例と比べ著しく小さいことが理解
される。 〔発明の効果〕 以上、詳述した通り、本発明の酸化物超電導体は、RE
1Ba2Cu3O7- δ系酸化物超電導体の高い臨界温度を劣化さ
せることなく、臨界密度(Jc)を向上させることができ
る。
Description: TECHNICAL FIELD The present invention relates to an oxide superconductor used for a magnetic coil portion such as a magnetic levitation train and a particle accelerator, an electronic device, a circuit board of a Josephson computer, and the like. It is. [Prior Art] At present, metallic superconductors represented by Nb 3 Ge and Nb 3 Sn have been put to practical use, but their critical temperature (Tc) is at most about 23.2K. However, recently, it has been announced that an oxide superconductor composed of a mixture of a rare earth element, an alkaline earth element, and copper oxide has a significantly higher critical temperature than a metal superconductor (for example, the University of Tokyo group of engineering). The American Physical Society of Japan announced that it had achieved 90K), and it was possible to use inexpensive liquid nitrogen instead of expensive, extremely low temperature (4.2K = 268.8 ° C) liquid helium as a refrigerant. Therefore, great progress has been made in the prospect of practical use of this oxide-based superconductor in various application fields. With these announcements, in bulk or thin film oxide superconductors in the above application fields,
Research is being actively conducted to further increase the critical temperature (Tc) to room temperature. [Problems to be Solved by the Invention] In accordance with the demand for such an oxide superconductor, an improvement in its performance is required. In particular, high critical temperature (Tc) and high critical current density (Jc) are required in electronics applications and transport systems. However, the current density of current oxide superconductors is lower than the current density required for electronics applications and transport systems because the critical current density is lower than that of metallic superconductors.
Therefore, there is a problem that the critical current density of the oxide superconductor must be improved in order to use the oxide superconductor for electronics, transportation systems, and the like. [Object of the Invention] An object of the present invention is to improve the critical current density (Jc) without deteriorating the critical temperature of a RE 1 Ba 2 Cu 3 O 7- δ- based oxide superconductor. [Means for Solving the Problems] According to the present invention, RE 1 Ba 2 Cu 3 O 7- δ (RE = rare earth element)
Oxidation with a crystal structure in which Ba 2 SiO 4 is precipitated in a polycrystalline body of an oxide superconductor having a critical current density (Jc) of 1.1 × 10 3 A / cm 2 or more in a magnetic field of 0.15 T A superconductor is provided. According to the present invention, RE: Ba: Cu: Si = 1: 2 (x
+1): y: x (RE = rare earth element) (0.05 ≦ x ≦ 0.80,3 ≦ y
≦ 3.3) RE 1 Ba 2 (x + 1) Cu y O 7- δ (0.05 ≦ x ≦
0.80,3 ≦ y ≦ 3.3) A powder obtained by mixing at least one of SiC, SiO 2 and Si 3 N 4 with the calcined powder at 920 ° C. to 980 ° C. for about 1 hour
There is provided a method for producing an oxide superconductor, which is characterized in that the oxide superconductor is cooled after baking for 5 to 5 hours. Also according to the invention, RE 1 B
a 2 Cu 3 O 7- δ · nBa 2 SiO 4 The composition is characterized in that n is 0.05 ≦ n ≦ 0.80 and the mixed powder is calcined at 920 ° C. to 980 ° C. for about 1 to 5 hours and then cooled. A method for manufacturing an oxide superconductor is provided. That is, by depositing Ba 2 SiO 4 in a polycrystalline oxide superconductor of RE 1 Ba 2 Cu 3 O 7- δ (RE = rare earth element), general Y 1 Ba 2 Cu 3 O 7- From the grain boundary layer of the δ oxide superconductor, it is possible to generate a grain boundary layer that does not become a barrier to the flow of current, and it is possible to generate a general Y 1 Ba 2 Cu 3 O 7- δ oxide