JPH01164798A - Oxide superconductor and its production - Google Patents

Oxide superconductor and its production

Info

Publication number
JPH01164798A
JPH01164798A JP63075564A JP7556488A JPH01164798A JP H01164798 A JPH01164798 A JP H01164798A JP 63075564 A JP63075564 A JP 63075564A JP 7556488 A JP7556488 A JP 7556488A JP H01164798 A JPH01164798 A JP H01164798A
Authority
JP
Japan
Prior art keywords
powder mixture
current density
cuo
critical current
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63075564A
Other languages
Japanese (ja)
Inventor
Fumio Sumiyoshi
住吉 文夫
Tsugio Hamada
次男 浜田
Shiyuuma Kawabata
川畑 秋馬
Gentaro Kaji
源太郎 梶
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63075564A priority Critical patent/JPH01164798A/en
Publication of JPH01164798A publication Critical patent/JPH01164798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain the title superconductor having improved critical current density and causing no deterioration of critical temp. by calcining a powder mixture prepd. from starting materials weighed to provide a desired compsn. and then cooling the calcined powder mixture. CONSTITUTION:A material expressed by formula I obtd. from specified amts. of starting materials comprising an oxide of a rare earth element(abbreviated to RE bereunder) (e.g., Y2O3), BaCO3, CuO, etc., is mixed with a material expressed by formula II obtd. from starting materials comprising an oxide of the abovedescribed rare earth element, BaF2, and CuO, etc., in a proportion so as to provide a compsn. expressed by formula III (wherein 0.05<=x<=0.95), to obtain a powder mixture (wherein the content of S in the CuO to be used as a primary starting material of the powder mixture is regulated to 0.001-1%). The powder mixture is molded. After calcining the molded product at 925-980 deg.C for about 1-2hr, the product is cooled and then annealed appropriately, and cooled to about 200 deg.C. Thus, the title superconductor having a crystal structure combining many densely laminated blocks comprising plate single crystals expressed by formula IV, having >=1.1X10<3> A/cm<2> critical current density(at 0.15T) is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば磁気浮上列車及び粒子加速器等の磁気
コイル部分や電子デバイス及びジョセフソンコンピュー
タの回路基板等に使用される酸化物超電導体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide superconductor used, for example, in magnetic coil parts of magnetic levitation trains and particle accelerators, electronic devices, circuit boards of Josephson computers, etc. It is something.

〔先行技術〕[Prior art]

現在、超電導体はNb3Ge、 Nb:+Snに代表さ
れる金属系超電導体が実用化されているが、その臨界温
度(Tc)はたかだか23.2に程度までである。
Currently, metallic superconductors such as Nb3Ge and Nb:+Sn are in practical use, but their critical temperature (Tc) is at most 23.2.

しかし乍ら、近時希土類元素、アルカリ土類元素及び酸
化銅の混合物から成る酸化物系超電導体はその臨界温度
が金属系超電導体と比べ著しく高いものであることが発
表(例えば東京大学工学部グループの米国物理学会では
90Kを達成したと発表)され、冷媒として高価で極低
温(4,2に=−268,8℃)の液体ヘリウムに換え
、安価な液体窒素で充分使用可能となった。それ故、こ
の酸化物系超電導体の各種利用分野における実用化の目
庇に大きな前進が見られた。これらの発表に伴い上記利
用分野におけるバルク状又は薄膜状の酸化物系超電導体
において、その臨界温度(Tc)をさらに常温にまで高
めようとする研究が盛んに行われている。
However, it has recently been announced that oxide-based superconductors made of a mixture of rare earth elements, alkaline earth elements, and copper oxide have significantly higher critical temperatures than metal-based superconductors (for example, a group from the University of Tokyo Faculty of Engineering It was announced at the American Physical Society that the temperature had been achieved at 90K), and it became possible to use inexpensive liquid nitrogen as a refrigerant instead of the expensive and cryogenic liquid helium (4,2 = -268,8 degrees Celsius). Therefore, great progress has been made in the prospect of practical application of this oxide-based superconductor in various application fields. Along with these publications, research is being actively conducted to further raise the critical temperature (Tc) of bulk or thin film oxide superconductors in the above-mentioned fields of application to room temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような酸化物超電導体の需要に応じ、その性能の向
上が要求されている。とりわけ、エレクトロニクス応用
、輸送システムに於いては高臨界温度(Tc、)と同時
に高臨界電流密度(Jc)が要求される。しかし乍ら、
現在の酸化物超電導体の電流密度は金属系の超電導に比
べ臨界電流密度が低いためにエレクトロニクス応用、輸
送システムに要求される電流密度のレベルに達していな
い。よって酸化物超電導体をエレクトロニクスや輸送シ
ステム等に利用するためには酸化物超電導体のし臨界電
流密度を向上させなければならないという問題点があっ
た。
In response to the demand for such oxide superconductors, improvements in their performance are required. In particular, in electronic applications and transportation systems, a high critical temperature (Tc, ) and a high critical current density (Jc) are required. However,
The current density of current oxide superconductors does not reach the level of current density required for electronics applications and transportation systems because the critical current density is lower than that of metal-based superconductors. Therefore, in order to utilize oxide superconductors in electronics, transportation systems, etc., there has been a problem in that the critical current density of oxide superconductors must be improved.

