JPH01260416A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPH01260416A
JPH01260416A JP8949788A JP8949788A JPH01260416A JP H01260416 A JPH01260416 A JP H01260416A JP 8949788 A JP8949788 A JP 8949788A JP 8949788 A JP8949788 A JP 8949788A JP H01260416 A JPH01260416 A JP H01260416A
Authority
JP
Japan
Prior art keywords
substrate
electrode
optical waveguide
optical
buffer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8949788A
Other languages
Japanese (ja)
Inventor
Naoyuki Mekata
直之 女鹿田
Minoru Kiyono
實 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP8949788A priority Critical patent/JPH01260416A/en
Publication of JPH01260416A publication Critical patent/JPH01260416A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve the modulation efficiency by providing a first electrode through a buffer layer on a three-dimensional optical waveguide which is formed on the upper face of a substrate, and also, providing a second electrode which is formed directly on the surface of the substrate in parallel to an optical waveguide. CONSTITUTION:On a three-dimensional optical waveguide 11 which is formed on the upper face of a substrate 10 consisting of an electro-optical crystal, the first electrode 13 is formed through a buffer layer 12, and also, the second electrode 14 which is formed directly on the surface of the substrate 10 in parallel to the optical wavguide 11 is provided. Accordingly, a capacitance is not constituted between the second electrode 14 and the substrate 10, therefore, in modulation voltages applied between the electrodes 13, 14, the voltage applied to the substrate 10 part contributed to the modulation can be increased. In such a way, the modulation efficiency can be improved.

Description

【発明の詳細な説明】 〔概要〕 光通信装置などで用いる光変調器に関し、光導波路を用
いた集中定数型光位相変調器の変調効率を改善すること
を目的とし、 電気光学結晶よりなる基板と、該基板の上面に形成され
た三次元光導波路と、バッファ層を介して前記光導波路
上に形成された第一の電極と、前記光導波路に平行に前
記基板の表面上に直接形成された第二の電極とを有する
構成である。
[Detailed Description of the Invention] [Summary] The present invention relates to optical modulators used in optical communication devices, etc., and is aimed at improving the modulation efficiency of lumped constant optical phase modulators using optical waveguides. a three-dimensional optical waveguide formed on the upper surface of the substrate; a first electrode formed on the optical waveguide via a buffer layer; and a first electrode formed directly on the surface of the substrate parallel to the optical waveguide. This configuration has a second electrode and a second electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は光通信装置における光導波路テバイスに係り、
特に変調効率が改善された位相変調器に関する。
The present invention relates to an optical waveguide device in an optical communication device,
In particular, it relates to a phase modulator with improved modulation efficiency.

光変調器においては、リチウム・ナイオベイト(LiN
b03)等の結晶基板表面に形成された光W波路に電界
を印加して屈折率を変化させ、導波路中を進行する光信
号に対して位相変調を行っている。
In optical modulators, lithium niobate (LiN
An electric field is applied to an optical W wave path formed on the surface of a crystal substrate such as b03) to change the refractive index and perform phase modulation on the optical signal traveling through the waveguide.

少ない変調電力で強い電界を光導波路に印加できればこ
の変調効率は向上するので、このための電極構造が望ま
れる。
If a strong electric field can be applied to the optical waveguide with less modulation power, the modulation efficiency will improve, and an electrode structure for this purpose is desired.

〔従来の技術〕[Conventional technology]

従来の集中定数型の光変調器は、第3図の(イ)に示す
如く、結晶軸方位のZ軸が表面に直交するようにカット
したLiNbO3等の電気光学結晶よりなる基板1と、
該基板1の上面に被着した帯状のチタン(Ti)蒸着膜
を熱拡散して形成され、該基板Iより屈折率の大きい光
導波路2と、該光導波路2を覆って基板1の上面全面に
形成された酸化珪素(SiO2)からなるバッファN3
と、該バッファ層3の上面で光導波路2にあたる位置に
形成された第一の電極4と、該第−の電極と平行に上記
バッファN3上に光導波路2の外側に形成された第二の
電極5とよりなっている。このバッファ層3は光導波路
2上の第一の電極4による光の損失を防ぐために設けら
れているものである。
A conventional lumped constant type optical modulator, as shown in FIG. 3(A), includes a substrate 1 made of an electro-optic crystal such as LiNbO3, which is cut so that the Z-axis of the crystal axis is perpendicular to the surface;
An optical waveguide 2 is formed by thermally diffusing a band-shaped titanium (Ti) vapor deposited film deposited on the upper surface of the substrate 1, and the optical waveguide 2 has a higher refractive index than the substrate I, and the entire upper surface of the substrate 1 covers the optical waveguide 2. Buffer N3 made of silicon oxide (SiO2) formed in
, a first electrode 4 formed on the upper surface of the buffer layer 3 at a position corresponding to the optical waveguide 2, and a second electrode 4 formed outside the optical waveguide 2 on the buffer N3 parallel to the second electrode. It consists of an electrode 5. This buffer layer 3 is provided to prevent light loss due to the first electrode 4 on the optical waveguide 2.

