JPH01260809A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH01260809A
JPH01260809A JP8830488A JP8830488A JPH01260809A JP H01260809 A JPH01260809 A JP H01260809A JP 8830488 A JP8830488 A JP 8830488A JP 8830488 A JP8830488 A JP 8830488A JP H01260809 A JPH01260809 A JP H01260809A
Authority
JP
Japan
Prior art keywords
paper
conductive
anode foil
porous
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8830488A
Other languages
Japanese (ja)
Other versions
JP2531589B2 (en
Inventor
Hiroshi Shimada
博 島田
Kiyoshi Sakamoto
清志 坂本
Shinichi Kaneko
金子 信一
Isao Isa
伊佐 功
Hideo Yamamoto
秀雄 山本
Minoru Fukuda
実 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP8830488A priority Critical patent/JP2531589B2/en
Publication of JPH01260809A publication Critical patent/JPH01260809A/en
Application granted granted Critical
Publication of JP2531589B2 publication Critical patent/JP2531589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To make miniaturization and small volume possible by winding an anode foil which forms a conductive high polymer film by a dielectric oxidizing coat and chemical polymerization and a porous conductive paper which forms a conductive high polymer film by chemical polymerization and electrolytic polymerization. CONSTITUTION:A dielectric oxidizing coat 2 is formed on a surface and a conductive high polymer film 3 by chemical polymerization on the dielectric oxidizing coat 2 to be an anode foil 1. Further, the conductive high polymer films 3, 5 by the chemical polymerization and the electrolytic polymerization are formed on a porous paper such as a craft paper and a Manila paper and the porous conductive paper 5 whose surface is made conductive can be obtained. The obtained porous conductive paper 5 is spirally wound together with the anode foil 5 having the dielectric oxidizing coat 2 to make an element.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導電性高分子膜を固体電解質とした固体電解
コンデンサに関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a solid electrolytic capacitor using a conductive polymer membrane as a solid electrolyte.

(従来の技術) 固体電解コンデンサは、通常アルミニウム。(Conventional technology) Solid electrolytic capacitors are usually aluminum.

タンタルなどの皮膜形成性金属表面に誘電体である酸化
皮膜を形成し、該酸化皮膜上に二酸化マンガン、TCN
QS3体などの固体電解質層及び導電体層を順次積層形
成して構成されている。
A dielectric oxide film is formed on the surface of a film-forming metal such as tantalum, and manganese dioxide, TCN, etc. are formed on the oxide film.
It is constructed by sequentially laminating a solid electrolyte layer such as a QS3 body and a conductor layer.

一般に大容伍小形化のため、渦巻状に巻回した構造を採
用しているが、従来の電解液形コンデンサ同様に陰極箔
が不可欠のため小形化には限度があった。また、二酸化
マンガンを固体電解質として用いたコンデンサは、製造
工程上誘電体酸化皮膜を損傷しやすいなどの欠点をもち
、一方、TCNQ錯体を用いたコンデンサは、熱安定性
に乏しいなどの欠点がある。
In general, a spirally wound structure is used to achieve large capacity and small size, but as with conventional electrolyte capacitors, a cathode foil is essential, so there is a limit to miniaturization. In addition, capacitors using manganese dioxide as a solid electrolyte have drawbacks such as the dielectric oxide film being easily damaged during the manufacturing process, while capacitors using TCNQ complex have drawbacks such as poor thermal stability. .

誘電体酸化皮膜上にビロールなどの複素環式化合物の重
合体を電解重合により形成し固体電解質としたコンデン
サが提案されているが、誘電体酸化皮膜は絶縁体である
ので、その表面に電解重合膜を形成することは非常に困
難であり、均一な皮膜を形成することができなかった。
Capacitors have been proposed in which a polymer of a heterocyclic compound such as virol is formed by electrolytic polymerization on a dielectric oxide film and used as a solid electrolyte. It was very difficult to form a film, and it was not possible to form a uniform film.