〔発明の目的〕[Purpose of the invention]

本発明においては、RE+BazCu:+07−♂系酸
化物超電導体の臨界温度を劣化させることなく臨界電流
密度(Jc)を向上させることを目的とする。
The present invention aims to improve the critical current density (Jc) of the RE+BazCu:+07-♂-based oxide superconductor without deteriorating its critical temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、RE+Ba2C113(1+−/ (
RE=希土類元素)の板状単結晶が緻密に積層された多
数のブロックが組合された結晶組織を有する臨界電流密
度Jc (0,15T)が1.1 xlo’A/cm2
以上である酸化物超電導体が提供される。
According to the present invention, RE+Ba2C113(1+-/ (
The critical current density Jc (0,15T) is 1.1 xlo'A/cm2, which has a crystal structure in which many blocks of densely laminated plate-like single crystals of RE=rare earth elements) are combined.
The above oxide superconductor is provided.

また本発明によれば、RIEIB82Cu3FX07−
/  (RE=希土類元素)系組成で0.05≦x≦0
.95になり得る混合粉末を925〜1050℃1好ま
しくは925〜980℃で約1〜2時間で焼成した後、
急冷することを特徴とする酸化物超電導体の製法が提供
される。
Further, according to the present invention, RIEIB82Cu3FX07-
/ (RE=rare earth element) system composition: 0.05≦x≦0
.. After firing the mixed powder which can be 95°C at 925-1050°C, preferably at 925-980°C for about 1-2 hours,
A method for producing an oxide superconductor is provided, which is characterized by rapid cooling.

即ち、RE1BazCu3Fx Or−/の組成からな
る焼結体の破面ば緻密に積層された多数のブロックに結
晶成長しており、粒界相に存在していると思われるフッ
素化合物が界面付近でピニング的な役割を果たし、臨界
電流密度の向上に寄与していると思われる。そして、R
IK+BazC113F、107−1’なる組成からな
る焼結体は緻密に積層されたブロックが組合わされた結
晶Mi織を有することにより超電導体(バルク)全体の
電流密度が一般のRE1BazCu307−/の超電導
体′(バルク)の電流密度と比べ大きくなる。
That is, on the fracture surface of a sintered body with the composition RE1BazCu3Fx Or-/, crystals have grown into many densely stacked blocks, and fluorine compounds that are thought to exist in the grain boundary phase are pinning near the interface. It is thought that this plays an important role and contributes to improving the critical current density. And R
The sintered body having the composition of IK+BazC113F, 107-1' has a crystalline Mi texture in which densely laminated blocks are combined, so that the current density of the entire superconductor (bulk) is that of a general RE1 BazCu307-/ superconductor' (bulk) current density.

板状結晶の大きさは小さい程好ましいが、約20×30
μm以下、厚さが6μm以下で、より好ましくは厚さが
4μm以下であると考えられる。
The smaller the size of the plate crystal, the better, but about 20 x 30
It is considered that the thickness is 6 μm or less, more preferably 4 μm or less.