そして両電極間に変調電圧Vを印加すると図示Eの電界
が光導波路2に垂直に発生し、電気光学効果を介して4
波路部分の屈折率が変化し、その内部をX軸方向に伝播
する光信号の伝播速度が変化することにより位相変調が
行われるようになっていた。
Then, when a modulation voltage V is applied between both electrodes, an electric field shown in the figure E is generated perpendicularly to the optical waveguide 2, and through the electro-optic effect,
Phase modulation was performed by changing the refractive index of the wave path portion and changing the propagation speed of the optical signal propagating inside the wave path in the X-axis direction.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の光変調器の電極から見た等価回路を第3図(
ロ)に示す。図においてC1は第一の電極4の下のバッ
ファ層に、C2は第二の電極5の下のバッファ層にそれ
ぞれ基づく静電容量であり、またCpは基板1による静
電容量であり、電極間の静電容量は3個のコンデンサの
直列接続で表される。
Figure 3 (
(b) Shown in (b). In the figure, C1 is the capacitance based on the buffer layer under the first electrode 4, C2 is the capacitance based on the buffer layer under the second electrode 5, and Cp is the capacitance due to the substrate 1; The capacitance between them is represented by a series connection of three capacitors.

位相変調器が効率よく変調できるために、光導波路に印
加される電界すなわち基板に印加される電界を大きくす
る必要があるが、電極間に印加された変調電圧はバッフ
ァ層による二つのcb静電容量C+ 、C2にも分配さ
れるため基板にかかる電圧が減少し、その分だけ変調効
率が悪い吉いう問題点があった。
In order for the phase modulator to modulate efficiently, it is necessary to increase the electric field applied to the optical waveguide, that is, the electric field applied to the substrate. Since the voltage is also distributed to the capacitances C+ and C2, the voltage applied to the substrate is reduced, which causes the problem of poor modulation efficiency.

本発明は上記問題点に鑑み創出されたもので、光導波路
を用いた集中常数型光変調器の変調効率を改善すること
を目的とする。
The present invention was created in view of the above problems, and an object of the present invention is to improve the modulation efficiency of a lumped constant optical modulator using an optical waveguide.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点は、 電気光学結晶よりなる基板と、 該基板の上面に形成された三次元光導波路と、該導波路
を覆うように形成されたバッファ層とバッファ層を介し
て前記光導波路上に形成された第一の電極と、 前記光導波路に平行に前記基板の表面上に直接形成され
た第二の電極と、 を有することを特徴とする本発明の光変調器により解決
される。
The above problem consists of a substrate made of electro-optic crystal, a three-dimensional optical waveguide formed on the upper surface of the substrate, a buffer layer formed to cover the waveguide, and an optical waveguide formed on the optical waveguide via the buffer layer. The present invention provides an optical modulator comprising: a first electrode formed directly on the surface of the substrate in parallel with the optical waveguide; and a second electrode formed directly on the surface of the substrate in parallel with the optical waveguide.

〔作用〕[Effect]

第二の電極は、基板上に直接形成されているので、該第
二の電極と基板との間に静電容量を構成しないため、前
記等価回路におけるバッファ層によるC2をなくすこと
ができる。
Since the second electrode is formed directly on the substrate, no capacitance is formed between the second electrode and the substrate, so that C2 caused by the buffer layer in the equivalent circuit can be eliminated.

従って、印加された変調電圧は、第一の電極直下のバッ
ファ層によるC1と基板によるCpとの直列接続に印加
されるので、C2がなくなった分だけ効率良く電圧を基
板部に集中させることができる。
Therefore, the applied modulation voltage is applied to the series connection between C1 by the buffer layer directly under the first electrode and Cp by the substrate, so that the voltage can be concentrated on the substrate part more efficiently by eliminating C2. can.