superconductor (bulk). A current density higher than the current density is obtained. In normal of Y 1 Ba 2 Cu 3 grain boundaries of O 7- [delta], the cooling process in the firing, especially on the low temperature side, a solid solution of crystal and perfect crystal with oxygen defects of Y 1 Ba 2 Cu 3 O 7- [delta] Phase separation occurs, and this phase separation is a barrier to current flow. However, when Ba 2 SiO 4 is precipitated in the polycrystal of oxide superconductor of RE 1 Ba 2 Cu 3 O 7- δ (RE = rare earth element), the crystal with oxygen vacancies at the grain boundary is completely The phenomenon of phase separation of the solid solution with the crystal hardly occurs. Therefore, in the superconductor of the present invention, a grain boundary through which current flows more easily than a general Y 1 Ba 2 Cu 3 O 7- δ grain boundary is generated by the precipitation of Ba 2 SiO 4 . A manufacturing method for obtaining such a superconductor (bulk) is, for example, using RE 2 O 3 , BaCO 3 , and CuO as raw material powders and using RE 1 Ba
2 (x + 1) Cu y O 7- δ (0.05 ≦ x ≦ 0.80, 3 ≦ y ≦ 3.3) are mixed and calcined at 850 ° C. to 950 ° C. Then R
E: Ba: Cu: Si = 1: 2 (x + 1): y: x (0.05 ≦ x ≦ 0.80,3 ≦
The oxide superconductor calcined powder of RE 1 Ba 2 (x + 1) Cu y O 7- δ is mixed with SiO 2, SiC or Si 3 N 4 so that y ≦ 3.3), mixed and molded. This compact is placed in an oxygen gas stream 920
After calcination at a temperature of from ℃ to 980 ° C for a relatively short time, that is, about 1 to 5 hours, cooling is performed. By such an operation, an oxide superconductor having a critical current density of 1.1 × 10 3 A / cm 2 or more in which Ba 2 SiO 4 is deposited is generated. If the calcination temperature is lower than 850 ° C, RE 1 Ba 2 (x ≠ 1) Cu y O
The 7- δ composition cannot be formed, and the calcined powder does not become a superconductor.
When the temperature is higher than 950 ° C, solid solution advances and the raw material elutes, and RE 1 Ba
The crystal structure of only the 2 (x + 1) Cu y O 7- δ composition mixture is not obtained. If the main firing temperature is lower than 920 ° C. in the main firing in an oxygen stream, the crystal of Y 1 Ba 2 Cu 3 O 7- δ causes oxygen defects, and the critical temperature does not increase. If the temperature is higher than 980 ° C., the solution is completely dissolved and eluted, so that the RE 1 Ba 2 Cu 3 O 7- δ composition cannot be formed, and the superconductor having a critical temperature of 95 K or more is not obtained. further,
By cooling after the main firing, the superconductor phase can be stabilized. Another production method for obtaining this superconductor is, for example, to use RE 2 O 3 , BaCO 3 , CuO as a raw material powder in RE 1 Ba 2 Cu y O 7- δ.
Mix, mix and calcine at 850 ° C to 950 ° C
A calcined product of RE 1 Ba 2 Cu y O 7- δ was obtained, and then RE 1 Ba 2 Cu 3 O 7- δ
・ RE 1 Ba 2 C so that 0.05 ≦ n ≦ 0.80 in the composition of nBa 2 SiO 4
Ba 2 SiO 4 is mixed with u 3 O 7- δ oxide superconductor calcined powder, mixed and molded. This compact is placed in an oxygen gas stream at 920 ° C to 980
After calcination at a temperature of for a relatively short time, that is, for 1 to 5 hours, the mixture is cooled. By such an operation, an oxide superconductor in which the critical current density at which Ba 2 SiO 4 is deposited is 1.1 × 10 3 A / cm 2 or more is generated. The present invention will be described with the following examples. Example 1 Y 2 O 3 8.475mol% and BaCO 3 40.678mol% and CuO 50.847Mo
After mixing and mixing at a ratio of 1 % to Y 1 Ba 2.4 Cu 3 O 7- δ , the mixture was calcined in air at 880 ° C. for 5 hours. This calcined body is pulverized, and S: S: Y: Ba: Cu: Si = 1: 2.4: 3: 0.2
i 3 N 4 was mixed with the calcined powder. This mixed powder is molded into a 12 mmφ pellet, and the molded body is heated to 920 ° C. to 9 ° C. in an oxygen stream.