また、焼結体の密度は4.5g/cm″以上が好ましい
Further, the density of the sintered body is preferably 4.5 g/cm'' or more.

この様な超電導体(バルク)を得るための製法ば例えば
原料粉末としてRE2O3+BaCO3,CuOとから
なるREJazCu307−/’ +  と、REzO
:++BaFz、CuOとからなるRE1BazCu+
Ft07−/ z とを作成し、夫々850〜950度
で仮焼を行う。
A manufacturing method for obtaining such a superconductor (bulk) includes, for example, REJazCu307-/' + consisting of RE2O3+BaCO3, CuO as raw material powder, and REzO
:++ RE1BazCu+ consisting of BaFz and CuO
Ft07-/z are prepared and calcined at 850 to 950 degrees, respectively.

この際、前記原料粉末のCuO中のイオウが0.001
〜1χの範囲内であることが好ましい。CuO中のイオ
ウが0.0旧χ未満であると板状単結晶が緻密に積層さ
れたブロック構造が得られず、1χを越えると結晶中に
不純物が多く析出する。
At this time, the sulfur in CuO of the raw material powder is 0.001
It is preferable that it is within the range of ~1χ. If the sulfur content in CuO is less than 0.0 prior χ, a block structure in which plate-like single crystals are densely stacked cannot be obtained, and if it exceeds 1χ, many impurities will precipitate in the crystal.

その後、RE+Ba2Cu3077とRE1BazCu
3F407− / 2とをRE+BazCusFo、 
os〜o、 qs’ 07−/となるように調合し成形
する。この成形体を空気中925〜1050℃1好まし
くは925〜980℃で比較的短時間、即ち1〜2時間
焼成した後、冷却し、その後適宜アニールを行ってから
200℃程度まで冷却する。このような操作によってR
E1BazCu30.−/板状単結晶の緻密な積層体が
生成する。この時F(フッ素)はRE、Bazcu30
7−/を板状単結晶にする助剤的効果を有するもので、
積層体中では板状単結晶の粒界に偏在していると考えら
れる。よってF(フッ素)が0.05より少ないと板状
単結晶が層状に結晶成長しなくなり、通常のRE+Ba
zCu307−/と同じ程度の臨界電流密度となる。F
(フッ素)が0.95より多いと析出するBaF2が多
くなり、RE+BazCu+Ot−/組成物のみの結晶
構造ができにくくなり、臨界電流密度が劣化する。
After that, RE+Ba2Cu3077 and RE1BazCu
3F407-/2 and RE+BazCusFo,
It is mixed and molded so that it becomes os~o, qs' 07-/. This molded body is fired in air at 925 to 1050°C, preferably 925 to 980°C, for a relatively short period of time, ie, 1 to 2 hours, then cooled, and then appropriately annealed and cooled to about 200°C. By such operations, R
E1BazCu30. -/A dense laminate of plate-like single crystals is produced. At this time, F (fluorine) is RE, Bazcu30
It has an auxiliary effect to make 7-/ into a plate-like single crystal,
It is thought that in the laminate, it is unevenly distributed at the grain boundaries of plate-like single crystals. Therefore, if F (fluorine) is less than 0.05, the plate-like single crystal will not grow in layers, and the normal RE+Ba
The critical current density is about the same as that of zCu307-/. F
If the (fluorine) content is more than 0.95, a large amount of BaF2 will precipitate, making it difficult to form a crystal structure of only the RE+BazCu+Ot-/composition, and the critical current density will deteriorate.

また仮焼温度が850℃より低いとRE1BazCu+
Ot−/組成物ができず、仮焼粉末が超電導体にならな
い。
Also, if the calcination temperature is lower than 850℃, RE1BazCu+
Ot-/composition is not formed and the calcined powder does not become a superconductor.

950℃より高くなると固溶が進み原料が溶出しRE+
BazCu307−/組成混合物のみの結晶構造になら
ない。
When the temperature rises above 950°C, the solid solution progresses and the raw materials are eluted and RE+
The crystal structure of BazCu307-/composition mixture does not exist.