〔実施例〕〔Example〕

第1図は、本発明に係る光変調器の構成を示す図、第2
図は光導波路に印加される電界を示す模式図である。
FIG. 1 is a diagram showing the configuration of an optical modulator according to the present invention, and FIG.
The figure is a schematic diagram showing an electric field applied to an optical waveguide.

第1図において10は、LiNbO3よりなるZ板とし
てカットした基板である。この場合は図示の如く厚さ方
向に結晶のZ軸を、奥行き方向に結晶のX軸がくるよう
にカットして、基板の表面に垂直に電界を印加した場合
に、最大の電気光学係数で屈折率が変化するようにしで
ある。
In FIG. 1, 10 is a substrate cut as a Z plate made of LiNbO3. In this case, if the crystal is cut so that the Z-axis of the crystal is in the thickness direction and the X-axis of the crystal is in the depth direction as shown in the figure, and an electric field is applied perpendicular to the surface of the substrate, the maximum electro-optic coefficient is obtained. The refractive index is changed.

そして該基板10表面の光導波路形成部分に結晶軸Z方
向と直角にチタン藩着膜を帯状に形成して熱拡散を行い
、基板10より屈折率を大きくした3次元の光導波路1
1が形成されている。
Then, a titanium film is formed in a strip shape perpendicular to the crystal axis Z direction on the optical waveguide forming portion of the surface of the substrate 10 to perform thermal diffusion, thereby creating a three-dimensional optical waveguide 1 with a refractive index larger than that of the substrate 10.
1 is formed.

12は光導波路11の上面部分のみに設けられた厚さが
数1000人の酸化珪素(Si02)よりなるバッファ
層で、気相成長法(CVD)などで基板10の上面会面
に被着したのち、導波路11の上面部分以外は所定のエ
ツチング処理により基板10の表面から除去されている
Reference numeral 12 denotes a buffer layer made of silicon oxide (Si02) with a thickness of several thousand layers, which is provided only on the upper surface of the optical waveguide 11, and is deposited on the upper surface of the substrate 10 by vapor phase epitaxy (CVD) or the like. , the portion other than the upper surface portion of the waveguide 11 is removed from the surface of the substrate 10 by a predetermined etching process.

13は第一の電極で金薄膜等からなり、少なくとも光導
波路■1上部を覆うように前記バッファ層12の上面に
形成されており、バッファ層12を介して基板10内の
光導波路11にZ方向の電界を印加するようになってい
る。
A first electrode 13 is made of a thin gold film or the like, and is formed on the upper surface of the buffer layer 12 so as to cover at least the upper part of the optical waveguide 1. It is designed to apply an electric field in the same direction.

このバッファ層12は光導波路11上に電極13を直接
形成した場合に生じる光伝送損失の増加を防ぐために設
けるものである。
This buffer layer 12 is provided to prevent an increase in optical transmission loss that would occur if the electrode 13 was directly formed on the optical waveguide 11.

14は第二の電極で、上記第一の電極13と平行に所定
路離隔てて平行に設けられた金薄膜よりなり、基板10
の表面上にバッファ層を介するこ吉なく直接形成されて
いる。
A second electrode 14 is made of a gold thin film provided in parallel with the first electrode 13 at a predetermined distance from the substrate 10.
It is formed directly on the surface of the substrate without intervening a buffer layer.

このように画電極が形成された本発明の光変調器に対し
て、両電極間に変調電圧を印加すると、第2図に示すよ
うに電気力&’lは第一の電極13の下面からバッファ
N12を介して光導波路11を略垂直に通過し基板10
を横切って、基板10の表面の第二の電極14に達する
如く生成する。
When a modulation voltage is applied between both electrodes of the optical modulator of the present invention in which the picture electrode is formed in this way, an electric force &'l is generated from the bottom surface of the first electrode 13 as shown in FIG. The substrate 10 passes through the optical waveguide 11 approximately perpendicularly through the buffer N12.
is generated so as to reach the second electrode 14 on the surface of the substrate 10.