After firing at 80 ° C. for 1 to 5 hours, the sample was cooled to obtain a sample. As a result of examining the resistance change with respect to temperature of this sample by a four-terminal method, the onset temperature (Tco) was 94K and the offset temperature (Tce) was 92K. The density (Archimedes method) was 6.0 g / cm 2 . Further, the MH hysteresis curve of the sample was determined using a vibrating sample magnetometer. These results are shown in FIG. In FIG. 1, in the MH hysteresis curve, the difference (ΔM) in magnetization between the elevation curve 1 and the demagnetization curve 2 is expressed by the following equation:
It is expressed as Δ M (Be) = μ o · d · Jc. Here, mu o is 1/2, Jc vacuum permeability, d is the plate-like sample width represents the critical current density. From the hysteresis curve of FIG. 1, the critical current density Jc was determined from the magnetization difference ΔM using the above equation. As a result, the magnetization difference ΔM (0.15
T) is 3.40 (mT) and the critical current density Jc (0.15T) is 1.12 ×
It was 10 3 (A / cm 2 ). Example 2 Y 2 O 3 8.475mol% and BaCO 3 40.678mol% and CuO 50.847Mo
After mixing and mixing at a ratio of 1 % to Y 1 Ba 2.4 Cu 3 O 7- δ , the mixture was calcined in air at 880 ° C. for 5 hours. This calcined body was pulverized, and SiO 2 was mixed with the calcined powder in a ratio of Y: Ba: Cu: Si = 1: 2.4: 3: 0.2. 12mmφ this mixed powder
Into a pellet shape of
After calcining at 1 to 5 hours at 1 to 5 hours, the sample was cooled to obtain a sample. As a result of examining the resistance change with respect to temperature of this sample by a four-terminal method, the onset temperature (Tco) was 93.5K and the offset temperature (Tce) was 91K. The density (Archimedes method) was 6.0 g / cm 2 . Further, the MH hysteresis curve of the sample was determined using a vibrating sample magnetometer. These results are shown in FIG. The critical current density Jc was obtained from the magnetization difference ΔM from the hysteresis curve of FIG.
M (0.15T) is 3.40 (mT) and critical current density Jc (0.15T)
Was 1.15 × 10 3 (A / cm 2 ). Example 3 Y 2 O 3 8.457mol% and BaCO 3 40.678mol% and CuO 50.847Mo
After mixing and mixing at a ratio of 1 % to Y 1 Ba 2.4 Cu 3 O 7- δ , the mixture was calcined in air at 880 ° C. for 5 hours. This calcined body is pulverized, and S: S: Y: Ba: Cu: Si = 1: 2.4: 3: 0.2
iC was mixed with the calcined powder. This mixed powder is molded into a pellet shape of 12 mmφ, and the molded body is 920 ° C. to 980 in an oxygen stream.
After firing at 1 ° C. for 1 to 5 hours, the sample was cooled to obtain a sample. As a result of examining the resistance change with respect to temperature of this sample by a four-terminal method, the onset temperature (Tco) was 93.0K and the offset temperature (Tce) was 90K. The density (Archimedes method) was 6.0 g / cm 2 . Further, the MH hysteresis curve of the sample was determined using a vibrating sample magnetometer. These results are shown in FIG. The critical current density Jc was determined from the magnetization difference ΔM from the hysteresis curve of FIG.
M (0.15T) is 3.40 (mT) and critical current density Jc (0.15T)
Was 1.20 × 10 3 (A / cm 2 ). Example 4 Y 2 O 3 9.09mol% and BaCO 3 36.36mol% and CuO 54.55mol%
After mixing and mixing to obtain Y 1 Ba 3 Cu 3 O 7- δ , the mixture was calcined in air at 880 ° C. for 5 hours. Crush the calcined body, Y 1 B
As it will be a 2 Cu 3 O 7- δ · 0.2Ba 2 SiO 4, the Ba 2 SiO 4, and mixed to the calcined body. Y 1 Ba 2 Cu 3 O 7- δ mixed with this Ba 2 SiO 4
Into a 12mmφ pellet, which is then heated to 920 ° C in oxygen.