とりわけ陽極箔単体で巻回した構造の素子においては、
渦巻状に密に8!i層した箔の間に均一な電解重合膜を
形成することは不可能である。また、陽極酸化皮膜上に
酸化剤を用いて化学重合した導電性高分子膜(I)を形
成し、セパレータ紙及び陰極箔と共に巻回して素子を形
成後、電解重合により導電性高分子膜(II)を形成し
た構造の固体電解コンデンサが提案されているが、絶縁
体であるセパレータ紙の影響で導電性高分子膜の生成が
不均一となり、コンデンサの静電容量の減少やバラツキ
、損失角の正接(tanδ)が大きいなどの改良すべき
点が残されていた。
In particular, for elements with a structure in which the anode foil is wound alone,
8 densely in a spiral shape! It is impossible to form a uniform electropolymerized film between i-layered foils. In addition, a conductive polymer film (I) is chemically polymerized using an oxidizing agent on the anodic oxide film, and after winding it together with separator paper and cathode foil to form an element, the conductive polymer film (I) is formed by electrolytic polymerization. A solid electrolytic capacitor with a structure formed by II) has been proposed, but due to the influence of the separator paper, which is an insulator, the formation of a conductive polymer film becomes uneven, resulting in a decrease in capacitance, variations in capacitance, and loss angle. However, there were still some points to be improved, such as a large tangent (tan δ).

(発明が解決しようとする課題) 本発明の目的とするところは、導電性高分子膜を固体電
解質とした構造からなり、小形小容積化を可能とすると
ともに、均一な導電性高分子膜を形成せしめ、優れたコ
ンデンサ特性をもつ固体電解コンデンサを提供すること
ができる。
(Problems to be Solved by the Invention) It is an object of the present invention to have a structure in which a conductive polymer membrane is used as a solid electrolyte, and to make it possible to reduce the size and volume of the membrane, and to create a uniform conductive polymer membrane. A solid electrolytic capacitor having excellent capacitor characteristics can be provided.

[発明の構成] (課題を解決するための手段) 本発明者らは、鋭意研究の結果、上記目的を達成し得る
固体電解コンデンサを発明するに至った。
[Structure of the Invention] (Means for Solving the Problems) As a result of intensive research, the present inventors came to invent a solid electrolytic capacitor that can achieve the above object.

すなわち、表面に誘電体酸化皮膜を形成した陽極箔及び
化学重合による導電性高分子膜(I)ならびに電解重合
による導電性高分子膜(It)を電解質とするものから
なり、多孔性紙の表面にあらかじめ化学重合により導電
性高分子膜(I)を形成して多孔性導電化紙となし、陽
極箔と巻回して素子を構成し、次いで電解重合により導
電性高分子膜(II)を形成し、該導電化紙を陰極とし
た固体電解コンデンサである。
That is, it consists of an anode foil with a dielectric oxide film formed on its surface, a conductive polymer film (I) produced by chemical polymerization, and a conductive polymer film (It) produced by electrolytic polymerization as an electrolyte, and the surface of porous paper is A conductive polymer film (I) is formed in advance by chemical polymerization to form a porous conductive paper, which is wound with anode foil to form an element, and then a conductive polymer film (II) is formed by electrolytic polymerization. This is a solid electrolytic capacitor using the conductive paper as a cathode.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

皮膜形成性金属としては、アルミニウム、タンタル、ニ
オブなどが用いられ、必要に応じ表面を電気化学的にエ
ツチングし粗面化する。更に、りん酸アンモニウムやほ
う酸アンモニウムなどの水溶液中で電解酸化を行い、表
面に誘電体酸化皮膜を形成せしめ、陽極箔を得る。この
陽極箔を所定の寸法に切断し、その一部にかしめ付け、
超音波溶接などの方法により陽極引出し用のリード線を
接続する。
Aluminum, tantalum, niobium, etc. are used as the film-forming metal, and the surface is roughened by electrochemical etching, if necessary. Further, electrolytic oxidation is performed in an aqueous solution of ammonium phosphate, ammonium borate, etc. to form a dielectric oxide film on the surface, thereby obtaining an anode foil. This anode foil is cut to a specified size, and a part of it is caulked.
Connect the lead wire for anode extraction using a method such as ultrasonic welding.