この場合、第二の電極14の下にはバッファ層が存在し
ないためその分だけ従来例に比べて電界のロスが減少し
、光導波路を含む基板部分に配分されるので電界が強ま
り、変調効率が改善される。
In this case, since there is no buffer layer under the second electrode 14, the electric field loss is reduced compared to the conventional example, and the electric field is strengthened because it is distributed to the part of the substrate including the optical waveguide, which improves the modulation efficiency. is improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光導波路を用いた集中定数型の光変調
器において、電極間に印加される変調電圧のうち、変調
に寄与する基板部分に加わる電圧を増加させることがで
き、変調効率が改善されるという効果がある。
According to the present invention, in a lumped constant optical modulator using an optical waveguide, it is possible to increase the voltage applied to the substrate portion contributing to modulation among the modulation voltages applied between the electrodes, and the modulation efficiency can be increased. It has the effect of being improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る光変調器の構成を示す図、第2図
は光導波路に印加される電界を示す図、第3図は従来の
光変調器を示す図、 である。 図において、 1吐−基板、       11・−光4波路、12−
バッファ層、    I3−第一の電極、14−第二の
電極、 である。 Δ57H用てイ辰るλi須辷占耳器の構庁プ丘手Jすト
4晃1 回
FIG. 1 is a diagram showing the configuration of an optical modulator according to the present invention, FIG. 2 is a diagram showing an electric field applied to an optical waveguide, and FIG. 3 is a diagram showing a conventional optical modulator. In the figure, 1 - substrate, 11 - 4 optical wave paths, 12 -
buffer layer, I3-first electrode, 14-second electrode. Δ57H is used for the construction of the λi Suzaku ear-divining device.

Claims (1)

【特許請求の範囲】 電気光学結晶よりなる基板(10)と、 該基板(10)の上面に形成された三次元光導波路(1
1)と、 バッファ層(12)を介して前記光導波路(11)上に
形成された第一の電極(13)と、 前記光導波路(11)に平行に前記基板(10)の表面
上に直接形成された第二の電極(14)と、を有するこ
とを特徴とする光変調器。
[Claims] A substrate (10) made of electro-optic crystal, and a three-dimensional optical waveguide (10) formed on the upper surface of the substrate (10).
1), a first electrode (13) formed on the optical waveguide (11) via a buffer layer (12), and a first electrode (13) formed on the surface of the substrate (10) parallel to the optical waveguide (11). a directly formed second electrode (14).
JP8949788A 1988-04-12 1988-04-12 Optical modulator Pending JPH01260416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8949788A JPH01260416A (en) 1988-04-12 1988-04-12 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8949788A JPH01260416A (en) 1988-04-12 1988-04-12 Optical modulator

Publications (1)

Publication Number Publication Date
JPH01260416A true JPH01260416A (en) 1989-10-17

Family

ID=13972399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8949788A Pending JPH01260416A (en) 1988-04-12 1988-04-12 Optical modulator

Country Status (1)

Country Link
JP (1) JPH01260416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020754A1 (en) * 1998-08-10 2000-07-19 Sumitomo Osaka Cement Co., Ltd. Light modulator of waveguide type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1020754A1 (en) * 1998-08-10 2000-07-19 Sumitomo Osaka Cement Co., Ltd. Light modulator of waveguide type
EP1020754A4 (en) * 1998-08-10 2004-08-11 Sumitomo Osaka Cement Co Ltd Light modulator of waveguide type

Similar Documents

Publication Publication Date Title
JP2603437B2 (en) Periodic domain inversion electro-optic modulator
JP3200629B2 (en) Optical modulator using photonic bandgap structure and optical modulation method
JPH09211402A (en) Broad-band light modulator
CN115362407A (en) Electro-optical device
JP2013037243A (en) Optical modulator
JPH0667130A (en) Light control element
JP5467414B2 (en) Optical functional waveguide
JPH04328720A (en) Waveguide type optical device
JPH04172316A (en) Wave guide type light control device
JPH01260416A (en) Optical modulator
JP2023030675A (en) Optical device and optical communication apparatus
JP2651183B2 (en) Manufacturing method of waveguide type optical modulator
JPH05241115A (en) Waveguide type optical device
JPH01201609A (en) Optical device
JPH019933Y2 (en)
JPH0827447B2 (en) Optical waveguide device
JPH09211403A (en) Light control element
JPH0721597B2 (en) Optical switch
US20230124507A1 (en) Electro-optical device
JP2606552B2 (en) Light control device
JPH0422245B2 (en)
JPS6236631A (en) Waveguide type optical modulator
JPS6038689B2 (en) Method for manufacturing waveguide electro-optic light modulator
JPS5936250B2 (en) Optical modulation/optical switching device
JP2903700B2 (en) Waveguide type optical device