After firing at 〜980 ° C. for 1 to 5 hours, the sample was cooled to obtain a sample. As a result of examining the resistance change of this sample with respect to temperature by the four-terminal method, the onset temperature (Tco) was 93.5K and the offset temperature (Tce) was 90K. The density (Archimedes method) was 6.0 g / cm 2 . Further, the MH hysteresis curve of the sample was determined using a vibrating sample magnetometer. These results are shown in FIG. The critical current density Jc was obtained from the magnetization difference ΔM from the hysteresis curve of FIG.
M (0.15T) is 3.40 (mT) and critical current density Jc (0.15T)
Was 1.15 × 10 3 (A / cm 2 ). [Comparative Example] Y 1 Ba 2 Cu 3 O 7- δ1 having the same molar ratio as that of the above example was pulverized, then put in alumina or mullite board, and calcined, pulverized, molded and fired under the same conditions as in the above example. 11 × 11 × 1.
A 3 mm sample was obtained. This sample was similarly examined for resistance change with respect to temperature by the four-terminal method. As a result, the onset temperature (Tco) was 91.5K and the offset temperature (Tce) was 89K. Further, the density was 4.5 g / cm 2 . Further, the M of the sample was measured by a vibrating sample magnetometer.
The -H hysteresis curve was determined. These results are
Shown in the figure. From the hysteresis curve of FIG. 5, the difference ΔM in magnetization and the critical current Jc were determined using the equation of the above embodiment.
As a result, the difference ΔM (0.15T) in magnetization is 1.83 (mT).
It is understood that the critical current density Jc (0.15T) is 2.2 × 10 2 (A / cm 2 ), which is significantly smaller than that of the embodiment of the present invention. [Effects of the Invention] As described above, the oxide superconductor of the present invention has a RE
The critical density (Jc) can be improved without deteriorating the high critical temperature of 1 Ba 2 Cu 3 O 7- δ- based oxide superconductor.

【図面の簡単な説明】 第1図乃至第4図は本発明の酸化物超電導体(実施例1
乃至5)のM−Hヒステリシスカーブ、第5図は比較例
のM−Hヒステリシスカーブをそれぞれ示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 4 show oxide superconductors according to the present invention (Example 1).
5 to 5) show MH hysteresis curves, and FIG. 5 shows MH hysteresis curves of comparative examples.

Claims (1)

(57)【特許請求の範囲】 1.RE1Ba2Cu3O7-δ(RE=希土類元素)の酸化物超電導
体の多結晶中にBa2SiO4を析出させた結晶組織で、臨界
電流密度(Jc)が0.15Tの磁場中において、1.1×103A/c
m3以上である酸化物超電導体。 2.RE:Ba:Cu:Si=1:2(x+1):y:x(RE=希土類元
素)(0.05≦x≦0.80、3≦y≦3.3)となるように、R
E1Ba2(x+1)CuyO7-δ(RE=希土類元素)(0.05≦x≦0.
80、3≦y≦3.3)仮焼粉末に、Si3N4、SiC、SiO2のう
ちの少なくとも1種を混合した粉末を920〜980℃で1〜
5時間焼成した後、冷却して、RE1Ba2Cu3O7-δ(RE=希
土類元素)の酸化物超電導体の多結晶中にBa2SiO4を析
出させたことを特徴とする酸化物超電導体の製法。 3.RE1Ba2Cu3O7-δ・nBa2SiO4組成でnが0.05≦x≦
0.80になり得る混合粉末を920℃〜980℃で1〜5時間焼
成した後、冷却して、RE1Ba2Cu3O7-δ(RE=希土類元
素)の酸化物超電導体の多結晶中にBa2SiO4を析出させ
たことを特徴とする酸化物超電導体の製法。
(57) [Claims] RE 1 Ba 2 Cu 3 O 7- δ (RE = rare earth element) oxide superconductor is a crystal structure in which Ba 2 SiO 4 is precipitated in a polycrystal. The critical current density (Jc) is 0.15T in a magnetic field. At 1.1 × 10 3 A / c
An oxide superconductor having an m of 3 or more. 2. RE: Ba: Cu: Si = 1: 2 (x + 1): y: x (RE = rare earth element) (0.05 ≦ x ≦ 0.80, 3 ≦ y ≦ 3.3)
E 1 Ba 2 (x + 1) Cu y O 7- δ (RE = rare earth element) (0.05 ≦ x ≦ 0.