次いで、酸化皮膜上に導電性高分子モノマーを少なくと
も0.01  mol/41含む溶液を均一に分散させ
た後、酸化剤o、ooi〜2 mo+/」含む溶液と接
触させるか、又は逆に酸化剤を1均一に分散した後、導
電性高分子モノマー溶液と接触させる方法により、化学
重合した導電性高分子膜(I)を形成し表面を導電化す
る。
Next, after uniformly dispersing a solution containing at least 0.01 mol/41 of a conductive polymer monomer on the oxide film, it is brought into contact with a solution containing an oxidizing agent o, ooi ~ 2 mo+/, or conversely, the solution is oxidized. After uniformly dispersing the agent, the film is brought into contact with a conductive polymer monomer solution to form a chemically polymerized conductive polymer film (I) to make the surface conductive.

次いで、見掛密度が0.3〜0.69/cm3の範囲に
ある多孔性のクラフト紙、マニラ麻紙又はこれらの混抄
紙あるいはこれらと合成HaHとの混抄紙を導電性高分
子モノマーを少なくとも0.01  mol/J!含む
溶液中に浸漬した後、酸化剤を0.001  a+ol
/j)〜2 n+ol/1含む溶液と接触させるか、又
は逆に酸化剤を均一に分散した後、導電性高分子膜ツマ
ー溶液と接触させる方法により化学重合した導電性高分
子膜(I)を形成し、多孔性紙の表面を導電化する。
Next, porous kraft paper, Manila hemp paper, a mixed paper thereof, or a mixed paper of these and synthetic HaH having an apparent density in the range of 0.3 to 0.69/cm3 is treated with at least 0% of a conductive polymer monomer. .01 mol/J! After immersion in a solution containing oxidizing agent at 0.001 a+ol
/j)~2 A conductive polymer film (I) chemically polymerized by contacting with a solution containing n+ol/1 or, conversely, by uniformly dispersing an oxidizing agent and then contacting a conductive polymer film Zimmer solution. to make the surface of the porous paper conductive.

導電性高分子としては、ポリピロール、ポリアニリン、
ポリチオフェン、ポリフランを用い、特に好ましくはポ
リピロールを用いる。
Examples of conductive polymers include polypyrrole, polyaniline,
Polythiophene and polyfuran are used, and polypyrrole is particularly preferably used.

このようにして得られた多孔性導電化紙を誘電体酸化皮
膜を有する陽極箔と共に渦巻状に巻回し素子を作製する
。その後、陰イオンがベンゼンスルホン酸、アルキルベ
ンゼンスルホン酸などのスルホン酸アニオン、過塩素酸
アニオン。
The porous conductive paper thus obtained is spirally wound together with an anode foil having a dielectric oxide film to produce an element. After that, the anion is a sulfonic acid anion such as benzenesulfonic acid, alkylbenzenesulfonic acid, or a perchlorate anion.

また陽イオンがリチウム、カリウムなどのアルカリ金属
カチオン、テトラアルキルアンモニウムなどの4級アン
モニウムカチオンからなる支持電解質0.01〜2 m
ol/ρ及び導電性高分子モノマー0.01〜5 mo
l/jを含む電解液中で、前記多孔性導電化紙を陽極と
し外部に配設した陰極との間に直流定電流電解を行い、
表面を導電化した陽極箔と多孔性導電化紙の間に均一な
電解重合導電性高分子II(II)を形成せしめる。
In addition, a supporting electrolyte whose cations are alkali metal cations such as lithium and potassium, and quaternary ammonium cations such as tetraalkylammonium, 0.01 to 2 m
ol/ρ and conductive polymer monomer 0.01 to 5 mo
In an electrolytic solution containing l/j, constant current electrolysis is performed between the porous conductive paper as an anode and a cathode disposed outside,
A uniform electropolymerized conductive polymer II (II) is formed between the anode foil whose surface has been made conductive and the porous conductive paper.

(作用) 以上述べたごとく構成されるコンデンサ素子では、多孔
性導電化紙は陰極として作用し、樹脂モールド又はケー
スに密封するなどして本発明の固体電解コンデンサを与
える。
(Function) In the capacitor element constructed as described above, the porous conductive paper acts as a cathode, and is sealed in a resin mold or case to provide the solid electrolytic capacitor of the present invention.

(実施例) 実施例1 誘電体酸化皮膜を形成させた厚さ40μm。(Example) Example 1 A dielectric oxide film is formed with a thickness of 40 μm.