本焼成温度が925℃より低いと臨界温度が高くならな
い。1050”Cより高いと、完全に溶液の状態となり
溶出してしまいRE+Ba2Cuz07−/組成混合物
ができず超電導体とならない。さらに、本焼成後冷却す
ることにより超電導体相を安定化することができる。
If the main firing temperature is lower than 925°C, the critical temperature will not become high. If the temperature is higher than 1050"C, it becomes completely in a solution state and is eluted, resulting in the formation of a RE+Ba2Cuz07-/composition mixture, which does not result in a superconductor. Furthermore, the superconductor phase can be stabilized by cooling after main firing.

さらに、本焼成後、冷却途中にアニールすればより安定
化が図れる。
Furthermore, further stabilization can be achieved by annealing during cooling after main firing.

なお、RE+BazCu307−/において希土類元素
であるREはY(イツトリウム)の他、Sc、 La、
 Ce、 Pr+ Nd+Pm+Sm+Eu、Gd、T
b+Dy、Ilo、Er、Tm、Yb、Lu及びアクチ
ノイド系元素を含むものとする。
In addition, in RE+BazCu307-/, RE, which is a rare earth element, includes Y (yttrium), Sc, La,
Ce, Pr+ Nd+Pm+Sm+Eu, Gd, T
b+Dy, Ilo, Er, Tm, Yb, Lu, and actinide elements are included.

〔実施例〕〔Example〕

Y2O39,09モルχと、BaCO336,36モル
χと、Cu054.55モルχ (但し、イオウ含有量
が0.015χ、純度97.5χ)とからY+BazC
u307−/ Iを作成する一方、y2oi  9.0
9モルχと、BaFz 36.36モルχとCu0 5
4.55モルχ (但し、イオウ含有量0.015′A
、純度97.5X )とからY1BazCIJ3Fa0
7− /’ zを作成した。
From Y2O39,09 mole χ, BaCO336,36 mole χ, and Cu054.55 mole χ (however, sulfur content is 0.015χ, purity 97.5χ), Y + BazC
While creating u307-/I, y2oi 9.0
9 mol χ, BaFz 36.36 mol χ and Cu0 5
4.55 mol χ (However, sulfur content 0.015'A
, purity 97.5X) and from Y1BazCIJ3Fa0
7-/'z was created.

これら2つの基準原料Y、B’a2Cu307− / 
r とY、、BazCu:+F407− / 2を夫々
粉砕後、アルミナあるいはムライトボールに入れて空気
中で900 ’C18時間仮焼を行った。各々の仮焼体
を粉砕してYlBazCuJO,507−/の比率とな
るように混合し、15mmφのベレット状に成型した。
These two reference raw materials Y, B'a2Cu307- /
After crushing r and Y, BazCu:+F407-/2, they were placed in an alumina or mullite ball and calcined in air at 900'C for 18 hours. Each calcined body was pulverized and mixed in a ratio of YlBazCuJO, 507-/, and formed into a pellet shape of 15 mmφ.

この成型体を空気中で925〜1050℃1好ましくは
925〜980℃11〜2時間焼成した後、冷却しさら
に空気中580 ’C,5時間の7二−ルを行い、その
後、200℃までゆっくり冷却し、7 X4.5 Xo
、5mmの試料を得た。
This molded body is fired in air at 925 to 1050°C, preferably 925 to 980°C, for 11 to 2 hours, then cooled and further heated in air at 580'C for 7 hours for 5 hours, and then heated to 200°C. Cool slowly, 7X4.5Xo
, 5 mm samples were obtained.

この試料を四端子法により温度に対する抵抗変化を調べ
た結果、オンセソML度(Tco)が91K、オフセッ
ト温度(Tce)が87.5にであった。また、密度(
アルキメデス法)は5.2g/cm3であった。
The change in resistance of this sample with respect to temperature was investigated using the four-terminal method, and the onceso ML degree (Tco) was 91K, and the offset temperature (Tce) was 87.5. Also, the density (
Archimedes method) was 5.2 g/cm3.