80, 3 ≦ y ≦ 3.3) A powder obtained by mixing at least one of Si 3 N 4 , SiC, and SiO 2 with the calcined powder at 920 to 980 ° C.
After calcination for 5 hours, cooling is performed, and Ba 2 SiO 4 is precipitated in polycrystalline oxide superconductor of RE 1 Ba 2 Cu 3 O 7- δ (RE = rare earth element). Manufacturing method of superconductor. 3. RE 1 Ba 2 Cu 3 O 7- δ · nBa 2 SiO 4 composition, where n is 0.05 ≦ x ≦
After sintering the mixed powder which can be 0.80 at 920 ° C. to 980 ° C. for 1 to 5 hours, it is cooled and mixed in a polycrystalline oxide superconductor of RE 1 Ba 2 Cu 3 O 7- δ (RE = rare earth element). A method for producing an oxide superconductor, comprising depositing Ba 2 SiO 4 on a substrate.
JP62333560A 1987-12-28 1987-12-28 Oxide superconductor and manufacturing method thereof Expired - Lifetime JP2761722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333560A JP2761722B2 (en) 1987-12-28 1987-12-28 Oxide superconductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333560A JP2761722B2 (en) 1987-12-28 1987-12-28 Oxide superconductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01176267A JPH01176267A (en) 1989-07-12
JP2761722B2 true JP2761722B2 (en) 1998-06-04

Family

ID=18267409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333560A Expired - Lifetime JP2761722B2 (en) 1987-12-28 1987-12-28 Oxide superconductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2761722B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351537A (en) * 2011-07-04 2012-02-15 武汉理工大学 High-permittivity microwave medium ceramic material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108152A (en) * 1987-10-19 1989-04-25 Matsushita Electric Ind Co Ltd Oxide superconducting material
JPH01115821A (en) * 1987-10-28 1989-05-09 Hitachi Chem Co Ltd Superconducting material

Also Published As

Publication number Publication date
JPH01176267A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
Cava et al. Bulk superconductivity at 36 K in La 1.8 Sr 0.2 CuO 4
JPH0643268B2 (en) Oxide high temperature superconductor
EP0356722B1 (en) Oxide superconductor and method of producing the same
EP0800494B1 (en) LOW TEMPERATURE (T LOWER THAN 950 oC) PREPARATION OF MELT TEXTURE YBCO SUPERCONDUCTORS
Shan et al. Rapid consolidation of Bi Pb Sr Ca Cu O powders by a plasma activated sintering process
JP2761722B2 (en) Oxide superconductor and manufacturing method thereof
JPH07172834A (en) Oxide superconductive material and its production
JP2533108B2 (en) Superconducting material
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
US5049541A (en) Process for preparing superconductor
JP3217905B2 (en) Metal oxide material and method for producing the same
JP2975608B2 (en) Insulating composition
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
US5308800A (en) Apparatus and method for forming textured bulk high temperature superconducting materials
EP0641750B1 (en) Metallic oxide and process for manufacturing the same
EP0418244A4 (en) Superconducting bi-sr-ca-cu oxide compositons and process for manufacture
JP2761727B2 (en) Manufacturing method of oxide superconductor
JP2817170B2 (en) Manufacturing method of superconducting material
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
Park et al. Effect of silver addition on the single-layer Tl superconductors
WO2004038816A1 (en) Oxide superconductor thin film element
JPH01227480A (en) Manufacture of superconducting thin-film
JPH01164798A (en) Oxide superconductor and its production
JPH0380115A (en) Oxide superconductor and magnetic shield using the superconductor
JPS63230524A (en) Superconductive material