幅3履の高純度アルミニウム箔に超音波溶接により陽極
リードを取付は陽極箔を得た。該陽極箔を2 mol/
jビロール/エタノール溶液に5分間浸漬した後、更に
Q、 5 mol/41過硫酸アンモニウム水溶液に浸
漬して化学重合によりポリピロール膜を形成した。
An anode lead was attached to a high-purity aluminum foil with a width of 3 mm by ultrasonic welding to obtain an anode foil. 2 mol/of the anode foil
After being immersed in a pyrrole/ethanol solution for 5 minutes, it was further immersed in a 5 mol/41 ammonium persulfate aqueous solution to form a polypyrrole film by chemical polymerization.

次いで、厚さ35μm、見掛密度0.35g/ClR3
ツマニラ麻紙ヲ2 mol/jビロー /L/ / エ
タノール溶液に5分間浸漬した後、更に0.5nof/
Jl過硫酸アンモニウム水溶液に5分間浸漬して化学重
合によりポリピロール膜をマニラ麻繊維の表面に形成し
多孔性の導電化紙を得た。
Then, the thickness was 35 μm, the apparent density was 0.35 g/ClR3
Tsumanila hemp paper 2 mol/j billow /L/ / After immersed in ethanol solution for 5 minutes, further 0.5nof/
A polypyrrole film was formed on the surface of Manila hemp fiber by chemical polymerization by immersion in Jl ammonium persulfate aqueous solution for 5 minutes to obtain porous conductive paper.

この導電化紙と前記陽極箔とを渦巻状に巻回して素子を
作製後、再化成により誘電体酸化皮膜の修復を行った。
This conductive paper and the anode foil were spirally wound to produce an element, and then the dielectric oxide film was repaired by re-forming.

更に、この素子をビロールモノマー11ol、!及び支
持電解質としてパラトルエンスルホン酸ナトリウム1 
 a+ol/1を含むアセトニトリル溶液中に浸漬し、
化学重合したポリピロールを有する導電化紙を陽極とし
、外部に配設した陰極との間に直流定電流を通電しく 
1 mA/cli、 35m1n ) 、 737n化
紙と表面を導電化した陽極箔上の誘電体酸化皮膜との間
に電解重合によるポリピロール膜を形成せしめた。
Furthermore, this element was mixed with 11 ol of virol monomer! and sodium paratoluenesulfonate 1 as a supporting electrolyte.
immersed in an acetonitrile solution containing a+ol/1,
Conductive paper containing chemically polymerized polypyrrole is used as an anode, and a constant DC current is passed between it and the external cathode.
A polypyrrole film was formed by electrolytic polymerization between the 737n paper and the dielectric oxide film on the anode foil whose surface was made conductive.

しかる後、導電化紙の端面に陰極リードを接続しケース
に密封して定格電圧33v、公称静電容量15μFの固
体電解コンデンサを完成した。このコンデンサは、陽極
箔、セパレータ紙及び陰極箔を用いた従来のコンデンサ
に比べ約2/3の容積となり、また均一なポリピロール
膜が形成されるため、静電容量やtanδのバラツキを
小さくすることができる。
Thereafter, a cathode lead was connected to the end face of the conductive paper and sealed in a case to complete a solid electrolytic capacitor with a rated voltage of 33 V and a nominal capacitance of 15 μF. This capacitor has approximately two-thirds the volume compared to conventional capacitors that use anode foil, separator paper, and cathode foil, and because a uniform polypyrrole film is formed, variations in capacitance and tan δ can be reduced. I can do it.

実施例2 実施例1の紙を厚さ4012m、見掛密度0.6g/c
m”のクラフト紙に変更した以外は、実施例1と同様に
して行った。
Example 2 The paper of Example 1 had a thickness of 4012 m and an apparent density of 0.6 g/c.
The process was carried out in the same manner as in Example 1, except that the paper was changed to kraft paper having a paper size of 1.5 mm.

実施例3 実施例1の紙を厚さ50μm、見掛密度0.3(1/α
3のマニラ麻紙とポリプロピレンi1Mの混抄紙に変更
した以外は、実施例1と同様にして行った。
Example 3 The paper of Example 1 was prepared with a thickness of 50 μm and an apparent density of 0.3 (1/α
Example 1 was carried out in the same manner as in Example 1, except that the paper was changed to a mixed paper of Manila hemp paper (No. 3) and polypropylene i1M.