また、振動試料型破ノコ計により前記試料の11Kにお
けるM−11ヒステリシスカーブを求めた。これらの結
果を第1図に示す。さて、M−11ヒステリシスカーブ
において昇磁カーブ1と減磁カーブ2との磁化の差(△
旧は式; %式%() として表わされる。ここで、μ0は真空の透磁率、dは
板状サンプルの厚みの1/2 、Jcは臨界電流密度を
表わす、第1図のヒステリシスカーブから前記式を用い
て磁化の差△Hよりとνn臨界電流密度cを求めた。こ
れらの結果磁化の差ΔM(0,15T)が3゜40 (
mT)で、臨界電流密度Jc(0,15T)が1.1 
Xl0−’(八/cm”)であった。
In addition, the M-11 hysteresis curve at 11K of the sample was determined using a vibrating sample break saw. These results are shown in FIG. Now, in the M-11 hysteresis curve, the difference in magnetization between the magnetization curve 1 and the demagnetization curve 2 (△
Formerly expressed as an expression; %expression%(). Here, μ0 is the magnetic permeability of vacuum, d is 1/2 of the thickness of the plate-shaped sample, and Jc is the critical current density. From the hysteresis curve in Figure 1, using the above formula, the difference in magnetization △H and νn The critical current density c was determined. As a result, the magnetization difference ΔM (0,15T) is 3°40 (
mT), and the critical current density Jc (0,15T) is 1.1
Xl0-'(8/cm").

さらに、前記試料を電子顕微鏡により結晶組織を観察し
、その模式図を第2図で示す。第2図から理解されるよ
うに板状単結晶a ・・・が緻密に積層された多数のブ
ロック八 ・・・が相互に密着して組合された結晶組織
を有していた。
Furthermore, the crystal structure of the sample was observed using an electron microscope, and a schematic diagram thereof is shown in FIG. As can be understood from FIG. 2, the crystal structure was such that a large number of blocks 8, in which plate-shaped single crystals a were densely stacked, were assembled in close contact with each other.

〔比較例1〕 前記実施例と同様のモル比のY+Ba2Cu30□−/
1のみを粉砕後、アルミナあるいはムライトボードに入
れ前記実施例と同様の条件で仮焼、粉砕、成型、焼成し
て11 X 11 X 1.3mmの試料を得た。
[Comparative Example 1] Y+Ba2Cu30□-/ with the same molar ratio as in the above example
After pulverizing only 1, it was placed in an alumina or mullite board and calcined, pulverized, molded and fired under the same conditions as in the previous example to obtain a sample of 11 x 11 x 1.3 mm.

この試料を同様に四端子法で温度に対する抵抗変化を調
べた結果、オンセント温度(Tco)が91.5に、オ
フセント温度(Tce)が89にであった。また、密度
は4.5g/cm3であった。さらに、振動試料型磁力
計により前記試料の77KにおけるM−11ヒステリシ
スカーブを求めた。これらの結果を第3図に示す。この
第3図のヒステリシスカーブから前記実施例の式を用い
て磁化の差ΔNと臨界電流Jcを求めた。これらの結果
、磁化の差△M(0,157)が1.83(mT)で、
臨界電流密度Jc(0,157)が2.2 Xl02(
八/cm2)であり、本発明の前記実施例と比べ著しく
小さいことが理解される。
This sample was similarly examined for resistance change with respect to temperature using the four-terminal method, and as a result, the on-cent temperature (Tco) was 91.5 and the off-cent temperature (Tce) was 89. Further, the density was 4.5 g/cm3. Furthermore, the M-11 hysteresis curve of the sample at 77K was determined using a vibrating sample magnetometer. These results are shown in FIG. From this hysteresis curve in FIG. 3, the magnetization difference ΔN and the critical current Jc were determined using the equations of the above embodiment. As a result, the magnetization difference ΔM(0,157) is 1.83 (mT),
The critical current density Jc(0,157) is 2.2Xl02(
8/cm2), which is understood to be significantly smaller than the above-mentioned embodiments of the present invention.