実施例4 実施例1において、化学重合により表面を導電化しない
陽極箔に変更した以外は、実施例1と同様にして行った
Example 4 The same procedure as in Example 1 was carried out except that the anode foil was changed to an anode foil whose surface was not made conductive by chemical polymerization.

参考例1 実施例1の紙を厚さ20μm、見掛密度0.75g/α
3のクラフト紙に変更した以外は、実施例1と同様にし
て行った。
Reference Example 1 The paper of Example 1 had a thickness of 20 μm and an apparent density of 0.75 g/α.
The process was carried out in the same manner as in Example 1, except that the kraft paper of No. 3 was used.

参考例2 実施例1において、厚さ35μm、見掛密度0.35g
/cm”のマニラ麻紙に化学重合によるポリピロール膜
を形成せずに、陽極箔と渦巻状に巻回して素子を構成し
、実施例1に準じて電解重合を行ったが、ポリピロール
は均一に生成せず、固体電解コンデンサを作製すること
はできなかった。
Reference Example 2 In Example 1, the thickness was 35 μm and the apparent density was 0.35 g.
/cm'' Manila hemp paper was not formed with a polypyrrole film by chemical polymerization, but instead was wound spirally with an anode foil to form an element, and electrolytically polymerized according to Example 1, but polypyrrole was uniformly formed. Therefore, it was not possible to fabricate a solid electrolytic capacitor.

より陽極リードを取付け50amに切断して陽極箔を得
た。該陽極箔を2 mol/Nビロール/エタノール溶
液に5分間浸漬した後、更に0.5mol/j過硫酸ア
ンモニウム水溶液に5分間浸漬して、化学重合によりポ
リピロール膜を形成した。
An anode lead was attached and cut to a length of 50 am to obtain an anode foil. The anode foil was immersed in a 2 mol/N pyrrole/ethanol solution for 5 minutes, and then further immersed in a 0.5 mol/j ammonium persulfate aqueous solution for 5 minutes to form a polypyrrole film by chemical polymerization.

次いで、この陽極箔を厚さ35μm、見掛密度0.35
g/c113のマニラ麻紙をセパレータとし陰極箔と重
ねて渦巻状に巻回して素子を作製後、化学重合したポリ
ピロールを陽極として電解重合を行い、他は実施例1の
方法に準じてコンデンサを作製した。このコンデンサは
せバレータ紙及び陰極箔を有するので、その容積は従来
のコンデンサと同等である。
Next, this anode foil was made to have a thickness of 35 μm and an apparent density of 0.35.
After creating an element by using Manila hemp paper of g/c 113 as a separator and stacking it with a cathode foil and winding it in a spiral shape, electrolytic polymerization was performed using chemically polymerized polypyrrole as an anode, and a capacitor was manufactured in accordance with the method of Example 1. did. Since this capacitor has a separator paper and a cathode foil, its volume is equivalent to that of a conventional capacitor.

本発明の実施例のデータを参考例と共に第1表に示す。Data of Examples of the present invention are shown in Table 1 together with Reference Examples.

なお、第1表中の容積比は、陽極箔、セパレータ紙及び
陰極箔で構成される従来のコンデンサ(参考例3)の大
きさを100として算出した各完成品の容積である。
Note that the volume ratios in Table 1 are the volumes of each finished product calculated assuming that the size of a conventional capacitor (Reference Example 3) composed of an anode foil, separator paper, and cathode foil is 100.