さらに、比較例の試料を電子顕微鏡により結晶組織を観
察し、その模式図を第4図に示した。第4図から理解さ
れるように板状単結晶a ・・・ばバラバラに間110
を有するか又は大きな粒界Gを有して組織中に散在し、
前記実施例のブロック八は構成されていない。それ故単
位面積あたりの電流の流れが小さく臨界電流密度Jcも
小さくなっているものと思われる。
Furthermore, the crystal structure of the sample of the comparative example was observed using an electron microscope, and a schematic diagram thereof is shown in FIG. As can be understood from Fig. 4, the plate-like single crystal a ... is separated into pieces by 110
or have large grain boundaries G and are scattered in the structure,
Block 8 of the above embodiment is not configured. Therefore, it is thought that the current flow per unit area is small and the critical current density Jc is also small.

〔比較例2〕 前記実施例と同様のモル比YBaCuOとYBaCuF
Oとを作成した。ただし、これらに使用したCuOの純
度は99.9χ、イオウ含有量は0.001%以下であ
った。
[Comparative Example 2] Same molar ratio of YBaCuO and YBaCuF as in the above example
I created O. However, the purity of CuO used in these was 99.9χ, and the sulfur content was 0.001% or less.

これら2つの基準原料を夫々粉砕後、アルミナあるいは
ムライトボールに入れ前記実施例と同様の条件で仮焼、
粉砕、成型、焼成して11 X 11 x 1.1mm
の試料を得た。
After pulverizing these two standard raw materials, they were placed in an alumina or mullite ball and calcined under the same conditions as in the previous example.
Grind, mold, and bake to 11 x 11 x 1.1mm
samples were obtained.

この試料を同様に四端子法で温度に対する抵抗変化を調
べた結果、オンセット温度(Tco)が91に、オフセ
ット温度(Tce)が88にであった。また、密度は5
.1g/cm3であった。さらに、振動試料型硼力計に
より前記試料の77Kにおけるト11ヒステリシスカー
ブを求めた。これらの結果を第5図に示す。この第5図
のヒステリシスカーブから前記実施例の式を用いて磁化
の差ΔNと臨界電流密度Jcを求めた。これらの結果、
磁化の差△M(0,15T)が2.9(mT)で、臨界
電流密度Jc (0,15T)が4.2×102(A/
cm2)であり、本発明の前記実施例と比べ著しく小さ
いことが理解される。
Similarly, this sample was examined for resistance change with respect to temperature using the four-terminal method, and as a result, the onset temperature (Tco) was 91 and the offset temperature (Tce) was 88. Also, the density is 5
.. It was 1 g/cm3. Furthermore, the 11 hysteresis curve of the sample at 77K was determined using a vibrating sample type force meter. These results are shown in FIG. From this hysteresis curve in FIG. 5, the magnetization difference ΔN and critical current density Jc were determined using the equations of the above embodiment. These results
The magnetization difference ΔM (0,15T) is 2.9 (mT), and the critical current density Jc (0,15T) is 4.2×102 (A/
cm2), which is understood to be significantly smaller than the above embodiments of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明においてはRE+Ba2CuaO7−/系酸化物
超電導体の臨界温度を劣化させることなく、臨界電流密
度Jcを向上させることができる。
In the present invention, the critical current density Jc can be improved without deteriorating the critical temperature of the RE+Ba2CuaO7-/based oxide superconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるY1Ba2Cu3O7
−/の磁化特性図、第2図は実施例の試料の結晶組織図
、第3図は比較例におけるY+BazCu:+Fo、 
507−/の磁化特性図、第4図は比較例1の試料の単
結晶組織図、第5図は比較例2の試料の磁化特性図であ
る。
Figure 1 shows Y1Ba2Cu3O7 in an embodiment of the present invention.
- / magnetization characteristic diagram, Figure 2 is the crystal structure diagram of the example sample, Figure 3 is the comparative example Y+BazCu:+Fo,
507-/, FIG. 4 is a single crystal structure diagram of the sample of Comparative Example 1, and FIG. 5 is a diagram of the magnetization characteristic of the sample of Comparative Example 2.