第   1   表 [発明の効果] 導電性高分子膜を固体電解質とした固体電解コンデンサ
からなり、誘電体酸化皮膜及び該誘電体酸化皮膜上に化
学重合による導電性高分子膜を形成した陽極箔と、多孔
性紙に化学重合による導電性高分子膜及び電解重合によ
る導電性高分子膜を形成した多孔性導電化紙と巻回され
ている固体電解コンデンサは、陽極箔と陰極箔とセパレ
ータ紙と巻回されている固体電解コンデンサに比べ、静
電容量やtanδのバラツキを小さく、容積も大幅に小
さくすることが可能となった。
Table 1 [Effects of the Invention] A solid electrolytic capacitor using a conductive polymer film as a solid electrolyte includes a dielectric oxide film and an anode foil having a conductive polymer film formed by chemical polymerization on the dielectric oxide film. A solid electrolytic capacitor is a solid electrolytic capacitor in which porous paper is wound with a porous conductive paper in which a conductive polymer film is formed by chemical polymerization and a conductive polymer film is formed by electrolytic polymerization. Compared to wound solid electrolytic capacitors, it has become possible to reduce variations in capacitance and tan δ, and to significantly reduce volume.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る素子構造の概略説明図
、第2図は実施例4における素子構造の概略説明図であ
る。 1・・・陽極アルミニウム箔 2・・・誘電体酸化皮膜 3・・・化学重合による導電性高分子膜(I>4・・・
多孔性導電化紙 [多孔性組子導電性高分子膜(工)] 5・・・電解重合による導電性高分子膜(n)特許出願
人  マルコン電子株式会社 日本カーリット株式会社
FIG. 1 is a schematic explanatory diagram of an element structure according to an embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram of an element structure in Example 4. 1... Anode aluminum foil 2... Dielectric oxide film 3... Conductive polymer film by chemical polymerization (I>4...
Porous conductive paper [porous muntin conductive polymer membrane (technique)] 5... Conductive polymer membrane (n) by electrolytic polymerization Patent applicant Marcon Electronics Co., Ltd. Nippon Carlit Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)表面に誘電体酸化皮膜及び該誘電体酸化皮膜上に
化学重合による導電性高分子膜を形成した陽極箔と、多
孔性紙に化学重合による導電性高分子膜及び電解重合に
よる導電性高分子膜を形成した多孔性導電化紙とが巻回
されている固体電解コンデンサ。
(1) Anode foil with a dielectric oxide film on the surface and a conductive polymer film formed by chemical polymerization on the dielectric oxide film, and a porous paper with a conductive polymer film formed by chemical polymerization and a conductive film formed by electrolytic polymerization. A solid electrolytic capacitor that is wound with porous conductive paper with a polymer membrane formed on it.
(2)表面に誘電体酸化皮膜を形成した陽極箔を使用し
た請求項(1)記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim (1), which uses an anode foil having a dielectric oxide film formed on its surface.
(3)多孔性紙の密度が0.3〜0.69/cm^3で
ある請求項(1)又は請求項(2)記載の固体電解コン
デンサ。
(3) The solid electrolytic capacitor according to claim (1) or claim (2), wherein the porous paper has a density of 0.3 to 0.69/cm^3.
JP8830488A 1988-04-12 1988-04-12 Solid electrolytic capacitor Expired - Lifetime JP2531589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8830488A JP2531589B2 (en) 1988-04-12 1988-04-12 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8830488A JP2531589B2 (en) 1988-04-12 1988-04-12 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH01260809A true JPH01260809A (en) 1989-10-18
JP2531589B2 JP2531589B2 (en) 1996-09-04

Family

ID=13939189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8830488A Expired - Lifetime JP2531589B2 (en) 1988-04-12 1988-04-12 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2531589B2 (en)

Also Published As

Publication number Publication date
JP2531589B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP0437857B1 (en) A method for producing a solid capacitor and a solid capacitor obtainable by said method
JPH0458165B2 (en)
JPH10340829A (en) Solid electrolytic capacitor and manufacture thereof
JP3551098B2 (en) Manufacturing method of capacitor
JPH07249543A (en) Electrolytic capacitor
JPH0362298B2 (en)
JP2001110685A (en) Solid electrolytic capacitor
JP2621087B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3281658B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000082638A (en) Solid electrolytic capacitor and its manufacture
JPH01260809A (en) Solid electrolytic capacitor
JPH0423411B2 (en)
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JPH02213113A (en) Solid-state electrolytic capacitor
JPH0365007B2 (en)
JPH02117121A (en) Solid electrolytic capacitor
JPH03297120A (en) Electrolytic capacitor
JP2775762B2 (en) Solid electrolytic capacitors
JPH01232712A (en) Fixed electrolytic capacitor and manufacture thereof
JP3851128B2 (en) Electrolytic capacitor
JP2000106330A (en) Capacitor and its manufacture
JPH02137310A (en) Solid electrolytic capacitor
JPH0366810B2 (en)