Claims (2)

【特許請求の範囲】[Claims] (1)RE_1Ba_2Cu_3O_7_−_δ(RE
=希土類元素)の板状単結晶が緻密に積層された多数の
ブロックが組合された結晶組織を有する臨界電流密度J
c(0.15T)が1.1×10^3A/cm^2以上
である酸化物超電導体。
(1) RE_1Ba_2Cu_3O_7_-_δ(RE
= critical current density J that has a crystal structure in which a large number of densely laminated plate-like single crystals of rare earth elements) are combined.
An oxide superconductor whose c(0.15T) is 1.1×10^3A/cm^2 or more.
(2)仮焼によってRE_1Ba_2Cu_3F_xO
_7_−_δ(RE=希土類元素)系組成で0.05≦
x≦0.95になり得る混合粉末(但し該混合粉末の1
次原料として使用するCuO中のイオウが0.001〜
1%の範囲内である)を925〜980℃で約1〜2時
間で焼成した後、冷却することを特徴とする酸化物超電
導体の製法。
(2) RE_1Ba_2Cu_3F_xO by calcination
_7_−_δ (RE=rare earth element) based composition 0.05≦
A mixed powder that can satisfy x≦0.95 (however, 1 of the mixed powder
The sulfur content in CuO used as the next raw material is 0.001~
1%) is fired at 925 to 980°C for about 1 to 2 hours, and then cooled.
JP63075564A 1987-09-30 1988-03-29 Oxide superconductor and its production Pending JPH01164798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63075564A JPH01164798A (en) 1987-09-30 1988-03-29 Oxide superconductor and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24703887 1987-09-30
JP62-247038 1987-09-30
JP63075564A JPH01164798A (en) 1987-09-30 1988-03-29 Oxide superconductor and its production

Publications (1)

Publication Number Publication Date
JPH01164798A true JPH01164798A (en) 1989-06-28

Family

ID=26416704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63075564A Pending JPH01164798A (en) 1987-09-30 1988-03-29 Oxide superconductor and its production

Country Status (1)

Country Link
JP (1) JPH01164798A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643011A (en) * 1987-03-25 1989-01-06 Hitachi Ltd Superconducting film and production thereof
JPS6465097A (en) * 1987-08-05 1989-03-10 Siemens Ag Manufacture of layer structure member made from oxide ceramic superconductive material
JPH01188499A (en) * 1987-07-28 1989-07-27 Ovonic Synthetic Materials Co Inc Production of polycrystal grain perovskite type deficient oxide material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643011A (en) * 1987-03-25 1989-01-06 Hitachi Ltd Superconducting film and production thereof
JPH01188499A (en) * 1987-07-28 1989-07-27 Ovonic Synthetic Materials Co Inc Production of polycrystal grain perovskite type deficient oxide material
JPS6465097A (en) * 1987-08-05 1989-03-10 Siemens Ag Manufacture of layer structure member made from oxide ceramic superconductive material

Similar Documents

Publication Publication Date Title
JPH02133367A (en) Oriented polycrystalline superconductor
WO1991019029A1 (en) Oxide superconductor and production thereof
JP2571789B2 (en) Superconducting material and its manufacturing method
JP2533108B2 (en) Superconducting material
JP4101903B2 (en) Oxide superconducting bulk material and manufacturing method thereof
JPH01164798A (en) Oxide superconductor and its production
JPH1125771A (en) Oxide superconducting tape material and its manufacture
EP0612113A2 (en) Composite superconductor
JP2975608B2 (en) Insulating composition
JP2761722B2 (en) Oxide superconductor and manufacturing method thereof
JPH02204358A (en) Oxide superconductor and production thereof
JPH02137762A (en) Oriented polycrystalline superconductor
JPH01246173A (en) Oxide superconductor and production thereof
JPH0769626A (en) Metal oxide and production thereof
JP2761727B2 (en) Manufacturing method of oxide superconductor
JPH0238311A (en) Oxide superconductor and production thereof
JPS63310764A (en) Oriented oxide superconductor and its production
JP2544761B2 (en) Preparation method of superconducting thin film
JPH03112899A (en) Production of oriented oxide superconductor
JPS63230524A (en) Superconductive material
JPH01108149A (en) Oxide superconducting material
JPS6476946A (en) Production of superconductor
JPH01261260A (en) Production of oxide superconductor
JPS63242921A (en) Superconductor
JPS63256566A (en) Superconductive material